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We discuss the design features of a commercial tokamak reactor in which day long pulses are
provided by the volt-second capability of the ohmic heating transformer. Illustrative parame-
ters are a major radius of 9.7 m, a minor radius of 1.95 m, an average toroidal beta of 0.036, a
magnetic field on axis of 6.1 T, a neutron wall loading of 2.3 MW /m? and a thermal power
level of 4000 MW. The tokamak is modularized into units which consist of two toroidal field
coils, blanket and shield and first wall. The removal of the two toroidal field coils associated
with a module would be carried out without warming up the rest of the toroidal field coil set.
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1. INTRODUCTION

Detrimental effects due to pulsed operation and
difficulty in the execution of major maintenance op-
erations are key concerns in tokamak reactor design.
In this paper, we describe a reactor concept which
could reduce these problems. It is a completely mod-
ularized device with very long pulses provided by the
volt-second capability of the ohmic heating trans-
former. Operation with very long pulses will greatly
reduce thermal and mechanical fatigue and will allow
for very gradual plasma startup and shutdown
scenarios. A design is considered for a device with a
one day pulse length in order to illustrate the poten-
tial of the tokamak for very long pulse operation.

2. GENERAL FEATURES

The features of the design concept are strongly
driven by maximization of the pulse length provided
by the ohmic heating (OH) transformer. A very sub-
stantial increase in the space available for the OH
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transformer is obtained by the choice of a major
radius which is somewhat larger (R =10 m) than that
used in current commercial reactor designs.” In ad-
dition, the OH transformer is designed to provide
maximum flux by increasing the peak field through
the use of a Nb;Sn superconductor. Finally, relatively
high temperature plasma operation is employed to
reduce the plasma resistance. A relatively large aspect
ratio is used to allow for operation at high wall
loading without producing an unacceptably large
amount of thermal power in the large major radius
design.

The entire tokamak system is modularized into
units consisting of first wall, blanket and shield, and
two superconducting toroidal field (TF) coils. A mod-
ule could be removed without warming up any of the
toroidal field coils. The removal of a module could be
accomplished by a relatively small number of opera-
tions. Each TF coil would be situated in a separate
dewar. Contact between the low temperature region
of the magnet and the casing, which is at room
temperature, would be made through struts of G-10
insulation. It appears that the heat leak could be held
to acceptably low values.®

0164-0313 /83 /0200-0063$03.00,/0 ©1983 Plenum Publishing Corporation




A relatively simple equilibrium field (EF) coil
system would be used. The main EF coils would be
external to the TF coils. It may not be necessary to
locate any EF coils inside the TF magnet. If EF coils
are located inside the TF magnet, pressure contacts
would be employed to reduce the time required for
assembly and disassembly. The use of an external EF
system is facilitated by utilization of a TF coil design
which has a reduced size relative to a D-shape or
bending free design. The TF coil size is determined
mainly by ripple requirements.

3. ILLUSTRATIVE DESIGN PARAMETERS

A rough illustrative design has been developed
by extrapolation from a design for a large major
radius tokamak reactor with helical coils®® and from
the HFCTR tokamak power reactor design.® An
engineering scoping study has not yet been per-
formed. Plasma and magnet parameters for the il-
lustrative design are shown in Tables I and II. An
elevation view is shown in Fig. 1. The illustrative
design has a major radius of 9.7 m, an average
toroidal beta of 0.036, a pulse length of 24 hr, and a
neutron wall loading of 2.3 MW /m’.

These parameters should lead to a more attrac-
tive reactor concept than the 15-m major radius
design which we previously considered.®” That design
had an average beta of 0.017, a pulse length of 14 hr,
and a neutron wall loading of 1.8 MW/m?. The
improved features result from a less conservative
assumption for the average value of beta, the use of a
higher performance OH transformer, higher tempera-

ture operation, and an improved calculation of plasma

Table I. Plasma Parameters

Major radius 9.7 m

Minor radius 1.95 m

Aspect ratio 5.0

Plasma elongation 1.5

Average toroidal beta - 0.036

Magnetic field on axis 61T

Plasma current (g(a) = 2.5) 9.7 MA

Plasma density profile 1.3Xx10M%em™3 (1 - r2/a?)

Electron temperature profile 35keV (1-r?/a 2)

Plasma voltage (Z,, =1) 1LI1X1072V
Pulse length (Z, ;= 1) 24 hr
Neutron wall loading 2.3 MW,/m?
Thermal power 4000 MW

(fusion power X 1.25)
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Table Il. Magnet System Parameters for Illustrative

Design

Field at TF magnet 94T
Number of TF coils 20
Ripple at plasma edge 1%
Ripple at plasma center 0.1%
TF magnet stored energy 55 GJ
Peak field at OH magnet 10T
OH stored energy (0 to 12 T swing) 22GJ
Volt-second capability of OH

transformer 1100 Vs
EF stored energy

(0 to full field of 0.45 T) 70GJ

voltage requirements, which gives a prediction of
longer pulses. '

The single loop voltage requirement for the
plasma is calculated assuming that the voltage is
constant across the plasma, the safety factor on axis,
9axis,= 1, and Z,, = 1. The voltage is given by

27R s

axis

V=27RE =

where E is the electric field, R is the major radius, j, ;.
is the current density on axis, and o, is the plasma
conductivity on axis. Relating j,;; to the toroidal field
on axis, the expression for voltage becomes

47B,
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or
V~ BT

where b/a is the plasma elongation and 7, is the
electron temperature. For a central electron tempera-
ture of 35 keV, the voltage requirement is 1.1X
1072V,

The ohmic heating transformer plus the EF sys-
tem provide ~ 1150 V-s, of which approximately 900
V-s is available for driving the plasma current during
burn. Thus it should be possible to drive the plasma
current for about 80,000 s (approximately one day).
The value of nr predicted by INTOR scaling (7 ~
nab) is about twice that which is required for igni-
tion.

4. MAGNET SYSTEM

In order to maximize the volt-second capability
for a given amount of space, the superconducting
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OH TRANSFORMER

TF-COoiu

9.4 m.

Fig. 1. An elevation view of the reactor.

material for the OH transformer is Nb,Sn, allowing
higher peak fields than NbTi. In addition, it is made
of a large number of pancakes that are independently
driven, increasing reliability. The field in the OH
transformer is swung from +10 T to —10 T. The
change in stored energy in a swing from 10 Tto 0 T
is 22 GJ. Because of the large stored energy, the
direction of the plasma current and the magnetic
field from the equilibrium field magnets would be
reversed after each pulse (D. L. Jassby, private com-
munication, 1977). If this procedure is not followed,
either a relatively long time would be needed to
recock the transformer or very large power would be
required. A second ohmic heating transformer would
be employed if a relatively fast initial current start-up
scenario is desired.

The toroidal field magnet system consists of 20
coils of approximately circular shape.® The size of
the coils is determined by the requirement for ac-
ceptably low ripple. In the illustrative design the
ripple at the plasma edge is 1% and the ripple on axis
is 0.1%. The peak field on the TF magnet is 9.4 T.
The use of Nb;Sn would be advantageous in that the

sensitivity of the conductor to pulsed fields would be
reduced.

5. RF AND/OR NEUTRAL BEAM SYSTEMS

Approximately 75 MW of auxiliary heating
power would be provided for start-up heating. In
addition, there may be significant advantages in using
RF or neutral beam current drive during the start-up
phase. The use of noninductive current drive could
remove the need for rapidly changing magnetic fields
in the OH transformer, thus reducing requirements
on the OH magnet system and the first wall design.
RF or neutral beam current drive may also be im-
portant in- the prevention of disruptions by current
drive profile control.

6. IMPURITY CONTROL

Because of its simplicity, a pump limiter is the
preferred method of impurity control." However,
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erosion and difficulty in handling severe heat loads
may preclude its use. Hence, the use of a poloidal
divertor or a bundle divertor must also be considered.

7. SUMMARY

Operation with very long pulses from the OH
transformer provides an alternative to commercial
tokamak reactor concepts which use steady state cur-
rent drive.(® It appears that day long pulses from
the OH transformer could be provided in a tokamak
reactor design which is not greatly increased in size
relative to current commercial reactor designs.() Key
features in obtaining this capability are a moderate
increase in major radius, the use of a high perfor-
mance OH transformer, and operation at moderately
high temperatures. Reactor designs with shorter pulses
could also benefit from these features. It may also be
possible to completely modularize the reactor thereby
facilitating ease of assembly and disassembly for
major maintenance and repair operations. An area of
major concern is that of impurity control and plasma
positioning'if a pump limiter is not viable. An en-
gineering study is underway to assess the viability of
this overall design approach.
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