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ABSTRACT

A study is made of equilibrium and stability

properties of a semi-toroidal current loop imbedded in

a high temperature plasma. The loop has a toroidal

current density and poloidal current density. By explicitly

including the global curvature of the loop, the net

Lorentz and pressure forces acting along the major radius

are calculated. Requirement of equilibrium force-balance

gives rise to conditions that must be satisfied by physical

parameters such as current, pressure, magnetic field and

geometry. On the basis of these conditions, we deduce a

class of equilibrium semi-toroidal current loops satisfying

c~ 1 JxB - p = 0. Furthermore, this class of equilibria

is shown to be stable to a number of destructive MHD modes.

Application of the theoretical results to solar bipolar

current loops is discussed.
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I. INTRODUCTION

Among the diverse variety of possible current and

magnetic structures in the solar atmosphere, one configuration

which has received wide attention is that of bipolar current

loops. Not only are such loops relatively amenable to

quantitative treatment but also they may play an important

role in solar flares and other surface phenomena. Indeed,

the recent Skylab observations have shown that a significant

number of flare events are associated with bipolar loops

in preflare active regions.

An important property of the bipolar loop structures

is that they often appear to be quasi-stationary on the time

scale of hours. This suggests that such magnetic and current

loops can be considered to be in equilibrium for the purpose

of understanding their large-scale structures. Accordingly,

considerable effort has been devoted to the investigation

of the nature of the supposed equilibrium current and

magnetic structures. In addition, some attempts have also

been made to incorporate equilibrium bipolar loops into

flare models. As a result, a large body of literature on

equilibrium loop models already exists, and can be found

in a number of recent and well-known review papers and books

on solar flare physics and related topics. These references
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include Brown and Smith (1980), Priest (1981), Sturrock

(1980) and Svestka (1976, 1981).

Another important attribute of bipolar current loops

is the intrinsic curvature of the configuration. A bipolar

current loop typically has a major radius R of 104km to 105km

and a minor radius a of 103km to 104km with the aspect ratio

R/a of the order of 10. A number of simple Tiodel bipolar

loops have been investigated with the emphasis placed on

calculating the minor radial profiles of current and pressure

satisfying the equation c 1JxB - Vp 0 (Chiuderi, et al.,

1977; Hood and Priest, 1979). For this purpose, straight-

cylinder approximations have been used, and the question

of the major radial force-balance has not been addressed.

Although these approximations are generally adequate for

calculating local fields, there exist effects which arise

from the global curvature and which influence the forces

on the current even in the large aspect ratio limit. In

the present paper, we extend the previous works to include

the finite major radius of curvature and investigate the

effects which are important for the determ.ination of the

equilibrium structure. Using a model current loop, we explic-

itly calculate the major radial forces which are primarily

due to the curved nature of the structure and identify a

class of semi-toroidal equilibrium current loops imbedded
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in a background plasma. General equilibrium conditions

relating the minor radial profile to the geometry will be

discussed.

The apparent long-life of bipolar loops imposes

another constraint on the possible configurations: the

loops must not only be in equilibrium but also be stable

to gross MHD instabilities that would otherwise destroy

the magnetic configurations on the fast MHD time scales

(typically, tens of seconds). Considerable work has also

been done in this area (see, for example, Van Hoven, 1981,

for a detailed review). In the present paper, we test the

model current loop for stability against some destructive

MHD modes.

The curvature of a current loop is shown to be

important for equilibrium and stability properties in a

way that has generally not been recognized previously. The

new theoretical results will be discussed in the context of

bipolar current loops in the solar atmosphere.

The organization of the paper is as follows: In

Section II, we describe a model current loop imbedded in

a background plasma and derive an equilibrium force-balance

condition. Section III discusses the basic MHD stability

properties of the model current loop. In Section IV, the

the results and possible application to solar bipolar

current loops will be considered.

4



II. EQUILIBRIUM PROPERTIES

A. A Model Bipolar Current Loop

Consider an equilibrium current loop carrying a

"toroidal" current density J t and "poloidal" current density

Jp as shown schematically in Figure 1. The loop is imbedded

in a high-temperature plasma of pressure pa and we consider

the case where there is no reverse current. The components

J, and J produce magnetic field components B and B,., re-p p
spectively. The current distribution below the photosphere

does not directly affect the equilibrium consideration but

is included to indicate the conservation of current.

As the figure shows, a bipolar loop is intrinsically

curved regardless of its detailed internal structure. As a

first approximation, we model the geometry with a semi-torus

having a major radius R and a uniform circular cross-section

of radius a. Here, the aspect ratio R/a is roughly 10.

Clearly, bipolar loops are generally not true semi-tori

with uniform cross-sections. However, observations seem

to indicate that the minor cross-sections often vary slowly

along the loops in the corona (Foukal, 1976; Krieger, 1977).

In any case, the corrections introduced by this simplication

will turn out to be unimportant for the consideration of

equilibrium forces and will be discussed as we develop our

analysis in the next section.
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T-he class of equilibrium semi-toroidal (henceforth

called toroidal) loops considered in this paper consists of

those configurations in which the Lorentz force c (JxB)

and the pressure force (-Vp) are balanced. If we denote by

f the force density acting on the fluid elements, then

JxB - Vp,

J = ' VxB,

with f = 0 everywhere in equilibrium. In this equation,

the gravitational force which is not due to curvature effects

is neglected in comparison with the Lorentz force.

The basic structure of the current loop described

in the preceding paragraphs is similar to those of the model

solar bipolar loops considered in a number of previous works,

including Chiuderi, et al (1977), Hood and Priest (1979)',

Van Hoven (1981) and references therein. The significant

new ingredient in the present paper is the consideration of

major radial forces in the intrinically toroidal structure.

Although the model geometry is a simple one, the underlying

basic physics is applicable to a wide variety of curved

current distributions imbedded in a plasma, and the qualitative

results will be shown to be insensitive to the detailed structure.
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B. Equilibrium Forces

If a toroidal current loop is in equilibrium given

by Equation (1) with f = 0, then the total force acting

on the loop along the major radius must vanish. However,

the existence of curvature gives rise to non-zero contribu-

tions from the Lorentz and pressure forces. In order to

calculate the net major radial force including the curvature

effects (henceforth called toroidal effects), we integrate f

over the semi-torus. The result can be conveniently expressed

as follows (Shafranov, 1966):

F =2 [,, +) 3 (2)

where F is the total major radial force per unit length of

the loop and I t is the total toroidal current. In equilibrium

F = 0. The quantity p is defined as

p

B B 2 (3)

p

where p is the average internal pressure of the loop, pa

is the ambient pressure and B = B (a). (This quantityp p

should not be confused with the plasma .) The quantity

k. represents the- internal inductance per unit length of

the loop, characterizing the detailed profile of the

current distribution, and is given by
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2 dr r B (r)
p

a2 B2(a)

where the integration is across the minor radius. The

k . is of order unity and takes on the values k. = 0 for a

surface current model and k. = 1/2 for a solid current

model. A detailed derivation of Equation (2) including some

simple applications to astrophysical situations can be

found in Shafranov (1966) and, therefore, will not be

repeated here. However, we will give in the next section

a more physically transparent heurist'ic derivation,

illuminating the significance of the equation.

Before we proceed, it is of importance to note that

Equation (2) is derived for an equilibrium current loop

in a background plasma of pressure pa [Section 5, Shafranov

(1966)]. Thus, in spite of some superficial similarities,

Eq. (2) differs significantly from the force equation used

to describe a tokamak-type system in which the current

carrying plasma is surrounded by vacuum, which in turn is

surrounded by a metallic containment vessel. Moreover, in

a tokamak, equilibrium is established by an applied "vertical"

field and stabilized by a strong applied toroidal magnetic

field. Shafranov's work was originally motivated by appli-

cations to laboratory plasma physics but the treatment itself

8
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is a general one, of which Equation (2) and the "tokamak

equation" (Bateman, 1978) are but two special cases.

At this point, we assess the consequences of the

assumptions regarding the geometry. First, Eq. (2) shows

that the effects of the constant cross-section approximation

enter the force consideration through the term vi(8R/a). Thus

the analysis is indeed insensitive to the approximation, which

can also be justified on the basis of observation (Sec. II.A).

Secondly, the fact that there is only one-half of a torus

introduces a correction of the order of a/R (cf. the Biot-

Savart law). For bipolar current loops under consideration,

a/R is typically of the order of 0.1. Thus, the geometrical

corrections do not alter the results materially.

C. A Heuristic Derivation

Equation (2) is generally valid to a high degree of

accuracy for large aspect ratio (R/a) and low S (less than

unity) toroidal plasmas. In order to simplify the deriva-

tion while retaining the essential physics, we note that

the internal inductance ki, which describes the current

profiles, contributes a fraction of unity in the square

brackets. Thus, the detailed current distribution in the

loop has only a relatively small effect on the force analysis.

In this section, we adopt a particularly simple surface

current model with Z. 0 in order to elucidate the physical
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significance of the equation. A more realistic profile can

be thought of as a superposition of thin current layers, a

tedious but straightforward method of constructing diffuse

profiles.

Let the current J and J be distributed over a thin

layer at the minor radial boundary r = a. It is useful to

define It and I by
t p

a

It 2Tf dr r Jt

0

and

I 2' RfdrJip 27Rf p
0

where r is the minor radial coordinate. For a relatively

large aspect ratio (R/a r' 10) torus, the magnetic field

inside the loop is

2I
Bt = (4)cR

10
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and the field outside the loop is

2I

p cr

These expressions describe the local equilibrium magnetic

field in the plasma in the absence of reverse currents. The

correction terms in Equations (4) and (5) are of the order

of (a/R)and have been neglected. The local pressure balance

condition can be given by

B2 + B2  B2
d + t - (dr 17 8 /7 4Tiir (6)

Integrating this equation across the boundary at r a,

we obtain

B2  B2
- t 

where p is the pressure inside the loop, pa is the ambient

plasma pressure outside the loop and B= B (a). (In the corona,

pa is essentially constant around the minor circumference

because the gravitational scale height H _ 1.5xlO 5km is

much greater than the typical minor radial scale of 10 3km

to 10 4km. This is equivalent to neglecting the gravitational

force (Section II.A) for the solar case.)
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and the field outside the loop is

2I

p cr

These expressions describe the local equilibrium magnetic

field in the plasma in the absence of reverse currents. The

correction terms in Equations (4) and (5) are of the order

of (a/R)and have been neglected. The local pressure balance

condition can be given by

/ B2 + B2  B2d B L
d pr + 87r 47rr

Integrating this equation across the boundary at r = a,

we obtain

B2 B2

p -a

where p is the pressure inside the loop, pa is the ambient

plasma pressure outside the loop and B B p(a). (In the corona,

pa is essentially constant around the minor circumference

because the gravitational scale height H 'i' 1.5xlO 5km is

much greater than the typical minor radial scale of 10 3km

to 10 4km. This is equivalent to neglecting the gravitational

force (Section II.A) for the solar case.)
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In equilibrium, there are no time-dependent fields.

Then, the total magnetic energy of the semi-torus is

E Et +Ep

where

B2

Bt 2a 2R) (

and

E L (9)

Here, L is the self-inductance of a circular current in a

plasma given by (for example, Shafranov, 1966),

L = ", ( - 2 (10)

where the internal inductance k. has been neglected.

In order to calculate the electromagnetic force,

we apply an infinitesimal virtual displacement to the major

radius R, holding the current It and I unchanged. After

some straightforward algebra and using Equation (4) and the

pressure balance condition, we obtain
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I2

F = R p

and

F2  8 (12)

-l -
where F1 = (rrR) 1Et/'R and F2 = (iR) aC /;R, representing

forces per unit length of the loop. Equations (11) and (12)

are the integrated contributions from J and JB respec-

tively. The total Lorentz force F em along the major radius

is obtained by adding these equations, giving

F (t1 8R +)
em -2 2 p 2

where Fem is expressed in units of force per unit length.

In order to calculate the major radial pressure force, we

integrate the pressure over the minor radial boundary including

the toroidicity (e.g. Golant, et al, 1980). Using

Equation (7), the pressure balance condition, we find the

net pressure force per unit length

F (14)
P 2c 2 R P
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Adding Equations (13) and (14), we obtain Equation (2).

Thus, Equation (2) is the sum of the contributions from JtB ,

J pBt, the pressure inside the loop F and the pressure outside

the loop Pa'

Note that Fem and F are primarily due to the

toroidicity of the loop and not to the detailed internal

structure. This point is also born out by the fact that

Fem and Fp occur even though Bt and Bp are obtained using

the large aspect ratio approximation. In a true straight

cylinder, the forces per unit length, Fem and FP, properly

vanish as they should.. The important point is that the

balance of the above forces must be treated with care in

a toroidal system in a tenuous plasma such as the corona.

Note also that the equilibrium values of in(8R/a) and

both diverge for infinite R. Inspection of the force

equations shows that tn(8R/a) and P represent total forces.

As R increases to infinity, so do the total forces as well as

other physical quantities such as mass. It is more physically

meaningful to interpret the results in terms of the relevant

quantities per unit length which must be well behaved in

any physically acceptable systems.

The basic physics described here has also been used

in connection with a number of other effects in the solar

atmosphere. For example, Anzer (1978) and Van Tend (1979)

described the motion of a loop-like coronal transient using

14



the Lorentz force acting on a current ring (Equation (7) of

Anzer, also expressed as the force per unit length). The

model current profile chosen is a uniform toroidal current

loop in which poloidal current, the ambient coronal gas and

the pressure gradients are neglected (but gravity is included).

It is straightforward to see that Anzer's equation (7) is

identical to our Equation (12) by setting Fl, the poloidal

current contribution, equal to zero and by setting t. = 1/2

for a solid current model. The magnetic force described by

Equation (12) is well known and is often called the "hoop

stress".

The above heuristic derivation is exact for the

simple current profile. The emphasis has been placed on

a detailed exposition of the underlying physics. However,

consistent with the basic model described in Sec. II.A,

Eq. (2) can be proved quite generally (Shafranov, 1966)

for a wide range of distributed current profiles imbedded

in a back-ground plasma with the caveat that F and B are

now the internal pressure and toroidal magnetic field

averaged over the minor cross-section. The fact that it

is possible to reproduce Eq. (2) using a simple current

model is yet another confirmation that the equation describes

a detail-independent aspect of the physics of toroidal

equilibrium forces.

As a general remark, we point out that the magnetic

"tension", which has occasionally been invoked in connection

with equilibrium considerations is a part of the Lorentz
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force (Jackson, 1962) and is already included consistently

in Eq. (2).

D. Equilibrium Conditions

In this section, we infer a number of general

conditions on the relevant physical parameters without

reference to any particular minor radial profiles. In

equilibrium where the major radius remains quasi-stationary,

the force F per unit length must vanish. Then,

where the unimportant internal inductance term ki has been

neglected. For aspect ratios of the order of 10, is
p

negative and takes on values of roughly -3. A negative a
p

implies

~ < pa (16)

In a diffuse current distribution, this means that the

average internal pressure is less than the ambient

pressure. However, since p = 2nkT, the density inside

the loop need not be less than the ambient density.

Equation (15) has not been discussed in connection with

equilibrium bipolar current loops and describe a specific

relationship showing the geometrical constraint on the

relevant physical parameters. However, we point out that

equilibrium toroidal current loops with positive pressure

gradients have been investigated by a number of researchers

S11

r



(Chiuderi, et al, 1977; Hood and Priest, 1979), motivated

by observational indications for such loops (Foukal, 1976).

Our results are not based on any particular observation but

are derived as consequences of major radial force-balance,

giving a theoretical basis for the importance of the type

of configurations considered in this paper and in the above

references.
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III. MHD STABILITY PROPERTIES

If a bipolar current loop persists for an extended

period of time, the loop must not only be in equilibrium

but also be stable to gross MHD instabilities that would

destroy its overall magnetic configuration on fast MHD

time scales. Considerable effort has been devoted to this

subject (see, for example, Van Hoven, 1981, and references

therein). In this section, we test the class of equilibrium

loops described in the preceding section for stability against

the following destructive instabilities: the "sausage" mode

(m = 0), "kink" mode (m = 1) and the local Suydam modes.

Since the treatment of these instabil'ities and the underlying

physics are standard in textbooks, we will only show the

relevant results. Interested readers are referred to, for

example, Krall and Trivelpiece (1970), Schmidt (1979) and

Kadomtsev (1966).

Equations (3), (7) and (15) show-that, for R/a ~ 10,

we have Bt ~ 2 B This immediately allows one to conclude

that m = 0 (sausage) mode is stable since the stability con-

dition is given by Bt > Bp/v. For the m = 1 (kink) mode,

we consider the long wavelength modes since these are the

most destructive ones. Because the footpoints are essen-

tially immobile on the relevant time scales due to the high

mass density in the photosphere, the longest wavelength for

the semi-torus is 7R (another important deviation from the
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tokamak case) so that ka << 1. Then, the approximate

eigenfrequency can be given by (Kadomtsev, 1966)

2 Bk 2  B2

4Tr p [ BJ "ka/

where k is the toroidal wavenumber and p is the mass density

of the loop. Using the equilibrium magnetic field, we find

that the quantity in the square brackets is positive so

that 2 > 0. Thus, the loop is stable to the m = 1 mode.

This behavior is qualitatively similar to the stabilizing

influence of dp/dr > 0 (Giachetti, et al, 1977; Van Hoven,

et al, 1977).

In order to discuss the local pressure driven

instability which tends to destroy the magnetic surfaces,

we first define the safety factor q(r) by

B
q(r) R B

p

For any current profile, B vanishes linearly in r near
p

r = 0 and q decreases from some finite value near r = 0 to

zero outside the loop. For the loops under consideration,

the typical value is q - 0.2, remaining less than unity

inside the loop. The condition for stability against local

perturbation is given by the Suydam condition (Suydam, 1958)

appropriately modified for the toroidal geometry (Mercier,

1960)

19



2 q 2 /1 .0
q r2 .B 2/87,r krr >

Bt/

For the loops under consideration, we have dp/dr > 0 and

q < 1. We see that the stability condition is .satisfied

throughout the loop interior. This should be contra.sted

with a tokamak plasma in which dp/dr > 0 so that the q < I

region near the center is generally unstable. As a general

remark, we emphasize the fundamental differences exhibited

by laboratory toroidal plasmas and bipolar current loops

that may exist in an environment such as the solar

atmosphere.

Note that the results regarding the stability

behavior discussed above do not include the toroidicity

directly. Rather, the toroidal equilibrium condition

(Equation (15)) and Equations (3) and (7) determine the

overall toroidal configuration, which then determines the

stability properties.

It is useful to note that singular current dis-

tributions such as our surface current model are generally

less stable than diffuse current profiles. We expect loops

with distributed current to possess even more favorable

stability characteristics.
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IV. DISCUSSION

In the preceding sections, we have described a class

of semi-toroidal equilibrium current loops imbedded in a

background plasma. This class of loops satisfies the equation

c 1 JxB - Vp = 0 with the major radial forces explicitly

balanced. Here, the current density is given consistently

by J = (c/47r) VxB. The principal purpose of the paper is

to illustrate the nature and effects of the significant

toroidal forces acting on the intrinsically curved equilibrium

structure. For this purpose, a simple model current loop

(Section II.A) has been used to derive a number of equilibrium

conditions (Equation (15) and Inequality (16)). In addition,

this class of loops is seen to possess favorable MHD

stability properties (Section III).

For the solar applications, we note that the Sun

manufactures a diverse variety of structures that may appear

to be bipolar loops. Our analysis is intended to model a

subclass of possible configurations consistent with the

description of Sec. II.A. As noted earlier, a number of

previous works have investigated similar model loops with

respect to minor radial profiles but without including the

major radial force balance. The origin of the new results

found in the present paper can be traced to the inclusion

of the toroidicity of the loop. It is well-known (Bateman,

1978; Van Hoven, 1981) that a straight cylindrical plasma
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is an ill-constrained configuration. The results given in

this paper are characteristic of toroidal equilibrium

magnetic and current structures imbedded in a background

plasma, and constitute geometrical constraints on the physical

quantities for the class of loops described in Section II.A.

If bipolar loops of this type are present in the solar corona,

then the above equilibrium conditions or qualitatively

similar conditions are expected to hold. Conversely, these

conditions can be used to distinguish this class of equilibria

from other types of equilibria that may exist in the solar

corona. For example, Cheng (1980) gives a detailed obser-

vational description of a number of loops in an active region

which appear to have average internal pressures that are

slightly higher than the ambient pressure of approximately

22 dyn/cm2 . These loops may require additional observational

and theoretical considerations. However, the basic physics

of toroidal forces still should be accounted for in the

equilibrium force considerations.

Note that the physical dimensions R and a in the

description of the model loop refer to the magnetic and

current structure, which may differ from the "visible" loop

structure in some cases. In addition, our analysis uses

local physical quantities such as currents and magnetic

fields in the corona. The observational inferences of these

quantities have not been established definitively. However,

magnetic fields of the order of lOG are frequently quoted as
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estimates in connection with loop structures (e.g. Levine and

Withbroe, 1977; Chiuderi, et al, 1977; Hood and Priest, 1979).

Smaller and larger values may also occur.

Finally, keeping in mind the above potential uncer-

tainties, we describe an order-of-magnitude illustration of

the,toroidal effects, consistent with the equilibrium

conditions of Section II. Consider an equilibrium loop of

R % 5xlO 9cm and a 5xlO 8cm, carrying a current of R 10 1 0 A.

This particular example corresponds to (coronal) magnetic

fields of the order of 10G. Then, the major radial hoop stress

is F2 % 6x10 8 dyn/cm (Equation (12)) with the Lorentz force

of F % 3x108 dyn/cm (Equation (13)), where the equilibrium

value of % -2.8 has been used (Equation (15)). In the
p

papers of Anzer (1978) and Van Tend (1979), it is also the

hoop stress that is used (see Section II.C). If the ambient

pressure is ' 2 dyn/cm2 (e.g. a solar active region),
9 -3 6

corresponding to, for example, n % 5x1O cm and T ; 2x10 Y,

then the total pressure force is F kR -3xlOR dyn/cm (Equation
p

(14)). In equilibrium as in this example, the net force

per unit length is obviously zero.

In this paper, we have used a simple model geometry

to illustrate the basic physics of toroidal equilibria in a

background plasma. Modifications for more complex geometry

may be useful for a better understanding of the observed

structures. The dynamic behavior of an initial equilibrium

loop is also being studied (Xue and Chen, 1980; Chen and Xue,

1981). More detailed work will be reported in a future report.
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FIGURE CAPTION

Fig. 1 A schematic representation of a simple bipolar

current loop imbedded in the corona. No particular

structure is specified below the photosphere.

See Section II.A for detail.
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