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ABSTRACT

Use of the harmonic oscillator equation as the comparison equation

in the application of Langer's method to bound states of the Helmholtz

equation, w" + k2g(z)w(z) = 0, with symmetric profiles k2g(z) produces
0 0

the W.K.B. eigenvalue condition. In the case of weakly bound states, this

condition gives eigenvalue estimates of low accuracy. Use of the Helmholtz

equation with the symmetric Epstein profile, G(x) = + U 0 (cosh ax)-2]

as the comparison equation provides the basis for a convenient method to

obtain eigenvalue estimates of substantially increased accuracy in the case

of weakly bound states. In addition to the usual condition of equality

of the phase integrals of the original and comparison equations between the

turning points, the conditions k2 g(O) - G(0) and k2g(_) = G(-) are imposed.
0 0

An eigenvalue condition which is a simple generalization of the usual W.K.B.

eigenvalue condition is obtained. Its application to selected diverse

examples of the Helmholtz equation indicates that it has a broad range of

utility.

PACS: 03.65Sq, 03.65.Ge
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1. Introduction

We consider the one-dimensional Helmholtz equation,

w" + k2g(z)w(z) = 0, (1)
0

in the interval -- <z <-. The profile k2g(z) is characterized by the
0

symmetric curve of Fig. 1. It is positive at z = 0. It decreases monotonically

away from z = 0 and approaches a finite negative limit as IzI + j. Thus it

has two turning points. The profile k2g(z) depends on a parameter, which we
0

do not denote explicitly. The functional dependence of the profile on the

parameter is arbitrary. The Schr6dinger equation is thus considered here a

special case of the Helmholtz equation. For a discrete set of values of

the parameter, the eigenvalues, the equation has solutions, the eligenfunctions

or bound states, which approach zero as Izi + j. We consider weakly bound

states. Accordingly, we have the condition k2g(0) r -k2 g(-o). We are interested
0 0

in obtaining estimates of eigenvalues which are more accurate than those

provided by the usual W.K.B. eigenvalue condition. This condition, which

can be obtained by Langer's method, using the Schr5dinger equation for the

harmonic oscillator as the comparison equation, gives eigenvalue estimates

of low accuracy in the case of weakly bound states.

In Sec. 2 we derive Langer's transformation. In Sec. 3 we present

the usual Langer's method treatment of the problem of bound states with two

turning points, using the harmonic oscillator equation as the comparison

equation. We examine in detail the reason why the resulting eigenvalue

condition gives eigenvalue estimates of low accuracy in the case of weakly

bound states. In Sec. 4 we present a parallel development, using the

symmetric Epstein equation, an example of the Helmholtz equation in which

the profile is G(x) = + U 0 (cosh ax)2] , as the comparison equation.
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Note that the parametric dependence of this equation is not completely

determined, as it is the cise of the harmonic oscillator equation, by the

usual condition of equality of the phase integrals of the original and

comparison equations between the turning points. We argue that the optimal

disposition of the additional parametric dependence is achieved by imposing

the additional conditions k2g(O) = G(Q) and k2 g(_o) = G(-). This choice leads
0 0

to an eigenvalue condition which is a simple generalization of the usual

W.K.B. eigenvalue condition. It asserts the equality of the phase integral

of the original equation between the turning points, not to (n + 1/2)r,

as in the W.K.B. eigenvalue condition, but to an algebraic function of

k2g(O) and k2g(_o). In Sec. 5 we examine the utility of our eigenvalue condition
0 0

by applying it to selected diverse examples of the Helmholtz equation. In order

to provide a rigorous -test, we examine ground states. We find that our eigen-

value condition yields eigenvalue estimates of substantially increased

accuracy, relative to W.K.B. eigenvalue estimates, for the Helmholtz equation

with a wide range of dependences of k2g(z) on z and the eigenvalue.
0

2. Langer's Transformation

1
Following Langer, we first express w(z) in the form

w(z) = u(z) v[x(z)] (2)

where u(z), v(x), and x(z) are functions which are to be determined; v(x) is

a new dependent variable and x(z) is a new independent variable. Introducing

(2) into (1), we obtain the differential equation

ux'2 - + (ux" + 2u'x') - + (u" + k2 gu)v(x) = 0. (3)
dx 2  dx 0

Equating to zero the coefficient of dv/dx, we obtain

ux" + 2u'x' = 0 (4)
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which, upon integration, yields

u(z) = Nx'-1/2 (5)

where N is an undetermined normalization constant. Dividing (3) by ux'2

we obtain the equation

k2
+ -g + u, v(x) = 0. (6)

dx2  x 2 ux v2

The term u"/ux'2 in (6) presents a serious obstacle to further progress

in obtaining convenient approximate solutions of (1). The lowest order

approximation is obtained by neglecting this unwanted term. In Appendix A

we investigate the conditions under which neglect of the unwanted term is

justified.

'2
We equate the quantity k2g(z)/x to G(x), the profile function in the

0

equation

- + G(x) v(x) = 0, (7)
2

dx

which is referred to as the comparison equation. It satisfies the following

requirements. First, it must be similar to the original equation, (1). This

is an imprecise requirement, but it is central to our program. In general,

the comparison equation is required to have the same structure of turning

points and singularities as the original equation. The symmetric Epstein

equation clearly satisfies this requirement in the present case. The harmonic

oscillator equation satisfies this requirement for strongly bound states. The

divergence between the profiles of the original and comparison equations at

large values of the independent variables has a negligible effect on the

analysis. For weakly bound states, on the other hand, the divergence is

significant. Accordingly, for such states the harmonic oscillator equation



6

,does not satisfy the requirement that it be similar to the original equation.

The second requirement is that the comparison equation must be analytically

solvable. The third requirement is that the phase integral of the comparison

equation must be integrable in closed form. The second and third requirements

are satisfied by both comparison equations.

The transformation of independent variables, which is expressed as the

functional relation x = x(z), is determined from the relation between k2g(z)/x,2
0

and G(x) which we have imposed. We write it as a differential equation:

G(x)x'2 = k2g(z). (8)
0

Extracting the square root of this equation and integrating, we obtain the

functional relation x = x(z) implicitly as the equality of two definite

integrals,

x z

[G(t).]1/2dt= [k2g(s)]l/2ds, (9)

0z 0
0

integrating from corresponding reference points x0 and z0 . For the problem

at hand it is convenient to choose x = 0 and z = 0 as the reference points.

The transformation of independent variables must provide that the turning points

of the original and comparison equations correspond to each other. Thus we

require that

[G(E)] d = Z+[k g(s)]1/2ds, (10)

x -Z

where z+ and x+ are the right- and left-hand turning points of the original

and transformed equations, respectively.
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3. Harmonic Oscillator Comparison Equation

The standard treatment of the problem of two turning points2,3 is based

on the use of the harmonic oscillator equation, in which

G(x) = - U x2, (11)

as the comparison equation. The eigenvalues of this equation are given by4

in U 1/2 (1 + 2n) (n = 0,1,2,...). (12)

In this case the condition stated in (10) becomes

-Z+ fX+ 1/21/

J [k2g(s) 1/ 2 ds = U1/2(1 + 2n) - U x2 *dx. (13)

CZ_ x_

The value of the integral on. the right-hand side of (13) is (n + 1/2)7r. Thus

we obtain the eigenvalue condition

rz+1/
Jz fk 2g(s 1/2 ds = (n + 1/2)w. (14)

z

This is the same as the W.K.B. eigenvalue condition.5 Note that the parametric

dependence of the comparison equation in this case is completely determined

by the requirement that the phase integrals of the original and comparison

equations between the turning points be equal to each other.

We can now see in detail the reason why the eigenvalue condition (14)

gives eigenvalue estimates of low accuracy in the case of weakly bound

states. The phase integrals of k2g (z) and G(x ) contain substantial
0

contributions from ranges of the independent variables in which the behavior

of the two profiles deviate significantly from each other. In the case of

strongly bound states, on the other hand, ranges of the independent variables

in which the behavior of k2g(z) and G(x) deviate significantly from each
0

other lie outside the range of integration.
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4. Symmetric Epstein Comparison Equation

A class of examples of the Helmholtz equation which are analytically

solvable in terms of solutions of the hypergeometric equation was applied to

.6 7
ionospheric radio waves by Epstein and to quantum mechanics by Eckart. The

symmetric Epstein equation has the profile

G(x) = + U (cosh ax)-2]. (15)

For weakly bound states, this equation is similar to the original equation.

The harmonic oscillator equation is not. The eigenvalue condition for the

symmetric Epstein equation is8

= - - 2 (1 + 2n) + (1 + 4Uca-2) 1/2] 2  , (16)

where n takes non-negative integral values starting from zero. There is a

finite number of levels, determined by the condition

2n < (1+4U -2) 1/2_1. (17)

The phase integral between the turning points of the comparison equation is

+ U0 (cosh ax)-2 1/2dx =ra-1  [l1/2 - )1/2j. (18)

In contrast to the parametric dependence of the harmonic oscillator equation,

that of the symmetric Epstein equation is not completely determined by the

condition of equality of the phase integrals of the original and comparison

equations between the turning points. Thus we must impose additional conditions

in order to obtain an eigenvalue condition. The phase integral condition is

unique. The choice of additional conditions is more arbitrary. In making it,

we are guided by considerations of simplicity and plausibility. We choose

MOMMUMMOSOMMONSh"
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to impose the conditions that U and E be equal to the corresponding quantities

of the original equation, i.e.,

U = k 2 g(0) - k2g(o) E A(k 2 g) (19)
0 0 0 0

and

= G(co) = k2 g(). (20)
0

We eliminate the remaining quantity in (18), namely a, by means of (16),

making use of (19) and (20) to express it in terms of A(k 2 g) and k2g(o).
0 0

Note that there is no simple and plausible way to choose a. Thus the conditions

that we have imposed in order to obtain an eigenvalue condition are the

appropriate ones. The following expressions for a as a function of U0 and

are obtained from (16) for n = 0 and n # 0, respectively:

ao 0 -)-1/2 I - (-i )d (21)

a ~ 2(1 + 2n)4 - ) 1/2
n 0

[1 + 2n) 2 _ 1]

E ) (1 + 2n) 2 _ -1/2

x + "id P-1 (22)

(1 + 2n)2 (i

The eigenvalue condition is thus given by the relation

+ g(s 1/2ds =r an (k2g),k2g(- (k2g 1/2 - k2g(oo)]l/2 .(23)

-z

This condition is a simple generalization of the W.K.B. eigenvalue condition,

(14). In the case of the ground state, n = 0, the eigenvalue condition has a

particularly simple form, namely
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z + -k2 g (-)] 1/2
2g(s) 1/ 2 ds = {T, } 0 (24)

z_ k2I 1/2 + Fk2g (, 1/2

In the case of strongly bound ground states, k2g(o / A(k2g) + 1 and the

quantity in curly brackets in (24) approaches 1/2, in agreement with the W.K.B.

eigenvalue condition. In the case of strongly bound higher states, the right-

hand side of the eigenvalue condition (23) approaches (n + 1/2)7, in agreement

with the W.K.B. eigenvalue condition.

5. Numerical Examples

In order to examine the utility of the eigenvalue condition which we

have obtained, we apply it to selected diverse examples of the Helmholtz

equation. In order to provide a rigorous test, we examine ground-states.

Since the scale lengths of higher states are smaller relative to that of

the profile, we expect that the eigenvalue estimates for them will be more

accurate. The results which we obtain indicate that our eigenvalue condition

yields eigenvalue estimates which are of substantially increased accuracy,

relative to W.K.B. eigenvalue estimates, for the Helmholtz equation with a

wide range of dependences of k2g(z) on z and the eigenvalue.
0

The first equation which we consider is the Schrddinger equation with a

gaussian potential:

k2g(z) = E + V exp (-z2). (25)
0 0

The second equation is the Schrdinger equation with a potential whose

magnitude is the square of a Lorentzian:

k 2 2 -2
k 2g(z) = E + V (1+z- . (26)

0 0

These equations provide an indication of the applicability of our eigenvalue

condition to equations in which the asymptotic behavior of k2g(z) as IzI -
0.

is different from that of G(x) as jxl + w. Since the asymptotic behavior
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of the difference [G(x) - G(-)] is exponential, namely, as x --

[G(x) - ] -- 4U exp (-2ax), (27)

the equations considered provide an appropriate indication. In the case of

the gaussian potential, the asymptotic behavior is

[k2g(z) - El -- V exp (-z ) . (28)
0 0

In the case of the squared Lorentzian potential, the asymptotic behavior is

algebraic:

[k2g(z) - E] I V0 z
4 . (29)

00

Note that parameters multiplying the independent variables in the potentials

of these equations can be scaled away in the eigenvalue condition, so that

the particular equations considered do not embody restrictions on their

generality with respect to such parameters.

The other equations which we consider are examples of the Helmholtz

equation in which

k2 g(z) = E + V0 exp (s E - z2) (s = ±1) (30 a,b)

k2g(z) = E + V exp [-(1 - s/ -E )z ] .(s = ±1) (31 a,b)
0 0

Note that the dependence of k2g(z) on z of (30) and (31) is the same as
0

that of (25). Considered together, these four equations provide an indication

of the applicability- of our eigenvalue condition to equations with a wide

range of dependences of k2g(z) on the eigenvalue. We consider E = k2g()0 0
to be the effective eigenvalue. In (30), [k2g(O) - k2g(_)] increases

0 0
(decreases) with increasing (-E) for s = 1 (s = -1). In (31), the width

of [k2g(z) - k2g(_)] increases (decreases) with increasing (-E) for s = 1 (s -1).
0 0
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In (30) and (31), we choose [k2g(z) -k2g()] to be functions of v-E, instead
0 0

of -E. Thereby we produce stronger variations of [k2g(z) -k2g()] with
0 0

respect to -E for small values of -E, which will occur in the numerical

examples, and more severe tests of our eigenvalue condition.

In order to provide a simple and uniform basis for evaluating the accuracy

of the estimates provided by our eigenvalue condition, in each case we choose

the value of V for which the ground state eigenvalue estimate given by the

W.K.B. eigenvalue condition is zero. For the examples of k2g(z) chosen,
0

there is in each case a bound ground state corresponding to this value of V .

Thus the relative error produced by the W.K.B. eigenvalue condition in each

case is equal to -1. The choice of a squared Lorentzian instead of a Lorentzian

has been made in (26) in order to ensure the existence of the phase integral

for E= 0.

The numerical integration of the phase integrals presents a particular

difficulty. In the neighborhood of a turning point at z zt, the dominant

behavior of the integrand is proportional to (z - z tl/2. The first derivative

of the integrand increases in magnitude without limit as z -+ zt. A convenient

technique for the numerical evaluation of the phase integrals involves the

introduction of a simple transformation of the variable of integration which

removes the singularity in the derivative of the integrand. For the class

of integrands considered here on the interval 0 < z < z+, a suitable trans-

formation is

z(t) =z+ 3t - t3) (0 t < 1). (32)

With the introduction of this transformation, the phase integrals between the

turning points can be expressed in the form

I = 3z + J k2 g[z(t)]} (1 - t2)dt. (33)

0 } /
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In the neighborhood of t = 1, the dominant behavior of (k2g)1/ 2 is given by.0

k2g[z(t)) - +k2g'(z+) 2 (1 - t). (34)

Use of the transformation (32) results in a dramatic improvement in the

accuracy of the numerical integration of the phase integrals.

The numerical integration of the differential equations to determine the

exact eigenvalues is performed using a fourth-order Runge-Kutta approximation.

The numerical results are shown in Table 1. For each differential

equation, the value of V , the exact value of -E, -Ee, the approximate value

of -E obtained from our eigenvalue condition, -Ea, and the relative error of

-E, [A(-E)/(-E)] = [(-E )/(-E ) - 1], are presented in succeeding- columns.a e

Recall that the relative error produced by the W.K.B. eigenvalue condition

is -l because the values of V have been selected to give zero W.K.B. ground

state eigenvalue.

The relative error produced by our eigenvalue condition is very small in

each case. The sign of the relative error is the same for all equations except

the equation with the squared Lorentzian potential. Presumably, this behavior

is a consequence of the fact that in all the other equations [k2g(z) - k2g(_)]
0 0

is a gaussian in z. Considered together, the six equations suggest that our

eigenvalue condition yields eigenvalue estimates of substantially increased

accuracy, relative to W.K.B. eigenvalue estimates, for the Helmholtz equation

with a wide range of dependences of k2g(z) on z and the eigenvalue.
0
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(a) (b) (c) (d) (e)

Equation o -Ee -Ea A(-E)_/_(-E)

(25) (1/8)7r .0801003 .0815364 .0179280
(26) 1/4 .0289241 .0285590 -.0126252
(30a) (1/8)W .152063 .157108 .0331721
(30b) (1/8)r .0539366 .0545201 .0108161
(31a) (1/8)W .0680584 .0688818 .0120983
(31b) (1/8)w .102742 .105456 .0264201

Table 1. Numerical results. Entries in (a) designate equations in the text.
Corresponding to each equation, (b) gives the value of V0 , (c) the exact value
of -E, (d) the approximate value of -E given by our eigenvalue condition,
and (e) the relative error, [(-Ea)/(-Ee)-1]. For each equation, the value
of V0 is chosen so that the W.K.B. eigenvalue conditiongives a ground state
at E = 0. Thus, the relative error produced by the W.K.B. eigenvalue condi-
tion in each case is equal to -1.

I
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Appendix A: Negligibility of Unwanted Term

In Sec. 2 we neglected the unwanted term

to permit the development of the lowest order

of (1). Here we examine the unwanted term in

the conditions under which its neglect can be

The explicit form of u(z) is

u(z) = N {G1X(Z)] }/4
ak- z

in (6), u/ux,2, in order

approximation to the solution

detail and attempt to understand

justified.

(Al)

The explicit statement of the condition for the negligibility of the unwanted

term is

U" < 
(A2)

ukzg(z)
0

The condition which is typically invoked to justify the satisfaction of

the inequality (A2) is that the ratio of the scale length on which the solution

of (1) varies to the scale length on which the profile varies is small compared

to unity or is less than or approximately equal to unity, depending on the

situation considered. We shall find that the ratio can be permitted to

exceed unity in some cases.

The role played by this ratio in determining the negligibility of the

unwanted term is particularly clear in the case of the W.K.B. approximation,

which can be obtained from Langer's transformation by using a comparison

equation in which G(x) is a constant. In that case u(x) is the W.K.B.

swelling factor and

[k 2 g' (z)] 2

U"f 5 0 1

u[k 2g(z)] [k2g(z)]3
00

[k2g" (z)I
0

[k2g(z)] 2

0

(A3)
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If the scale length of g(z) is Cl, so that g'(z)j ~ K g(z)| and
0 0

Ig"(z)| = K2 |g(z)l, the condition (A2) implies that K2 << k2 . If g(z) is
0 0 0

of order unity, k -. is the scale length of the solution of (1).
0

If G(x)is not a constant, the situation is considerably more complicated

and explicit results can be obtained only in particular circumstances. For

example, in a study of the penetration of symmetric barriers using a comparison

equation in which

G(x) = x 2 + r , (A4)

where n is a constant, Bafos3 includes a detailed consideration of the

unwanted term associated with an original equation which is a symmetric Epstein

equation with profile

k2g(z) = k2 tanh 2(z/2X), (A5)
0 G

in which case n = 0. He develops a two-term expansion in powers of x2 for

the unwanted term:

u"/ux,2 a -x2 +. (A6)

with coefficients

a = (1/16w)(X /A), B = (3/128w 2 M A)2 (A7)
0 0

where X = 2 /k . Examining the coefficients of the expansion, he concludes
0 0

that a necessary and sufficient criterion for the applicability of Langer's

method in this case is X/X > 1.
0~

It is impossible to perform a similar analysis in the case considered

here. We are dealing with an eigenvalue problem and we use a more complicated

comparison equation. Furthermore, the condition k2g(O)=O, which makes an
0

explicit calculation possible in that case, is a very special one which is

not available to us. We can, however, develop a fairly specific intuitive
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understanding of the situation by considering (Al). Note that u is

proportional to the one-fourth power of the ratio of profiles and hence that

u varies weakly with deviations of the ratio from its value of unity at z = 0

and in the limit as Izi -+ >. For states which are sufficiently weakly

bound, the scale length of the state may exceed that of the profile. If the

profile of the comparison equation is sufficiently similar to that of the

original equation, the eigenvalue condition may nevertheless give an eigenvalue

estimate of high accuracy. Unfortunately, it is a practical impossibility

to ascertain this on an a priori basis.


