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ABSTRACT

The classical limit of the Einstein coefficient method is used in the

low-gain regime to calculate the stimulated emission from a tenuous rela-

tivistic electron beam propagating in the combined solenoidal and longi-

tudinal wiggler fields [B0 + 6 Bsink zAz -prouced'iear the axis of a multi

ple-mirror (undulator) field configuration. Emission is found to occur at

all harmonics of the wiggler wavenumber k0 with Doppler upshifted output

frequency given by w = [Lk Vb + Wcb] (l + Vb/ (c /02), where > 1.

The emission is compared to the low-gain cyclotron maser with 6B = 0 and to

the low-gain FEL (operating at higher harmonics) utilizing a transverse,

linearly polarized wiggler field.

tPermanent Address: Plasma Fusion Center, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139.



1. INTRODUCTION

The Lowbitron (acronym for longitudinal wiggler beam interaction) is

a novel source of coherent radiation in the centimeter, millimeter, and

submillimeter wavelength regions of the electromagnetic spectrum. The

radiation is generated by a tenuous, thin, relativistic electron beam with

average axial velocity Vb and transverse velocity V, propagating along the

axis of a multiple-mirror (undulator) magnetic field. It is assumed that

the beam radius is sufficiently small that the electrons experience only

the axial solenoidal and wiggler fields given by Eq. (2). The output

frequency wis upshifted in proportion to harmonics of k0 Vb, where X0 = 27/k0

is the wiggler wavelength. This offers the possibility of radiation gene-

ration at very short wavelengths.

Previously, we have considered this FEL configuration in the high-gain

regime using the Maxwell-Vlasov equations to study coherent emission at the

1,2 .3

fundamental harmonic , and at higher harmonics3. In this article, the

classical limit of the Einstein coefficient method is used in the low-gain

regime to study stimulated emission at the fundamental and higher harmonics.

In Sec. 2, we determine the electron orbits in the magnetic field given by

Eq. (2). These orbits are then used in Sec. 3 to determine the spontaneous

energy radiated. In Sec. 4, the amplitude gain per unit length is calculated

for a cold, tenuous, relativistic electron beam. For sufficiently large

magnetic fields, we find that the emission is inherently broadband in the

sense that many adjacent harmonics can exhibit substantial amplification.

For a device operating as an oscillator, it would be possible to tune the

output over a range of frequencies for fixed electron beam and magnetic

field parameters by changing the optical mirror separation to correspond
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to the different harmonics. The low-gain Lowbitron results are compared to

the low-gain cyclotron maser and low-gain, higher harmonic FEL utilizing

a transverse, linearly polarized wiggler field.
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2. - CONSTANTS OF THE MOTION AND ELECTRON TRAJECTORIES

We consider a tenuous, relativistic electron beam propagating along

the axis of a combined solenoidal magnetic field and multiple-mirror

(undulator) magnetic field with axial periodicity length X0 = 2r/k0'
2 2

It is assumed that the beam radius Rb is sufficiently small that koRb 1

2 2
and that k2r <1 is satisfied over the radial cross-section of the electron

beam. Here, cylindrical polar coordinates (r,e,z) are introduced, where r

is the radial distance from the axis of symmetry and z is the axial coor-

2 2 0
dinate. For k r <1, the axial and radial magnetic field, B (r,z) and

0 z
0 1-3
B (r,z), can be approximated near the axis byr

B0 = B 1 + -sin koz + 6B k2r sin k~z,z B~+ 0 J4 22

o (1)0 1()
B - 6B k r cos kr 2 0 s 0 ,

where B0 = const is the average solenoidal field, 6B = const is the oscil-

lation amplitude of the multiple-mirror field, and 6B/B0 <1 is related to

the mirror ratio R by R = (1 + 6B/B 0)/(l - 6B/B 0). For present purposes,

it is assumed that kORb is sufficiently small that field contributions of

the order k r 6B (and smaller) are negligibly small. Therefore, in the sub-

sequent analysis, the axial and radial magnetic fields in Eq. (1) are approxi-

mated by

B = B0 1 + sin k

0 (2)
B = 0.

r

That is, to lowest order, the electron experiences only the axial solenoidal

and wiggler field components of the multiple-mirror field.
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Assuming a sufficiently tenuous electron beam with negligibly small

equilibrium self fields, the electron motion in the longitudinal wiggler

field given by Eq. (2) is characterized by the four constants of the motion

pz

2 (p2  2
r p)

2 2 4 22 2 2 1/2
ymc (mce + c pm + c p), (3)

P9 = r p -t A 0(r,z).~e r[ e c-

2 2 1/2
Here, p is the axial momentum, p = ( + ) is the perpendicular mo-

mentum, ymc is the electron energy, P6 is the canonical angular momentum,

0e
and A = (rB0 /2)[1 + (6B/B ) sin k z] is the vector potential for the axial

0
field B in Eq. (2). Also, m is theelectron rest mass, -e is the electron

z

charge, and c is the speed of light in vacuo. Note that ymc2 = const can be

2
constructed from the constants of the motion, p and p , which are indepen-

dently conserved.

For present purposes, it is assumed that the equilibrium electron

distribution f has no explicit dependence on P, and the class of beam
b

equilibria

f = f (p ,p)

is considered. In order to determine the detailed properties of the growth

rate, we make the specific choice of beam equilibrium

0 n b
f 6 (p - YbmV ) 6 (p Y bmvb), (5)

where nb = fd3pf = const is the beam density, the constants V and V are
whre =b Vb d~

related to y by y (1 - V 2 /c2 - V2 2-1/2 and V = [ f d3p /Ym)f
b b b V-cL b Z b

( f d3pf ) is the average axial velocity of the electron beam. For this
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choice of distribution function, the beam equilibrium is cold in the axial

direction with effective axial temperature T1 = [fd 3p(p z z)(vz - <vz >]./

(fd 3pf) = 0, where <> = (fd3pOf 0)/(fd 3pf ). On the other hand, the effec-

tive transverse temperature is given by T, = (1/2)(fd3ppv f 0)/(fd 3 pf) =

2

ybmV /2. This thermal anisotropy T,> T1 provides the free energy source

to amplify the radiation.

In order to calculate the spontaneous energy radiated by an electron

passing through the magnetic field configuration given by Eq. (2), we first

determine the electron orbits from

dp'
t = (z'), (6)dit? c y z

dp'
-- v' B0  z'), (7)

dt' c x z

dp'

d = 0, (8)

where k'(t') ym v(t') and y = (1 + 12/m 2 c 2 ) = const. Here, thebound-

ary conditions x'(t'=t) =x and k'(t'=t) = are imposed, i.e., the particle

trajectory passes through the phase space point (xq) at time t' = t. From

Eq. (8), the axial orbit is given by

P'I = pz'z z

(9)
z' z+v T,

z

where T = t' - t and v = p /ym is the constant axial velocity. In order to
z z

determine the transverse motion, Eqs. (6) and (7) are combined to give

dv = iW 1 + B sin(k + kv T) v, (10)
dt' + c I B 0 si 0z 0 z I +,
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where v' = v'(t') + iv'(t'), = eB0/Yme is the relativistic cyclotron

frequency in the solenoidal field B, and use has been made of Eq. (9).

Integrating Eq. (10) with respect to{ t' and enforcing vI(t'= t) = v +

iv = vexp(i#), where (v ,v ) = (v cos $, vsin $) is the transverse velo-

.city at t' = t, gives

v['(t') v exp # + i T 6B cos k0z - cos(k~z + k v 11
+ c c B k v0 O z

From Eq. (11), it is evident that p'(t') = ymiv'(t')I = ymv4 is independent

of t', although the individual transverse velocity components, v'(t') and

v'(t'), may be strongly modulated by the longitudinal wiggler field 6B sin koz.

Making use of exp(ib cosa)= J (b)exp(-ima + imr/2), Eq. (11) becomes

v' (t') = v- exp(i$) Jkc 6B) kc 6) Jnn-m x
m=-o0 n=-C O z 0 10 vz B0

exp[i(Wct + mk0vzT)] exp[i(m-n)k0z], (12)

where J (x) is the Bessel function of the first kind of order n. Integrat-

ing Eq. (12) with respect to t' gives for the radius of the electron orbit

r (t') - r+ = vk exp(i4) z O Bzi

[exp[i(w T + mk v 0)] 0
exp[i(m-n)k] z cc + ) 1 , (13)

0 L1 (wc +mk 0 vz

where r'(t') = x'(t') + iy'(t'). In the absence of wiggler field (6B = 0),

Eq. (13) gives the constant-radius orbit corresponding to simple helical

motion in the solenoidal field B In the absence of the solenoidal field

(B0 = 0), the m=0 term in Eq. (13) grows linearly with T, and the radius of

the orbit increases without bound unless the argument of J is near a zero
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of J0 , in which case the orbit remains bounded. Also, in the presence of

both the solenoidal and wiggler fields, the radius of the orbit grows

linearly in T for wc = -mk0vz exactly. In the following analysis, it is

assumed that the value of v Vb is such that w + mkO Vb # 0, and the

radius of the electron orbit remains bounded.

7



3. SPONTANEOUS EMISSION COEFFICIENT

The spontaneous emission coefficient *n(x) is the energy radiated

by an electron per unit frequency interval per unit solid angle divided by

the time T = L/v that the electron is being accelerated. Here, L is thez

axial distance over which the acceleration takes place. It is assumed

that the radiation field is right-hand circularly polarized and propa-

gating in the z-direction with frequency w and wavenumber k related by w

kc in the tenuous beam limit. For observation along the z-axis, the spon-

taneous emission coefficient in the classical limit is given by4

2 2 2 T 2
- dl I ew (do

nw ~- T 6G" 23 d x (&x v') exp i (kz' - w-r)- TddT 2 23 f 1X\1z exu1 , (14)
47T c T o

The orbits in Eqs. (9) and (12) are substituted into Eq. (14), and the

integration over T is carried out. This gives

2 2 2

8c= (i)n_)Z exp[i(. - n)k z]J J x
872c T Z=-o n=-o 0 z B 0 Bz 0

exp[i(kv + k 0v +w -W )T] - 1

kv + ik 0 v + W - W

[exp[-i(kv + nk v + w -C )T] - 1

kv + nk 0v + W - W

Equation (15) contains terms that (spatially) oscillate on the length scale

of the wiggler wavelength X0 = 27T/k 0. Since our primary interest is in the

average emission properties, we average Eq. (15) over a wiggler wavelength,

which gives the average spontaneous emission coefficient q

e w v T -o

= 2 ( it [sin 2  / (16)
87Tc Z=-. kvz 0
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where = [kv + Zk 0v + w -w]T/2.

In the absence of wiggler field (6B = 0), only the Z=0 term in Eq. (16)

survives, and nl is a maximum for 0= 0 corresponding to cyclotron resonance

in the solenoidal field B For 6B # 0, spontaneous emission occurs at all

harmonics of k v . Maximum emission at each harmonic number t occurs when

2
= 0 and the argument of J is such that J is a maximum. Even when the

argument of the Bessel function gives a maximum value of J for a particular

choice of t, the emission in neighboring harmonics can be substantial. Also,

for 6B # 0, the $ = 0 contribution in Eq. (16) is reduced by the J factor

relative to the $0 = 0 emission when 6B = 0.
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4. AMPLITUDE GAIN IN THE TENUOUS BEAM LIMIT

Making use of the expression for the spontaneous emission n in Eq. (16),

the amplitude gain per unit length r can be determined from the classical

limit of the Einstein coefficient method. The amplitude gain per unit length

is given by 4(r > 0 for amplification)

S= 2 f df dpz f dp_ p_ n
0 -00 0

af 0  
af

0

- - a + b , (17)
pL1 k z v) j pz

0 2
where f b (p Z) is the equilibrium distribution function, w kc has been

assumed, vz = pZ /ym and v. = p jym are the axial and transverse velocities,

2 2 4 2 2 2 21/2
and ymc = (mc + c p + c p ) is the electron energy. In Eq. (17), a

phenomenological filling factor F has been included which describes the

coupling of the electron beam to the electromagnetic mode being amplified.

The geometric factor F is equal to unity for a uniform electromagnetic plane

wave and electron beam with infinite radius. Moreover, for finite beam

cross section, F is equal to unity when the electron beam and radial extent

of the radiation field exactly overlap. On the other hand, F < 1 when the

beam radius is less than the radial extent of the radiation field.

Substituting Eqs. (5) and (16) into Eq. (17) and integrating by parts
OD

with respect to pz and p_ gives the gain per unit length r = E r., where

2 .2 2
w bLF sin V

F = 2 -- Jg(b)[J(b) - JL1b]+

8Ybc I b

22

(i 2 (b) + 2(1 - c/Vb)J (b) + JQ ) 2 (b)
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/sin2 $
x[W(-l + Vb/c) + Wb] (18)

2 2b

Here, wb = 4Trnbe 2 /m is the nonrelativistic electron plasma frequency-

squared, =cb eB/y bmc, b = (w cb/k V) (6B/B0 ), and = (kVb + Zko Vb

Wcb - w)T/2. Equation (18) is valid only for the case of low gain (rL < 1)

and c/wL << 1. In order for the lineshape factors proportional to [sin2 $ ]/

in Eq. (18) to be a valid representation of the emission for more general

0
choice of fb, it is necessary that any small axial spread in electron momentum

(Apz) and small spread in transverse electron momentum (Ap ) satisfy the

2 2
inequalities 1/L>> [w(l - Vb/c)/c + k0 Apz /bmVb and 2/L >>2WVAps/c YbMV Vb

We first examine Eq. (18) in the absence of wiggler magnetic field,

i.e., 6B = 0. In this limit, only the Z=0 term survives, and Eq. (18) gives

the gain per unit length for the cyclotron maser instability taking into

account a finite interaction length L, i.e.,

w22 LFsv 
sin 2$

cm b 2[2( c/b V 2 + . (19)

8y be $0 + b 0

An expression similar to Eq. (19) has been derived previously using the

single-particle equations of motion.5 For exact resonance (%O = 0), Eq.

(19) predicts only absorption of radiation. Also, for V_ = 0 and arbitrary

0, Eq. (19) predicts only absorption, as expected. The above expression for

r has its maximum value5 for $0 ~ + 3.75 with the final term in Eq. (19)
cm

giving the dominant contribution. Equation (19) is symmetric in 0 and

gives amplification on either side of 0 = 0. Both transverse and axial

electron bunching contribute to Eq. (19) with the axial bunching dominating

for the maximum value of F . The output frequency is approximately W =

w (1V/2 2 2 2
Wcb(l + Vb/c)y /(l + y bV/c ), which is limited to wavelengths in the centi-

meter and millimeter range for values of B0 and yb typically available. For
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moderately large values of B0 and Yb' it may be possible to reach submilli-

meter wavelengths.

We now examine Eq. (18) in the presence of the wiggler magnetic field,

6B # 0. For finite values of b, Z #0, and assuming (/$Z )(sin 2  is

not negligibly small, the terms in Eq. (18) proportional to L2 are dominant.

This gives 2 2 2

o bL F VA 3sin 2
2 V i z cb - W(l - 2 . (20)

16y b b c b 2 $

Rewriting [ cb b /) = [2 t/L - ik0 b in Eq. (20) gives

2L 2 F 2Vs
r ~ 2- -- J2 (b) [2p /L - fk4 2 . (21)

16yb c b Li

Typically, 1ik 01 >> 2$Z/LI. Moreover, since we are interested in output

frequencies that are Doppler upshifted, we take t > 0. As a function of

the quantity rt in Eq. (21) then assumes its maximum value for 1.3,

which gives 2 2 2
~MAX =0.54 w Fpbi
r ~ 165 b 2  AkoJ(b), (22)

with an output frequency of approximately

_Z ~kVb + Wbfll + Vb/c)Y2
[0 b cb] (+ b b

("+3 2 2 2
(1 + ybV!/c )

In the presence of the wiggler magnetic field, it is evident from Eqs. (20)

and (21) that the gain per unit length gives only amplification for , > 0.

This is in contrast to the case 6B = 0 where amplification occurs for both

positive and negative $0, symmetric about $= 0.

Comparing the output frequency with and without the wiggler field, we

find that the output frequency for 6B # 0 is always greater than that for

6B = 0 and can be substantially larger for ik > wcb . Taking the ratio
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of Eq. (22) .to the maximum value obtained from Eq. (19), and assuming that

the final term in Eq. (19) is dominant, gives

MAX

t - =Zk 0 LJ (b). (23)
cm

Depending on the size of J (b) in Eq. (23), it is evident that for k L >>lz 0
and 6B # 0, it is possible to obtain a larger or comparable gain to the

cyclotron maser, but at a much higher output frequency.

2
From Eq. (22), depending on the size of J2, it is clear that substantial

amplification can occur simultaneously in several adjacent harmonics. If

b < 1, then the small-argument expansion of the Bessel function appearing in

Eq. (22) can be used, which shows that Z = 1 gives the largest amplification.

For sufficiently large magnetic field, b can take on values greater than

unity. In this case, for specified value of t, several neighboring harmonics

can give substantial amplification at different output frequencies. For

operation as an oscillator, given values of k0 ' b' V_ and Yb' it would be

possible to tune the output over a narrow frequency range by adjusting the

mirror locations to correspond to the frequency at a particular harmonic.

2.
As a numerical example, for b = 1.8, J2 is a maximum, and the first

three harmonics can be excited simultaneously with r1/r2 = 1.87 and P 1r3
2

11.68. For b = 4.2, J is a maximum, with r /r = 28.3, 3 2 = 2.89,

3 4r = 1.44, and r /r = 4.33. In this case, the first five harmonics can
3 4 3 5

be excited to a significant level. The above values chosen for b require

substantial magnetic fields. For example, if yb= 2, V b/c = 0.71, V/c = 0.5,

6B/BO = 1/3, then b = 1.8 requires wcb k0 = 3.83 or BO = 12.8k0 kilogauss,

-l
where k = 2rr/\ is expressed in cm . For the above values of yb' Vb, V-

and 6B/Bo, the choice of b = 4.2 then requires B= 23ko kilogauss.

An FEL using a transverse, linearly polarized wiggler field with no
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solenoidal field has been shown theoretically to radiate at odd harmonics,

f = 1, 3, 5, ... , of the wavenumber k0 . In the present notation, the cor-

responding gain per unit length and output frequency are given by6

2 L
0.54 fk 2

f 16 3 2 0 Kf

c 2 (24)
(1 + Vb/c)fky b Vb

1 + b2y V /2c2

where (l) (f-l)/2 (f-)/2 - J(f+l)/2(f0 bbyb /c,

= V b2 /4 c 2[1 + V b2y /2c 2

Comparing the growth rate for the case of a longitudinal wiggler to Eq. (24)

gives (assuming parameters otherwise the same)

rMAX =(V) J (b)

r ~ Vb f K2 ,(25)
f b K

where the longitudinal wiggler output frequency is given by

2
[Zk V +w b ( O
[ 0 b cb] 1 + Vb /c)b

MA 22 2
1 + ybV /~c2

For b < 1, the t=f=l term is dominant with r /r= (Vc/2v ) . Therefore,

the transverse wiggler gives a somewhat larger growth rate due to the fact

that the longitudinal wiggler operates with an electron beam having larger

initial transverse velocity V_. Although the growth rate for the transverse

2 2 2
wiggler is typically larger, for ybV /c < 1 the output frequency for the

longitudinal wiggler can be substantially higher than the output frequency

for the transverse wiggler FEL. Comparing the gain at higher harmonics, a

similar conclusion holds when y V /c2 < 1.
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5. CONCLUSION

In summary, we have used the classical limit of the Einstein coefficient

method to study in the low-gain regime stimulated emission from a cold, tenu-

ous, thin, relativistic electron beam propagating in the combined solenoidal

and longitudinal wiggler fields produced on the axis of a multiple-mirror

(undulator) field [Eq. (2)]. The gain per unit length was calculated in Sec.

4 and the maximum gain per unit length is given by Eq. (22). Emission was

found to occur simultaneously in all harmonics of k0 with the Doppler-up-

shifted output frequency given by w = + W](l + Vb/c)y/(l + b 2/c2

For sufficiently large magnetic fields, the emission is inherently broad-

band in the sense that many adjacent harmonics can exhibit substantial am-

plication. For B # 0, it is possible to obtain a larger or comparable

growth rate to the low-gain cyclotron maser (6B = 0), at a much higher out-

put frequency. For y2V2 < c2 , it was also found that the output frequencyb --

can be considerably higher than that of an FEL using a transverse wiggler,

although the gain per unit length is typically somewhat smaller.
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