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ABSTRACT

A method for analyzing the structural behavior
of toroidal magnet systems subjected to Lorentz fomes
both in and out of the winding planes, and thermal
loads is considered in this paper. The toroidal coil
assembly is treated as a finite thickness, ortho-
tropic, rotationally symmetric shell of revolution
acted upon by symmetrical and antisymmetrical loads.
The equations based on Reissner's shell theory are
derived, and numerical solutions are presented. The
method is an efficient design tool for the analysis
and shape selection of toroidal magnet systems and
their structures, such as the in-plane and out-of-
plane load support systems for closed magnetic con-
finement machines, e.g. tokamaks, stellarators, and
bumpy tori.
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INTRODUCTION

This paper presents equations of orthotropic,
rotationally symmetric toroidal shells of finite
thickness subjected to symmetrical and antisymmetri-
cal loads, including thermal loads. These equations
were derived using the approach developed by E.
Reissner (1) that allows to take into account the ef-
fect of transverse stresses on the deformation of
the middle surface of the shell and consistently
omit terms which are small of order h

2
/R

2
.

The equations are used to model the structural
behavior of discrete and continuous toroidal field
(TF) magnet systems subjected to in-plane and out-of-
plane Lorentz forces and experiencing orthotropic
thermal expansion or contraction.

The utilization of the theory of orthotropic
shells of finite thickness for the structural analy-
sis of the TF magnet systems is found to be very ef-
ficient , particularly in the process of initial
shape selection.

The earliest and the most popular TF coil con-

figuration, known as the Princeton D shape, was first
derived in (2) by considering the equilibrium of a
plane filament in pure tension subjected to a distri-
buted normal load inversely proportional to the
toroidal radius. The inner leg of this coil is sup-
ported by a stiff cylinder to react the unbalanced

centering force. As shown by several authors (3-5)
substantial bending stresses are revealed by detailed
analyses of TF magnet structures designed to follow
the pure tension trajectory. Large bending stresses
were also found in the compound-constant-tension coil
configurations derived in (6). These bending stresses
were partially explained by several factors, includ-

ing the finite thickness of the coils in real tokamak

structures , nonuniformity of the toroidal field
due to the discrete character of coil placement(8)

and the violation of the compatibility conditions at
the joining points of different "pure tension"
shapes (9). Almost no consideration was given to the

effect of the intercoil structure (to support the

out-of-plane loads) on the coil shapes.

An important contribution in the modelling of
toroidal magnet systems was the membrane shell model

developed by Gray et al (10) which took into
consideration the circumferential stiffness of the

magnet assembly. A bending free membrane shell
shape was derived. It was substantially different

from that of a constant tension filament. Unlike the

significant shape deviations described in (11) and

(12), the deviation from the D trajectory happens in

the membrane shell consideration naturally, inde-

pendent of reaction forces or finite thickness ef-

fects. Unfortunately, there is an inherent strain

incompatibility at the crown of a toroidal shell in

the solution to the linear membrane theory (13).

This incompatibility introduces bending stresses in

a shell with finite bending stiffness, as demon-

strated below.

This analysis and design studies (14) call into

question the entire approach of searching for an op-

timal shape to minimize bending stresses. The an-

alysis presented in this paper shows that typical

tokamak reactor designs (14) with sufficient struc-

tural case material to withstand tensile stresses

have sufficient bending stiffness to react the bend-

ing stresses, which were found to be less than 50%

of primary membrane stresses, for the two shapes con-

sidered. Furthermore, design studies (14) of high-

cycle, inductively driven tokamaks showed that case

thicknesses were dominated by pulsed out-of-plane

loads. The possibility of low-cycle operation for

all the major toroidal confinement systems requires

a capability for the rapid scoping of complex inter-

related structural and physics trade-offs which is

substantially advanced by the inclusion of the out-

of-plane load induced stresses in the model describ-

ed below.

BASIC EQUATIONS

Following E. Reissner(l) we derived a basic
set of equations of rotationally symmetric ortho-

tropic shells of revolution of finite thickness. The

equations take into account the effect of transverse

stresses on the deformation of the middle surface of

the shell and retain terms of order h/R in compari-

son with unity. This is essential with an h/R ratio

greater than 1/20. In order to distinguish the

structural response of toroidal coil systems to sym-

metrical (normal pressure due to the toroidal field,

and temperature variation) and antisymmetrical (tor-

sional shear due to the vertical field) loads, the

equations are presented in two respective groups of

which the first corresponds to the symmetrical load

and the second to the antysimmetrical load.

Symmetrical Load

In this case the shell is subjected to a me-

chanical pressure caused by toroidal field Bt

2 2

3 8Tr r

and rotationally symmetric temperature distribution

T(s,z). The temperature distribution in the shell

is accounted for in the usual manner by means of the

integrated temperature effect of the form

h

T (s) = - T(s,z)dz
0 h Jh

h
22

T(s) = zT(s,z)dz

h h
2

(2)

(3)
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Fig. 1 Differential element of a shell of revolu-
tion under symmetric loading.

Equations of Equilibrium. Stress resultants
and stress couples acting upon a differential ele-
ment of the shell are in case of a symmetrical load
as shown in Fig. 1. The equations of equilibrium in
this case are

l dr (N -N ) + .i= 0 (4)ds r ds 1 2 R 1

N1 Ea + d l dr (5)
R R2 ds + Qi = - q3

with equilibrium equations (4)-(6) as side condi-
tions, using Lagrangean multipliers.
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The effective midsurface strains and midsur-
face curvature changes are expressed in terms of the
effective midsurface linear and angular displacements
u, w, and B

+ + +r- (Ml - M2) = 0 (6)

Stress-Strain and Strain-Displacement Rela-
tions. If the material of the shell is orthotropic,
the following relations are true (15).
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The stress-strain relations for the shell are
obtained by minimizing the strain energy expressed
in terms of stress resultants and stress couples,

lm = + _Kim dsR1

1 drw
t

2m r ds u +

6lm dw u
Y13m " 1 + -R

1= d l
1 ds

(17)

(18)

(19)

(20)

(21)K 1 dr
2 r ds1

Antisymmetrical Load

In this case the load applied to the midsur-
face of the shell is the distributed shear

= vI cos 8 (22)2 2Trr

which is antisymmetric with respect to the equator-
ial plane 8 = ±1/2.
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Fig. 2 Differential element of a shell of revolu-
tion under antisymmetric loading.

Equations of Equilibrium. Tn case of an anti-
symmetrical distributed shear load (22) only shear
stress resultants and shear stress couples are gen-
erated in the shell as shown in Fig. 2. The equili-
brium of the shell is described by the following
four equations.

dN2 ~1 dr
ds r -d 12 + N2 1 + . - 2

dM1 2 + d 2 + M/ 2ds r. ds k12 21)

N -N + - = 0
12 21 R R2

12 21 2

(23)

(24)

K12 
3 

(M1 2 + M2 1 ) (30)

12

Utilization of the four equilibrium equations

(23) - (26) by means of the Lagrange multiplier
method leads to expressions for the effective midsur-

face shear strain and curvature variations in terms

of the effective midsurface linear displacement v and

angular displacement 2'

1/dv 1ldr N h2I 1
£ - } v I) -- D (31)
12m 2 ds r)ds +24 Rl31)

1 + 1 d+r' 6
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Y23m 2 -X 2 R (314)

NUMERICAL IMPLEMENTATION AND RESULTS

The solutions to the equations presented above,
with appropriate boundary conditions give a complete
description of the behavior of an orthotropic shell
of revolution, of finite thickness.

In order to obtain the necessary quantities

1 1 and 1 dr
R 1 R2 r ds

which enter as coefficients into equations, the me-
ridian of the shell should be described as a function

(25) of *s or r, either analytically or in a tabulated form

The geometrical identities used to describe the
(26) shell of revolution are:

(32)

Stress-Strain and Strain-Displacement Rela-
tions. The constitutive relationships (Hooke's law)
if only shear strains and stresses are involved are
expressed for an orthotropic material in the form

1 1
' 2=G12 T1 23=G23 T2

(27)

Minimization of the shear strain energy ex-
pressed in terms of shear stress resultants N1 2, N2 1,
Q23 and shear stress couples M12 and M2 1 yields three
constitutive relationships

_2m = 4 1 h (N12 + N2 1 ) (28)
12 G2h 2 21

Y2m=1.2 Q
23m G23h 2

(29)

= 00s 6C
ds

1 _ d(sin 8)
R dr

(35)

(36)

(37)
1 sin e
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A computer code for the finite difference so-
lution of the two groups of equations corresponding
to symmetrical and antisymmetrical loadings has been
developed. In order to complete the analysis, the
code requires the analytical or tabulated expres-
sion for the shape of the meridian in the form

sin e = f(r) (38)
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along with the inner and outer toroidal radii, ef-
fective material physical properties, and the number
of ampere-turns.

The meridian shapes presented here as examples
are a. circle and the "bending free" shell of Gray
et al (10). Both shells have dimensions of the tor-
oidal field coils in the Fusion Engineering Device
(FED) described in (14), i.e., rin = 2.14 m,
rout = 10.5 m, NI = 115 MAT, effective shell thick-
ness h = 0.66 m and a coil case thickness 0.08 m.
Figure 3 shows the meridians of the circular and
"bend.ing free" shells analyzed in this paper, along
with that of a Princeton D.
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The results of the analyses are presented in
Fig. 4 and Fig. 5. Figure 4 shows the distribution
of the effective meridional and circumferential mem-
brane stresses in the coils and intercoil structures
of both shapes. The effective meridional and circum-
ferential bending stresses in the extreme fibers of
the structural elements are as shown in Fig. 5. For
the circular configuration the primary tensile stress
at the inner leg at the equator is 151 MPa while the
peak bending stress is 54 MPa. For the "bending
free" configuration, the primary tensile stress in
the inner leg at the equator is 139 MPa, while the
peak bending stress is 66 MPa.

This demonstrates that if the finite thickness
of the magnet structure is accounted for the "bend-
ing free" configuration proposed in (10) has bending
stresses which are proportionally as large as the
bending stresses in the circular configuration.

Since the total upward force on the upper half
of the coil system must be

F = vo(NI) 2 (39)
Fz 47T rin(9)

or 2122 MN, the theoretical minimum tension is 1061

MN in the inner leg, giving an average stress of 120

MPa in an ideal constant tension coil. Thus, the
tensile stress in the inner leg at the equator for
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Fig. 5 Effective bending stresses in the extreme

fibers of circular and "bending free" coil struc-

tures with FED dimensions.

circular coil is 1.26 times the theoretical minimum,

while the tensile stress for the "bending free" con-

figuration is 1.16 times the theoretical minimum.

The primary stress in the "bending free" shape is

8.5% smaller than that in the circle, while the

perimeter of the "bending free" configuration is 18%

greater than that of a circle, implying that the

circular configuration requires less mass for a

given set of stress allowables.

CONCLUSIONS

An efficient method of analysis of toroidal

magnet structures of arbitrary configuration, and

subjected to electromechanical and thermal loads has

been developed and numerically implemented.

It has been found that due to the finite thick-

ness of realistic magnet structures and discontinuity

of the displacement field present in the linear mem-

brane theory the "bending free" shell configuration

derived in (10) has bending stresses.

The whole concept of shape optimization based

on minimization of bending stresses is called into
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question. The design strategy of simply making the
toroidal field coils circular or as small as possible,
within the constraints of reactor assembly and main-
tenance can be recommended as an alternative. Re-
actor concepts with all external vertical field coils

could be substantially reduced in weight and cost by
using low profile coils.
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