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ABSTRACT

The relativistic motion of an electron is calculated in the combined

fields of a transverse helical wiggler field (axial wavelength = X0 27/k 0)

and constant-amplitude, circularly polarized primary electromagnetic wave

(6B , ,k) propagating in the z-direction. For particle velocity near the

beat wave phase velocity w/(k + k0) of the primary wave, it is shown that

the presence of a second, moderate-amplitude longitudinal wave (6EL,w,k) or

transverse electromagnetic wave (6B2 'W2,k2) can lead to stochastic particle

instability in which particles trapped near the separatrix of the primary

wave undergo a systematic departure from the potential well. The condition

for onset of instability is calculated, and the importance of these results

for FEL application is discussed. For development of long-pulse or steady-

state free electron lasers, the maintenance of beam integrity for an extended

period of time will be of considerable practical importance. The fact 'that

the presence of secondary, moderate-amplitude longitudinal or transverse

electromagnetic waves can destroy coherent motion for certain classes of

beam particles moving with velocity near -/(k + k 0) may lead to a degradation

of beam quality and concommitant modification of FEL emission properties.



1. INTRODUCTION AND SUMMARY

It is well known that stochastic instabilities can develop in systems

where the particle motion is described by certain classes of nonlinear

oscillator equations. Indeed, during the past several years, powerful

analytic and numerical technigues have been developed that describe im-

portant features of stochastic instabilities 1-6 that occur under a wide

range of physical circumstances. Particularly noteworthy is the development

of systematic (secular) variations of particle action and/or energy for

classes of particles that in the absence of the appropriate perturbation

force undergo coherent (e.g., nonlinear periodic) motion. Moreover, the

"normal". coherent particle motion can be drastically modified by the sto-

chastic instability and develop several chaotic features.

In the present article, we consider the possible development of sto-

chastic instability in circumstances relevant to sustained FEL radiation

7-12
generation by an electron beam in a helical wiggler field 7-In

particular, we consider a tenuous relativistic electron beam with negligibly

small equilibrium self fields propagating in the z-direction through a

steady, monochromatic radiation field. The relativistic dynamics of a

typical beam electron is investigated for particle motion in combined,

constant-amplitude, electromagnetic fields consisting of (a) an equilibrium

transverse helical wiggler field with axial wavelength X0 = 2ir/k 0 [Eq.(2)],

(b) circularly polarized transverse electromagnetic wave propagating in

the z-direction [Eqs. (3) and (6)], and (c) longitudinal electrostatic

wave propating in the z-direction [Eq. (7)]. Both the transverse and longi-

tudinal waves are assumed to have frequency w and wavenumber k and could

represent the nonlinear saturated state of an FEL instability. For zero

OWNW-1
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7
transverse canonical momenta , P = 0 = P , the exact equation of motion

x y

for the axial coordinate C = (k + k 0)z - wt reduces to Eq. (27), where v =

w/(k + k0 ) is the (beat wave) phase velocity of the combined wiggler field and

transverse electromagnetic wave. For moderate values of field amplitude and

particle velocity dz/dt in the neighborhood of v = w/(k + k0) [Eq.(36)], the

dynamical equation (27) can be approximated to leading order by [Eq. (45)]

-- + sin = -3 -_ E sin + - T

d 2/2 2 Ck + k [ __0 k w ) ]
dr2 c(k + k0) T dT dT2 L k ko k( '

where T = Q Tt, the small parameter ET [Eq. (23)] measures the strength of

the transverse electromagnetic field, and 6 = 0 / 2 [Eq. (34)] measuresL L T[E.(4]maue

the strength of the longitudinal field. Here, 3T = const [Eq. (28)] is

the bounce frequency of a particle near the bottom of the beat wave poten-

tial in the limit where ET -+ 0 and SL - 0.

The assumptions and analysis leading to the approximate dynamical

equation (45) are presented in Secs. 2 and 3. In Sec. 4, we investigate the

stochastic particle instability associated with the 6 driving term in Eq.

(45) assuming that 6 << 1. In the absence of longitudinal wave (6 = 0), it

is clear that the equation of motion is conservative with (d/dT) (H0 + H1 ) = 0,

2
where HO = (1/2)(d/dr) - cosC is the zero-order pendulum energy, and H=

[w/c(k + k )]Tl1/2 (d /dt) is the (small) conservative energy modulation
0 T

produced by the ET driving.term in Eq. (45). On the other hand, for 6 / 0,T L

the right-hand side of Eq. (45) appropriately averaged over the zero-order

pendulum motion can lead to systematic (secular) changes in the energy H or

action J for a selected range of system parameters. The associated stochastic

instability is examined in detail in Sec. 4. Introducing the action J [Eq.

(59)] and bounce frequency wT(J) [Eq. (61)] associated with the zero-order

pendulum motion d 2/dT2 + sinC = 0, it is shown for 6 << 1 and k w/kT >>1
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- that stochastic instability develops for (low) values. of bounce frequency

satisfying [Eq. (81)]

W (J)[ =t [F 162 [k1 16'
T T cr T 1n L-+ 2(k + k00 TJ

That is, stochastic instability develops in a narrow energy band (AH) cr

(1 - H0 cr near the separatrix, and particles in this region undergo a

systematic departure from their "trapped" zero-order pendulum motion.

For analytic simplicity, the parameter 6L is assumed to be small (6 L 1)

in the analysis in Sec. 4. Therefore, the energy range of particles experi-

encing stochastic instability is correspondingly small and located near the

separatrix of the primary beat wave. As 6L is increased to values approach-

ing unity, however, the instability range is expected to increase significant-

ly, and deeply trapped particles will also undergo a systematic departure from

the potential well. The dynamical equation (45) is presently under investi-

gation numerically in this parameter range.

An analogous stochastic instability can also develop in circumstances

where the longitudinal electric field is negligibly small, but a second,

moderate-amplitude electromagnetic wave is present. The relevant assumptions

and features of the final dynamical equation are outlined in Sec. 5 in cir-

cumstances where 6Ez = 0 and two, contant-amplitude, circularly polarized

electromagnetic waves (6B1,W,kl) and (6B2 'w2,k2 ) are present. For particle

velocity dz/dt near to the beat wave phase velocity w1 /(k0 + k1 ) of the

primary wave, the exact dynamical equation (85) can be approximated by [Eq.

(89)]

2 k +kk+k
d 1 0 6 sin

dT2  k + k 0 2 i k + k
dT 2 0 1 0T
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-here = (k1 + k0 )z - t, = :, =2 = 2 2 = [(k+ k) 2 ~1 0T1 2 T2 Tl 1 0 2

(k2 + k0 1]/(k + k 0), and CTl and T2 are the bounce frequencies [Eq. (88)]

in the troughs of the two beat waves. Apart from the (conservative) £T/2 term
T

in Eq. (45), the dynamical equation (89) is similar in form to Eq. (45), and

can also lead to stochastic instability for particles near the separatrix

of the primary beat wave. Moreover, for 62 of order unity, deeply trapped

particles in the primary wave can be "untrapped" by the second electromag-

netic wave.

In summary, we have considered electron motion in the combined fields

of a helical wiggler and constant-amplitude, circularly polarized primary

electromagnetic wave. For particle velocity near the beat wave phase

velocity of the primary wave, it is shown that the presence of a second,

moderate-amplitude longitudinal wave or transverse electromagnetic wave can

lead to stochastic particle instability in which particles trapped tiear the

separatrix of the primary wave undergo a systematic departure from the

potential well. The condition for onset of instability has been calculated

[Eq. (80)]. The importance of these results for FEL applications is evident.

For development of long-pulse or steady-state free electron lasers, the

maintenance of beam integrity over an extended period of time will be of

considerable practical importance. The fact that the presence of secondary,

moderate-amplitude longitundinal or transverse electromagnetic waves can

destroy coherent motion for certain classes of beam particles moving with

velocity near w/(k + k 0) may lead to a degradation of beam quality and con-

commitant modification of FEL emission properties.
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2. ELECTROMAGNETIC FIELD CONFIGURATION AND BASIC ASSUMPTIONS

A. Electromagnetic Field Configuration

Consider a tenuous relativistic electron beam with negligibly small

equilibrium self fields propagating in the z-direction. In the present

analysis, we examine the relativistic motion of a typical beam electron

in the presence of a helical equilibrium wiggler field and a constant-

amplitude circularly polarized transverse electromagnetic wave propagating

in the z-direction. All spatial variations of field quantities are assumed

to be in the z-direction. The total magnetic field B(, t) is expressed as

B(x,t) = B (x) + 6B (x,t), (1)

where the helical wiggler field k(;() is given by

B (x) = B [cos k z + sin k z y] (2)ru Al w 0 %x 0 .,y'
and the magnetic field components of the transverse electromagnetic wave

are expressed as

B (x,t) = eB [cos(kz-wt)eX - sin(kz-wt)e ) (3)ST IV T lux ruy

In Eqs. (2) and (3), the wiggler amplitude B and the amplitude 6B of thew T

circularly polarized electromagnetic wave are assumed to be constant (inde-

pendent of and t). In this regard, we emphasize that B = const is only

a valid approximation, strictly speaking, close to the magnetic axis where 13

2 2 2 1 4
k0 (x + y ) << (4)

Throughout the present analysis, it is assumed that Eq. (4) is satisfied.

With regard to the wave electric field 6E( ,t), we allow for both

transverse and longitudinal components, i.e.,

SE(x,t) = SE (xt) + 6E (x,t). (5)
,\ I nT \, n-,

The transverse electric field E T(,t) consistent with Eq. (3) and Maxwell's

equation Vx SET= -(l/c)(3/ t)6B is given by
11, T 'T
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6ET(x,t) =---6B [sin(kz-wt)& + cos(kz-wt)g] (6)= ck T %ux y

where 6B T const. In addition, it is assumed that a constant-amplitude

longitudinal wave component exists with

(,t) = e 6E sin(kz- t) , (7)kE Lb L

where 6E.L = const.

The electromagnetic wave fields described by Eqs. (3), (6) and (7)

correspond to a circularly polarized transverse electromagnetic wave

propagating in the z-direction with 6BT = const , combined with a constant-

amplitude longitudinal wave with 6EL = const , also propagating in the z-

direction. Both waves are assumed to have frequency w and wavenumber k

and could represent the nonlinear saturated monochromatic wave state of

an FEL instability.

B. Transverse Electron Motion

For the electromagnetic field configuration described in Sec. 2.A.,

the transverse canonical momenta, P and P , are exact single-particle
xy

invariants with

P = p - - A (z,t) = const , (8)x x c x

Py = p - --A (z,t) = const . (9)y y c y

In Eqs. (8) and (9), the vector potential 4 = A + A satisfies

17x = + XT, where k(() and BT(,t) are defined in Eqs. (2) and (3),

i.e.,

A (z,t) = -(B w/k0 )cosk z + (6B T/k)cos(kz-wt), (10)

A (x,.t) = -(B /k )sink z - (6B /k)sin(kz-wt). (11)

Moreover, the mechanical momentum p and particle velocity y = d /dt are

related by = ymy, where the relativistic mass factor y is defined by



-7-

2 1/2

PX Py + Pz
2 2 2 2 2 2)m c m c m c)

(12)

where m is the electron restmass and c is the speed of light in vacuo.

Throughout the present analysis, we assume that the transverse electron

motion is characterized by the cold-beam constraints 7,9 , P = 0 = P , so

that Eqs. (8) and (9) give for the transverse particle momentum

p = YMV = -(eB /ck0 )cosk0 z + (e6BT/ck)cos(kz-wt), (13)

= Ymvy = -(eB /ck )sink z - (eiB /ck)sin(kz-wt). (14)y yvy= w 0 0 T

In Sec. 3, Eqs. (13) and (14) will be used to eliminate the transverse

particle dynamics in the axial equation of motion for dp z/dt. Substituting

Eqs. (13) and (14) into Eq. (12), the relativistic mass factor y can be

expressed as

12 2 2 1/2
(eB \2( e6BT eBw e6BT 1/

y 1+ 2 + 21 - 2 A 2 cos k+k0)z-Wt+ 2 2
k/ mk mk m c

(15)

In deriving Eqs. (13) - (15), no approximation has been made regarding the

2 2 2 2 2
size of the dimensionless parameters b 2 = (eB /mc k0 ) and bT = (e6B /mc k).

2 2
In typical applications, however, bT << 1 and b < 1.

T w %

For future reference, Eq. (15) can be used to express y in terms of z

and dz/dt. Defining C = (k+k0)z-wt, and making use of dC/dt = (k+k 0)dz/dt-w

and pz ym dz/dt, Eq. (15) readily gives

eB e6BT eB e6BT

Y + 2 22 2 cos
mk m mck mc

x - c+1 (16

c 2(k+k 0 2 t*(16)

010
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3. AXIAL EQUATION OF MOTION

A. Exact Equation of Notion

The axial equation of motion for an electron moving in the electromagnetic

field configuration described in Sec. 2.A is given by

= - e v By(z)+ 6B (z,t)] - v [Box(z)+ 6B (z,t)] - e6Ez(z,t), (17)dt c xyyy xx z

where B (x), 6B( ,t) and 6E (z,t) are defined in Eqs. (2), (3) and (7). Making

use of Eqs. (13) and (14) to eliminate v = p /ym and v = p /ym, and combining

all magnetic field terms in Eq. (17), the axial equation of motion can be ex-

pressed as

2
dp -mc (k + k ) eB e6B

z _ 0 w T sin [(k + k)z - t]
dt y 2, 2 0

mte ko) mc k

-e6E sin(kz - wt). (18)

It is clear from Eq. (18) that the wiggler and transverse electromagnetic field

terms have combined to form a beat wave with effective phase velocity v =

w/(k + k0 ). In the special case where w kc and the axial motion is nearly

resonant with the beat wave (dz/dt = v v ), we obtain the familiar consis-
z p

tency condition k ~ k0 /(i vz/c) for the upshifted wavenumber.

For present purposes, it is convenient to rewrite Eq. (18) in the frame

of reference of the beat wave. We define the dimensionless axial coordinate

c = (k + k0) z - Wt (19)

where dC/dt = (k + k0)dz/dt - w. Then, expressing dp z/dt = (d/dt)(ymdz/dt)

(k + k0 )- (d/dt)[ym(d /dt + w)], Eq. (18) can be rewritten in the equivalent

form
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2 c (k + k )2 eB JOB
d.C + d dCi + W 0 w TN sinc

2 ydt dt 2 2 k-2

(k + k0 ) jekSEL . k k wt].
- k~y sin ko k0C-ge

(20)

The expression for y in Eq. (16) is used to eliminate dy/dt in favor of (C,

dc/dt, d 2c/dt 2). After some straightforward algebra that makes two-fold use

of Eq. (16), we find

ldY+ w d2 C + sin C /eB Te6B
dt 2 k 2t 2w2 2 2k 2k dt

c (k + k 

- 2 (k+k2 t+ )2 ].(21)

Making use of Eq. (21) to eliminate (l/y)(dy/dt)(dc/dt + w) in Eq. (20) gives

2 -2 k + k eB e1BT ' [cd_______0 w ( C~ +l (4 sin C
2t 2 2 2 L 2 2 + t

dt Y ko mc k/ c (k + kk0

(kk+ k) (ekiEL) - ( + k22 - t
0T__ d sin k _ T[1 2(k + k0) k+ 0 0~

(22)

where y(C,dc/dt) is defined in Eq. (16).

Introducing the dimensionless parameter c T defined by



-10-

eB e6B

T 2 2
\c k0 I mck 1

eB ) + eSB
S+ I w + (23)
I ~ 2 i 1211

mck 0 / m k

the expression for Y in Eq. (16) readily reduces to

2 1 1 2d + (1 - 2e cos
- c (k + k0)

( + eB eBT 2 (24)

m2 kc0 k + 2 k

The (small) dimensionless parameter cT defined in Eq. (23) is clearly a measure

of the strength of the combined transverse electromagnetic and wiggler fields

in the equation of motion (22). It is also useful to introduce the dimension-

less parameter cL defined by

^ 22 -1/2
ek6EL eB e6BT

EL 2 2 1 + 2 + 2 , (25)
mc (k + k0 ) _ mc k 0  2 mc k

which characterizes the strength of the longitudinal field contribution in

Eq. (22). Introducing the normalized frequency Q,

c(k + k0 , (26)

the axial equation of motion (22) can be expressed as
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d2 Ts in d+ T+F d,~-~ L A +Q
dt 2  (1 - 2 Eos () - +os L-dt' + ]

[ / 23/2/ L - +dr k ) [i k k( k

(1 - 2ETCos C)1/2 t J k + i t

(27)

where t' = c(k + k0 )t, C (k + k 0)z - ft', and ET and EL are defined in

Eqs. (23) and (25).

Equation (27) is the exact dynamical equation for the axial motion assuming

that the transverse electromagnetic wave [Eqs. (3) and (6)] and the longitudinal

electrostatic wave [Eq. (7)] have constant amplitudes, 6B = const and 6E = const.T L

No assumption has been made in deriving Eq. (27) from Eq. (17) that ET and cL

are small parameters. Moreover, the factors in Eq. (27) proportional to powers

2 1/2 2 2 1/2of [1 - (dC/dt' + w) ] = (1 - v /c ) are related to mass modifications

associated with the relativistic axial motion. Here v = dz/dt is the axialz

velocity. Equation (27) canbe solved analytically (in an approximate sense) or

numerically for a broad range of system parameters of practical interest. In Secs.

3.Band 4, we will solve Eq. (27) iteratively in circumstances where the axial

velocity vz is close to resonance with the beat wave phase velocity v -

w/(k + k0), i.e., in circumstances where the normalized axial velocity dc/dt'

is small with 1 dC/dt'I << (1 - Q2) [Eq. (36)]. In this case, it is useful to

rewrite Eq. (27) in terms of the effective transverse and longitudinal bounce

frequencies defined by

I ----------- q
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2(k + k )0 )2( 1 2 ET

= C.2(k + k0 )2 F
2

2

c2 (k + k0 ) 2

eB le 6B\

mck 0 mc2k

( eB
L + I ck 0

2
C (k + k0) 2(

and

2

+ 

^ 2

mc k

2 3/2

S 2 13/2 (
c2 1 + ekcSEL= [ c2 k + k0 )2 \J

+
/_eB

2

2 + iT)2 - -1/2

2 2+e

Substituting Eqs. (28) and (29) in Eq. (27) gives the exact dynamical equation

2
+ W2 (C, ;)sin

dt

2 . (k+ k)
c+ L(c, c) k 0

sin [T k k Wt

wee 2 rd2,where wT (C, ()and ( c) are defined by

^2

2 (C, c)T 1 - 1/2
0;, ) (1 - 2T cos C) I T dT] I1 - 2e1/2 d _ _ 22)T dt

X C, dt) J2

^2

(1 - 2cT Cos c
[ - 22E1/2

T dT

W T

(28)

xF1 (29)

30,

(30)

2
W L

(31)

3/2
2

(32)
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In Eqs. (31) and (32), 0 = w/c(k + k0 E T is defined in Eq. (23), and T =

WTt.

It is clear from Eq. (30) that the exact axial equation of motion has the

form of a nonlinear equation for coupled pendula with amplitude- and velocity-

dependent frequencies, wT (C, ) and oL ( *, )

B. Approximate Equation of Motion

For present purposes, we now impose the (weak) restriction that the amp-

litude 6B of the radiation field be sufficiently weak that

CT << 1, (33)

where ET is defined in Eq. (23). We further assume that the longitudinal elec-

tric field 6EL is weak in comparison with the transverse electromagnetic field

in the sense tha:

^2
_ L L< <( 3 4 )

L -2 2 1/2 < 1. (34)wT ) - T

Substituting Eqs. (28) and (29) into Eq. (34) readily gives the requirement

ek6E m-ck / 2
6 -L J01 mck

L mc (k + k0 2 _ e6 BT

eB 2 e6B 2-1/2 . 2 -/2
x___+_ + BT <<1.2 1 / 1
. m: k ( mc k c (k + k0 )

0 -- (35)

Finally, for present purposes, we also assume that the axial electron velocity

vz = dz/dt is relatively close to the beat wave phase velocity vp = w/(k + k0 .
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Specifically, in Eq. (27) [or Eq. (30)] it is assumed that

0 << (1 - Q 2) ,(36)dt'

where t' = c(k 4 k0 )t. Equivalently, defining T E Tt = c(k + k0 )( 2

T1/2t, Eq. (36) can be expressed as

1/2 d << , (37)~T -d 1 ,(7

where Q = w/c(k + k0

The exact dynamical equation (30) is now simplified within the context of

Eqs. (33), (34) and (37). To leading order, we approximate ( ) =

2 . ^2 1/2
6 LT and wT( , ) T (1 - 3 0ET dddT) in Eqs. (31) and (32). Equation (30)

then reduces to

d + 2 W2sin = 3 2w1/2 A sin
dt 2 T T T dT

6LWT k sin k + k - t (38)

Introducing the dimensionless time variable

T = WTt , (39)

Eq. (38) can be expressed as

d2 1/2 d4
+- sin C = 3QEl/2 sin C

dr 2  T cT

(k + k0  . k 0 W-6 sin - ;Z ~ T)] 40
L k sn kk + k k w (
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whereQ = w/c(k + k0), and «T << 1 and 6L << 1 have been assumed. Since T =

-l

LoTt, we note that time is measured in the basic unit TT = , which corre-

sponds to the bounce time of an electron near the bottom of the beat wave

potential well in Eq. (40).

Since ET << 1 and 6L << 1 are assumed in Eq. (40), the lowest order

axial motion is determined from the pendulum equation d 2/dT2 + sin C = 0.

In an iterative sense, replacing sin C on the right-hand side of Eq. (40) by

-d 2/dT , the ecuation of motion (40) can be approximated by

+ sin C = -3Q1/2 dd2

dT2  T dT d 2

(k + k 0 k ko w- L k ki k+

T

Defining an effective energy H by

H =H + H

2

Cos C + 01/2 Idr (42)
2kdL/ -co T \dT/

and multiplying Eq. (41) by dc/dT, we obtain

=dH 6 - (k + k0  dsi k k - (43)
T 1, k dTk + kk

I W T

In Eq. (42), HO = (1/2)(dC/dT)2 - cos C is the zero-order pendulum energy, and

H1 represents the small conservative energy modulation proportional to 1/2.

In the absence of longitudinal wave (6L = 0), it is clear from Eqs. (41)

(43) that the equation of motion (41) is conservative with dHl/dT = 0. On the
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other hand, for 6 # 0, the right-hand side of Eq. (43), appropriately

averaged over the zero-order motion, can lead to systematic (secular)

changes in the energy H for a selected range of system paramters. This

property and the associated stochastic particle motion are discussed in

Sec. 4. For future reference, it is useful to simplify the notation in

Eqs. (41)-(43). Defining k' = k + k0, and introducing the dimensionless

phase velocity V ,

k0W
V = 3 1 (44)VP

T

the equation of motion (41) becomes

d / cd2 cF'[k

3/2d - 6L E sin (C -) (45)
dTn2 ck TdT dT 2 L k VT](5

and the time rate of change of energy can be expressed as

=-6 k' dC sin k (C - V T), (46)
dT L k dt k P

where

H =H0 + H

2 3

=( - Cos C + W E1/2 C(7

For w = kc, note from Eq. (44) that Vp = k0 c/WT 1.
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4. STOCHASTIC INSTABILITY

A. Zero-Order Pendulum Equation

In this section, we briefly summarize properties of the solutions to

the approximate dynamical equation (45) in the limit eT - 0 and 6L -* 0,

which gives the pendulum equation
1 1 , 12

2
d + sin C = 0, (48)

d 2

where T = T t and 6T is defined in Eq. (28). The energy conservation relation

associated with Eq. (48) is given by

10 - cos = H(4

where H = const [Eq. (46)]. Equation (49) can also be expressed as
0

1 _ 2 - 2sin2 (50)

where

K2  1 (1 + H0). (51)

The solution to Eq. (50) can be expressed in terms of the elliptic integrals

F(n,K) and E(?1,K), where

F(n, ) dn2 (52)

2 2 1/2
0O,(1-K 2sin 2 ? )1/

E(fl,K) ) dn'(1 - K sin ' 1/2 (53)

We now solve Eq. (50), distinguishing two cases: trapped particle orbits (K <1),

and untrapped orbits (K > 1).
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Trapped Particle Orbits (K 2< 1): Introducing the coordinate ri

defined by

Ksin r = sin (54)

Eq. (50) can be expressed as

(d_) 
2 2(dT\ (1 -K sin i), (55)

which has the solution for n(T)

F(fl,K) = F0 + T, (56)

where n= sin [(l/K)sin ?/2], F0 F(n(T=0),K), and F(n,K) is the elliptic

integral of the first kind defined in Eq. (52). Several properties of the

(periodic) trapped particle motion can be determined directly from Eqs. (50),

(54) and (56). For example, it is readily shown that the normalized velocity

in the beat wave frame is given by

dT = 2Kcn (F + , (57)

2 1/2
where cn(F0 + T) = [l - sn (F0 + T)1 , and sn(F0 + t) = sin i = (1/K)sin C/2

is the inverse function to the elliptic integral F sinl(i sin

For subsequent discussion of the stochastic particle instability in Sec.

4.B, it is useful to express properties of the trapped particle motion in

terms of action-angle variables (J,e). Defining, in the usual manner,

J = J(H T dC,

e(cJ) = S(C,J), S(Ci,J) = dC, (58)e(,) -D TIT (58

we find

now%
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J(H0) = Ek,K) - (1 - K) FK) , (59)

2
where K = (1/2)(l+H) and F(n,K) and E(n,K) are defined in Eqs. (52) and

(53). The unperturbed equation of motion (48) in new variables (J, 8) is

given by

d= d= (J)/T (60)

where ZT is defined in Eq. (28), and the frequency wT(J) is determined from

W T(W/N3T= aH 0 (J)/aJ, i.e.,

iTTT(=61)

T(J) = 2F(rr/2,K) T (61)

Near the bottom of the potential well, H 0+-l, K -0, F(w/2,K)-+w/2,

and therefore wT(J) T, as expected from Eq. (48). On the other hand, near

the top of the potential well, H0 -+l, K 2-*1, F(Tr/2,K)-+-, and the period

2Tr/OT (J) of the trapped particle motion becomes infinitely long.

For future reference, neglecting initial conditions in Eq. (57), the

normalized velocity in the beat wave frame can be expressed as

d WT an-1/2
= 2Kcn(T) = 8 E 2n-1 cos (2n - 1)wt , (62)

T n=1 1 + a L

where F0 = 0 is assumed, T= 6 T t, and wT = WT(J) is defined in Eq. (61).

Moreover, the quantity a in Eq. (62) is defined by

a= exp(-7TF'/F), (63)

F'= F (T/ 2,4-K2 , F =- (T/2 ,K) .

Near the top of the potential well (i.e., near the separatrix) where H +1,
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we will find in Sec. 4.A that the particle motion becomes stochastic in the

presence of the perturbation force in Eq. (45). Defining H0 = 1 - AH, where

AH <<1near the separatrix, we find K2 WT(J)+0, and

F ~ ln(32/AH), F' 2 , wT T [ln(32/AH)]

(64)
a ~ exp(-7wT T

for small AH<< 1.

Untrapped Particle Motion (K >1): Although the emphasis in Sec. 4.B

will be on the trapped particle motion, for completeness we summarize here

properties of the solution to Eq. (50) when the orbits are untrapped (K2 >).

Defining n= C/2, Eq. (50) can be expressed as

d_ 2 2 F 1 .2
TI =K 2l - -1 sin n . (65)

L K J

where 1/K 2< 1. Solving Eq. (65) gives for C(T) = 2n(T)

F( /2, 1/K) = F0 + KT, (66)

where FO= F(C(T=O)/2, 1/K). The solutions (56) and (66) clearly match

2
exactly at the separatrix where K = 1.

B. Stochastic Instability

In Sec. 4.A, we considered properties of the equation of motion in circum-

stances where the right-hand side of Eq. (45) is negligibly small ( - 0 and

6L -+ 0) and the lowest-order motion is described by the pendulum equation (48).

In this section, leading-order corrections to the particle motion are retained

on the right-hand side of Eq. (45) in an iterative sense. For consideration of
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the stochastic particle instability that develops near the separatrix, it is

particularly corvenient to examine the particle motion in action-angle variables.1

1/2
Correct to order cT and 6 we find

dJ dJ dH WT dH00 = 0 (67)dT dH0 dT W T dT

where = T (J),. and

dH 0 _ 1/ 2 d dc3 k' dC s k
--- =-- TT -k - sin T- (C -V pT) (68)dT 'dT ( dT L Tk

follows directly from Eqs. (46) and (47). Here, k' = k + k0 and V is the

dimensionless phase velocity Vp = k 0/kw . For w = kc, note that

kow k~c
V=- -- >> 1 , (69)

T "T

1/2
in parameter regimes of practical interest. The E_ contribution to dH /dT

.1 0
in Eq. (68) is expressed as a complete time derivative. Hence, correct to

1/2 1/2
order eT , we find from Eqs. (67) and (68) that the CT contributions to

dJ/dT and dH /d are conservative and do not lead to a systematic (secular)

change in action or energy when averaged over a cycle of the zero-order pendu-

lum motion. Therefore, for purposes of investigating the stochastic particle

motion associated with systematic changes in the action J, only the longitud-

inal wave contribution to dH /dT is retained, and Eq. (67) is approximated by

di - 6 'Tk' d n (rvt) . (70)
dT LW T k dT s k ( p(
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For present purposes, we consider particle orbits which are trapped and

2
periodic (K < 1, in the absence of the longitudinal perturbation in Eq. (70).

It is well knowni that near the separatrix (HO - 1 and K2 - 1) Eq. (70)

can lead to a stochastic instability that is manifest by a secular change in

the action J and a systematic departure of the particle from the potential

well. Near the separatrix with H0 - 1, it follows from Eqs. (49) and (62)

that the particle is moving with an approximately constant normalized velocity

-1
dC/dT = 2 for a short time of order 'T = T . Moreover, this feature of theT T

particle motion recurs with frequency w T(J)<< T$ and can lead to a significant

change in the action J in Eq. (70).

We now examine the implications of Eq. (70) near the separatrix, keeping

in mind that V >> 1 and that the sine term on the right-hand side generally
p

represents a high frequency modulation. Making use of the zero-order expression

for the normalized velocity d /dT in Eq. (62), it folows directly that dJ/dT

can be expressed as

dJ O an-1/2 kT k-- 46L s 2n- s + 2n- 1) - V
n=l 1 + a [ T PI T

k T +kV- sill [ -(2n - 1) + P]T (71)

where k' = k + koj' WT W "T(J), and a is defined in Eq. (63). Near the separatrix

dc/dT = 2 << V in Eq. (71). Therefore, the first term on the right-hand side

of Eq. (71) acts as a nearly constant driving term for some high harmonic

number s(>> 1) satisfying the resonance condition

2s T s k
cTkT p
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or equivalently,

0 T k wk0
' s 2s k p 2s k + k (72)

0

Here, Js is the action corresponding to the resonance condition for resonance

number s. From Eq. (72), it follows that the distance between the adjacent

resonances, s and s+l, is given by

6s T s s+l 2 V p2s

2k' 2 (k + k 0) 2
kT WT(s =2 k sJ). (73)

On the other hand, for a (small) change in the action AJ, the characteristic

frequency width of the s'th resonance can be expressed as A (Js) = [d (Js)

dJs AJ, where AwT 0s ) (Js) is assumed. The condition for appearance of

stochastic instability is AWT Js ) 6 , or equivalently,

dwTjs k' 2T >> J 2 k'W(2)0 (74)
dJ s >> 2V T s
s T p

To estimate the size of AJs, we express w T(J) as wT (J s) + AW (J s) and

integrate Eq. (71) over a time interval of order t = 1 (AT % 1) in the
T T

vicinity of the s'th resonance defined by Eq. (72). In an order-of-magnitude

sense, this gives for the characteristic magnitude of AJs'

as-1/2 dw T 0 S)

s L 1T 2s-1 s dJ sl+ a s

Solving for AJ and eliminating s by means of Eq. (72) gives

I
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AJ~[L ky/k? 1/24L as-1/2/(l+a2s-1 WT

Ajs P, d wT s)/dJ sikV /k,7
(75)

Substituting Eq. (75) into Eq. (74) then gives as the condition for stochastic

instability,

Sd)IF s-1/2

L Ts i a
WWT

(k + k0 )

k 0,
(76)

where use has been made of k' = k + k0 and Vp = k0 wk T

We now estimate the various factors in Eq. (76) near the separatrix

where H -l and wT s) >>Y. From Eqs. (64) and (72), it follows that

a ~ exp(-nsw T /T ) and

a exp kk k

where a << 1 and as-1/2/(1 + a2s-1 as-1/2

(77)

Also from Eq. (64), ln[32/

(1 - H0 7T T/W gives

H 0 / -
1 - H0

zT dw (J)
T T

(J) dJT

Making use of ;)H0 /3J T = ( T, we obtain

1 2 dw (J)
T T 1
3 dJ 32Tr
r (J)

T T

Substituting Eqs. (77) and (78) into Eq. (76) gives

6L k0 e T
32r (k + k0 T

k0
2(k + k 0 T

as the condition for stochastic instability. Equation (79) can also bt

(78)

>> 1 (79)
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expressed in the equivalent form

-1

[ 167r2  7k" *kw"
T T ln+ 2(k +-in k0 [W r . (80)I.2(k + k( +T =ko)WTJ

In Eq. (80), [wT cr is the critical bounce frequency for onset of stochastic

instability when w < [Wr. Since a >> lna for a >> 1, Eq. (80) gives
T ek T cr

T 162 Trk W

[LT cr = ln 6L+ 2 + + k0  ] (81)

to good accuracy. In a regime where ln(16r /6 ) >> 7k w/2(k + k) T'

Eq. (81) gives irT T / cr ln(16r 16 L). From ln [32/(1-H0)] T rTf , the

condition for onset of stochastic instability can then be expressed as

22IV (-H0 cr ~ 26 L 2/ , (82)

where AH = 1 - H0* On the other hand, in a regime where ln(167 1/6 L <

Trk 0 w/2(k + k0 WT, Eq. (81) gives WT /[WT cr ~ rk0 w/2(k + k0 T, and the

condition for onset of stochastic instability can be expressed as

AH < (1 - H ) = 32 exp F- ( 0 T (83)
r' 0 cr L- 2(k + k 0 ) T

Unlike Eq. (82), the energy band for instability in Eq. (83) is exponentially

small.
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5. STOCHASTIC INSTABILITY FOR TWO MODERATE AMPLITUDE

ELECTROMAGNETIC WAVES

An analogous stochastic instability can also develop in circumstances

where the longitudinal electric field 6E is negligibly small but a second,

moderate-ampli~tude electromagnetic wave is present. In this section, we

briefly outline the assumptions and relevant features of the final dynami-

cal equation. We consider circumstances where 6E = 0 and two, constant-
z

amplitude, circularly polarized electromagnetic waves (6B,w 1,k1 ) and (6B2'

W2,k2 ) are present with polarization similar to Eqs. (5) and (6). The

second electromagnetic wave (6B2 'W2 ,k2) may also be a consequence of the FEL

amplification process, with frequency and wavenumber (w2,k2) nearby to

(W1 ,k1). Defining

b e , blE 2k) , b2  e2 2 (84)

mc 0 kk mc k2
bw(j 2

after some straightforward algebra, it can be shown that the exact axial

equation of motion can be expressed as

d 2z 1 [ li 2- dzi ' wt
2 - bwb c2(k, + k0) - sin[(k + k0)z - wlt]

+ bb 2 c2 (k2 + k0) - w2  sin[(k 2 + k0 )z - w2t]

(85)

- blb 2[c2(k2 - kl) - (W 2 - 1 ) sin[(k 2 k1)z - (w2 ~ el)t}

where

21- d\2 1 + b 2 + b2  b2  2b b cos[(k + k )z - W t]
Y2 c2 dtJ I w 1 2 1 1
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-l

2b 2b cos[(k2 + k0)z - W2 t] + 2b b2cos[(k 2 - k )z - (W - w )t] .

-1(86)

The form of Eq, (86) is somewhat analogous to Eq. (27). If we neglect the

bib 2 terms in comparison with b b and b 2b , and examine particle motion

with axial velocity dz/dt in the vicinity of the beat wave phase velocity

1/(kg 1+ k0 ) of' the primary wave, then for ow dz/dt - w1 /(k1 + k0) <

2 2 2
c (k1 + k0) W1 , Eq. (85) can be approximated by

2

(k1 + k0) 2
dt

where

2
STl

2 
T2

+ T2 sin[(k + k )z - w t]

k + k0 2
+ + k T2 sin [(k2 + k0 )z - w2 t] = 0,

20

2 2 2 2
_ _ [c (k1 +k 0  1

c2 (k + k) 2 (1 + b w b b

2 2 21[c (k2 + k0  2 21 (k2 + k0 )/ (k + k0

2 k k 2I 1l + b2 )

and only leading-order terms proportional to b b and bwb2 are retained in

Eq. (87). Int:roducing C = (k + k0 ) t, Eq. (87) can be expressed as

2 Fk;[1
d2 1 2 2 0(9

+ sin + 2OT sin , - At 0, (89)
dt 2 [k1  =

where kj = k, + k, k' = k + k andAw = (k'w - k w)/k.
1 ' 2 2 0 12 1

Analogous to Eq. (41), if 6 = 02'/ is treated as a small parameter,

the dynamical equation (89) can lead to stochastic instability for particles

near the separatrix. For Aw/ Tl>> 1, the general features of the instability

are similar to those discussed in Sec. 4. For Aw/,^>Tl I, using techniques

(87)

(88)

b b2,

monk
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similar to Zaslavskii and Filonenko , it can be shown that the energy band

AH corresponding to instability can be much wider than in the case Aw>/ T> 1.
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6. CONCLUSIONS

In summary, we have considered electron motion in the combined fields of

a helical wiggler and constant-amplitude, circularly polarized primary elec-

tromagnetic wave (6BT9 ,k). For particle velocity near the beat wave phase

velocity w/(k + k0 ) of the primary wave, it was shown that the presence of a

second, moderate-amplitude longitudinal wave (6EL,w,k) or transverse electro-

magnetic wave (6B2'u2,k2) can lead to stochastic particle instability in which

particles trapped near the separatrix of the primary wave undergo a systematic

departure from the potential well. The condition for onset of instability has

been calculated [Eq. (89)]. The importance of these results for FEL appli-

cations is evident. For development of long-pulse or steady-state free

electron lasers, the maintenance of beam integrity of an extended period of

time will be of considerable practical importance. The fact that the presence

of secondary, moderate-amplitude longitudinal or transverse electromagnetic

waves can destroy coherent motion for certain classes of beam particles

moving with velocity near w/(k + k ) may lead to a degradation of beam quality0

and concommitant modification of FEL emission properties.
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