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ABSTRACT

Stimulated emission in the high gain regime from a cold, relativistic beam of electrons gyrating in a com-

bined solenoidal and longitudinally polarized, periodic, wiggler magnetic field is considered as a source of short

wavelength radiation. The emitted wave frequency is Doppler upshifted in proportion to the wavenumber of

the wiggler magnetic field. Amplification is due to a ponderomotive bunching force acting on the electrons in

the transverse and axial directions. Expressions for the linear growth rate are obtained; conditions for their

validity, and estimates for the saturated efficiency are given.
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1. Introduction

In the past several years with the advent of intense, relativistic electron beams there has been an interest

in using these electron beams to generate intense, coherent electromagnetic radiation in the centimeter, mil-

limeter, and submillimeter wavelength portions of the electromagnetic spectrum. Presently two main types

of radiation mechanisms using intense, relativistic electron beams are of interest. First are the cyclotron in-

stabilities,'-' 0 gyrotron and Weibel, characterized by transverse and axial electron bunching, respectively, in

which the electrons travel in a solenoidal magnetic field B, with the emission frequency being associated with

the electron gyrofrequency or one of its harmonics. The other main type of mechanism is the free electron laser

(FEL) instability' 1-16 characterized by axial electron bunching in which the electrons travel in a transversely

polarized, periodic wiggler magnetic field with an emission frequency associated with the period of the wiggler

magnet.

The LOWBITRON'7 - a longitudinal wiggler beam interaction device - is a hybrid system of the

above mechanisms. A thin pencil beam of relativistic electrons with large transverse velocity v_j acquired

before entering the interaction region travels on axis in a combined uniform solenoidal magnetic field and a

longitudinally polarized, periodic, wiggler magnetic field. The total imposed field on the axis is of the form

b = _ [B,+ 6B sin (koz)| (1)

where k, = 27r/1 is the wavenumber, i the period, and 6B the amplitude of the wiggler magnetic field. The

amplitudes of the solenoidal and wiggler magnetic fields can be of the same order of magnitude with 6B1/B g

1. The field given by Eq. (1) can be generated by driving current azimuthally in alternate directions through a

periodic assembly of copper rings;18 or by making a series of rings from samarium-cobalt' 9 or other magnetic

material and magnetizing the rings in the axial direction as is done in systems employing periodic focusing;20

or the field can be generated by using the technique of magnetic diffusion 2 ,2 2 in a series of copper rings. The

field generated by these methods is a multiple-mirror (undulator) field which at a distance r from the axis is

approximately given by

h _ i[B 0 + 6B I(kr) sin (koz) -r6BII (kr) cos (koz) (2)

with I and It being modified Bessel functions. Near the axis where kor < I the field given by Eq. (2) becomes

that of Eq. (1). This imposes a constraint on the radius r of the electron orbit for it to be considered as moving

in a magnetic field of the form given by Eq. (1). Taking the gyromotion in the solenoidal field as dominant then,

since r~oe = _, gives the constraint
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k0v_ < we , (3)

where w, is the relativistic electron cyclotron frequency in the solenoidal field.

The periodic magnetic field in the lowbitron is longitudinally polarized rather than transversely polarized

as it is in the FEL. This has several advantages in that longitudinal modulations are more easily produced and

with larger amplitudes, the periodicity of a ring system is readily changed, and an adiabatic field shaper at the

electron source end is readily incorporated.22

In what follows we consider stimulated emission of right-hand circularly polarized radiation propagating

in the same direction as the electron's travel. We only consider emission at the fundamental harmonic k,.

Amplification is due to a Lorentz 0 X b force, the ponderomotove force, which causes bunching of the electrons

in both the transverse and axial directions. The bunching force travels at the phase velocity Vph = where

w and k are the radiation frequency and wavenumber, respectively. When the phase velocity of the bunching

force is equal to the axial electron velocity v so that

w - kv = kov + w,, (4)

the bunching force appears to be stationary with respect to the electrons, and for electrons traveling slightly

faster than Vph energy is given up to the electromagnetic wave. The radiation frequency is found approximately

from Eq. (4) by taking kc s& w to give

T [kv + w] (5)

where Iy = - 2 - . When no wiggler magnet is present (k. -+ 0) Eq. (5) reduces to the

frequency characteristic of the Weibel instability which indicates the lowbitron output frequency will be much

larger than that of the Weibel cyclotron instability. In the limit we -+ 0 one has the same frequency as the FEL

provided vw in Eq. (5) is now identified as the transverse velocity imparted by the FEL wiggler magnet. For the

same values of v_, Eq. (5) indicates that the lowbitron emission frequency will be greater than that of an FEL

due to the presence of w.

In section II we derive the dispersion relation describing the emitted radiation in the high gain regime,

i.e., rL > I where r is the amplitude growth rate and L die interaction distance. The dispersion relation is

analyzed in section III for a tenuous beam of electrons all having the same transverse momentum and a cold

axial momentum distribution. Section IV gives estimates for the saturated efficiency and section V summarizes
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the results and gives several numerical examples. For convenience, we shall henceforth take the speed of light

in vacuum c = 1.

II. Derivation of the Dispersion Relation

In this section we derive the dispersion relation for a right-hand circularly polarized electromagnetic wave

propagating in the beam of tenuous, relativistic electrons which are traveling in the combined solenoidal and

longitudinal wiggler magnetic fields. The dispersion relation is found by first determining the fluctuation in

the electron distribution function induced by the propagating electromagnetic wave which in turn determines

the transverse driving current. The transverse driving current is substituted in the transformed wave equation

from which it is found that the amplitude of the k'th mode is coupled to a sum over all other modes of the

form k - (I + s)k0 where t, s range from -oo to oo and k, is the wavenumber of the wiggler magnetic field.

To uncouple the modes we treat the wiggler field as a small perturbation keeping terms to second order in it

which limits t, a to the range 0, +1, +2. It is furthermore assumed that terms with the resonant denominator

(k + k)v3 + u) = w, where w, = T is the electron cyclotron frequency in the solenoidal field, E is the

electron energy, and v3 is the axial electron velocity, are the dominant terms. With the above assumptions

the modes can be uncoupled yielding five equations with five unknown amplitudes which, upon taking their

determinant, yields the desired dispersion relation.

The distribution function f(p, z, t) of the tenuous beam of electrons from which the driving current is

obtained satisfies the relativistic, collisionless Boltzmann equation

(+ - f -e [0Xx i (B,+6Bsink,-) ] pf= (6)

e e-iwt N(Z) - i X (t X g(z)) . pf

where B., 6B are the amplitudes of the solenoidal and wiggler fields, respectively. The propagating electromag-

netic wave is taken to be traveling along the positive z-axis, and to be right-hand circularly polarized, such

that

9(z, t) = (I + iP)(z)e-iwi (7)

The wave is a small perturbation on the electrons' motion so that the distribution function can be expanded as

the sum of a zero order term plus a small perturbation

4
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f(A, Z, t) = P() (P3 P-L + P~) (0, Z, t ) (8)

with the normalization n = f d3pf(O), where n is the electron number density and p_ is the magnitude of the

transverse electron momentum in cylindrical coordinates. Substituting Eq. (8) into Eq. (6) yields

df(0)

dt =-e [ x (B,+ 6B sin kz tf(o) = 0 (9)

aj -tf(( - e [_ X 2 (B, + JB sin kz )- f(')

e e-iwt [(z) - 0 X (t X g(z) ) ] f() (10)

The left-hand side of Eq. (10) is the total time derivative of (). Under the assumption that the propagating

electromagnetic wave is turned on adiabatically, the solution to Eq. (10) may then be expressed as a time

integral over the unperturbed trajectory of the electrons

d ('3 d~' i(v', + iv'2) dg'

P() = e dt' e-il'( + ip ) t't -Vf(O). (1
-O w dz' )w dz'

In Eq. (11) v'1, v1 are the x, y components of the electron velocity, respectively, and the primed variables

are the particular solutions to the unperturbed relativistic equations of motion which equal their unprimed

counterparts when t', the independent variable, is equal to t.

The unperturbed equations of motion are given by

d = -e- ' x z (B + 6B sin k-') (12)

dd E

dE 0 (13)

where the electron energy E' = E = my remains constant. Equation (12) is easily solved to give the

components of momentum

p3 = P3 (14)

5
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p'1 + ip2 = (p1+ ip2 ) eXP i - cosk (z +)v 3 r + " coskoz (15)

where r = t' - t, and Q = is the electron cyclotron frequency associated with the wiggler field. From

Eqs. (14) and (15) it is obvious that the axial momentum of the electron is constant as well as the magnitude of

the transverse momentum I p' + ip2 1=1 pt + ip2 |= p±. However, the z and y components of momentum

separately are of course not constant and are obtained from Eq. (15) by taking the real and imaginary parts,

respectively. The electron co-ordinates, [obtained from Eqs. (14) and (15)] are

z'=z-I-var (16).

oo ei(wc+qkov3),r

r- r = Vexp i cos ks (-i J iz [ei (17)
k. V3 koV3 )i(we + qkov3)

where r = x + iy, V = vi + iv2, and Jq is an ordinary Bessel function of order q. For Q = 0 it is seen from

Eq. (17) that the radius of the orbit remains constant corresponding to simple helical motion in the solenoidal

field. In the absence of the solenoidal field, w, = 0, the q = 0 term in Eq. (17) grows linearly in r with

the radius of the orbit becoming unbounded unless , is close to a zero of J,, in which case the radius of the

orbit remains bounded. Also, in the presence of both B and 6B the radius of the orbit grows linearly in r

for w, = -qkova. For our purposes we will be interested in parameters such that typically kv 3 > w, and

kn < 1. In this range of parameters the radius of the orbit remains bounded. Since the argument of the Bessel

functions appearing in Eq. (17) is small, the q = 0, ±1 terms are dominant with the Bessel functions being

expanded in terms of their arguments. The radius of the orbit is then essentially a circle with "wiggles" on it.

We take the unperturbed distribution function f(0) to be a function only of the zeroth-order constants of

the motion p_ and p3. f(0) then automatically satisfies Eq. (9) and using the facts that p' = p , p'3 = pa it is

easy to show that

tw ~) + 2 P f(O) + f0
yf0 )= -+y +-'-9 (18)

Substituting Eqs. (14) and (15) along with the Fourier transform of the field amplitude, (z') = dq'g(q),

into Eq. (1) and performing the time integration yields
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( ep e - 0o0 (-1)e (i+S)(1+kz) de X-Liviw 1 (lj kov3 k,,v3 e 2 -7

eiqzg(q) G(q) (19)
i[-w +w. + (tk,+ q)3J

where G(q) = (1 - + f and the angle ,o is given by p2 = pt tan p. The induced

transverse driving current is defined by

= -ef d3pf(') (20)

Substituting for f(l) and taking the spatial Fourier transform of the current, 3(k) = f d (z)e- z, yields

upon performing the p integration

00C fCC 00 C g~ -

(k) = iire2 e-iwt(I + ip) dpp2f dp3 v (-1)'Je X

ei(e+)i8(k - (f + s)k) G(k - (t + s)ko) (21)
-w + w,, + (k - sk.)v

where the magnitude of the transverse velocity is given by v±E = p . Combining Maxwell's equations and

spatially Fourier transforming the resulting wave equation gives, upon using Eq. (21) for the current,

w2 -k2)(k) = 4ir2Fw e2 f dp!p2f dp3 vL (-l)' J J

ei(+8)f (k - (t + s)ko) G(k - (I + s)kQ) (22)
-w + w, + (k - sk.) v3

In Eq. (22) we have appended a phenomenological filling factor F which describes the coupling of the electron

beam to the electromagnetic wave. For a uniform plane wave and infinitely wide electron beam F is unity,

and for a finite beam cross-section F is close to unity when the electron beam radius exceeds that of the

electromagnetic beam. For the case when the radius of the electron beam is less than that of the electromagnetic

beam F is approximately given by the ratio of the electron beam area to the electromagnetic beam area.

From Eq. (22) we see that the amplitude P(k) on the left-hand side is coupled to an infinite sum of

amplitudes involving the harmonics r(k - (t + s)A0). To uncouple the amplitudcs, in order to find the
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dispersion relation, we note that for experimentally accessible parameters the argument of the Bessel functions

is typically small, , < 1. The Bessel functions can then be expanded in terms of their arguments with the

dominant terms in the summations occurring for t, a = 0, ±1, ±2. Keeping only the terms up to second

order in the small parameter we find that the approximate expression for Eq. (22) is given by

(w 2 - k 2) 9(k) = 47r2 e2 wF f dp_ p2 f dp3 v 1 X

(5(k)G(k)Q H1 + H_1 + Ha + 9(k + k,)G(k + k,) [HI - H.]

+ 9(k - k0)G(k - k.) [H-1 - H] + 2 (k + 2k 0)G(k + 2k,) [H1 - IH - 1H 2]

+ 9(k - 2k1)G(k - 2k1) [I 1 - H- 2 - H (23)

where the small parameter Q is defined as Q = , and H = [-w + w, + (k + jk1)v3]', j =

0, +1, ±2.... For Q = 0 the above result reduces to the dispersion relation for the electron cyclotron

instability. Since we are interested in the resonance HI, we take terms proportional to IH in Eq. (23) to be

dominant. Note that the coefficients of H are proportional to Q (or Q2)and thus there is a lower bound on Q in

order that the terms with the resonances H, be largest.

To proceed with the uncoupling of the amplitudes, we keep only the terms in Eq. (23) proportional to Hi

which yields an equation involving 1(k), 9(k + k), and 1(k + 2k1). Next, we replace k appearing in Eq. (23) by

k + k, and keep only the terms proportional to the resonance [-w + we + (k + k)v3]-' yielding an equation

involving 9(k), 9(k + k;), 9(k + 2k,), 9(k - k,), and 1(k + 2k1). Successively replacing k by k - k, k + 2k,

and k + 3k0 in Eq. (23), and keeping only the terms with the resonance [-w + w, + (k + k)v.3V' then yields

five equations involving the amplitudes 9(k), r(k + k), @(k - k,), r(k + 2k,), and 1(k + 3k1). They are:

[k2 - w 2](k) = X0,(k) - ix19(k + k1) + X29(k + 2k,) (24a)

[(k + k,,)'W 2  1 9](k+kc) =-X.9(k-t-k 0)-i,5 19(k) -iX 6 E(k+2k0,)+X 7 19(k-k,) +Xil(k-+3Ak 0 ) (24b)

[(k - k,) 2 f- (k - k,,) = Xj (k + M~ (24C)

8
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(k + 2k,) 2 _ W2 ](k + 2k0) = -ix19(k + ko) + x S(k) + X29(k + 2k,) (24d)

[(k + 3k,)2 
-2 19(k + 3k,) = X39(k + k,) (24e)

where the effective susceptibilities X are

Xo=-0 I Q2 G(k) (25a)

Xi = I [Q G(k + k,)] (25b)

X2 = - i 2 G(k + 2k0) (25c)

X3 I Q2 G(k + ko) (25d)

X4 = I IG(k)J (25e)

5 = - I [Q G(k) (25f)

X6 = - I [Q G(k + 2k)] (25g)

X7= 2 G(k - ko) (25h)

X8 IQ2G(k+.3k) (25i)

Here Q = dG(k) = -1 + , and the integral operator I is given by

I = 4ir2e2 wF [00 2 d pI=4 fo dpj_ p -T dp 3 -w+ ,o -co -w + , + (k +koa

Taking the determinant of Eqs. (24a) - (24e) yields the dispersion relation

±+ X4 X0 X2 + X - X2X4± XI X- XoX4 = 0  (26)
D, Do D2 DID2 DoD

where D, = (k + nk0)2 _ w2 and where we have only kept terms up to second order in the small parameter

Q. The above dispersion relation shows that the three transversely polarized modes of amplitude 6(k), f(k +

k,), 9(k + 2k,) are coupled together by the wiggler magnetic field. In the region where D, F 0 the first two
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terms in Eq. (26) are dominant and describe the electron cyclotron instability at the effective wavenumber

k + k.. For our purposes we will be interested in the region where D. ~ 0 and (k + ko)v3 + w, W w

simultaneously. In this region the dominant terms in Eq. (26) give

D. 1+ = Xo + XoX - XX (27)

Since Xo, XoX4, X1X5 are proportional to Q2, Eq. (27) indicates that a freely propagating electromagnetic mode

Do is coupled to the beam cyclotron mode 1 + fY by the wiggler magnetic field. For a sufficiently low density

of electrons the terms proportional to XoX4, XIX5 are negligible in Eq. (27) compared to X0 since they are of

order wf, (W, = 411 the nonrelativistic plasma frequency squared and m is the rest mass) and Xo is of order

w2
Wp.

Equation (27) determines the relation between the electromagnetic wave frequency w and wavenumber k.

Since we are interested in an amplifier, w is taken to be a real specifiable parameter and we look for situations

where k has a negative imaginary part. The analysis of the dispersion relation is carried out in the next section.

III. Analysis of the Dispersion Relation

In this section we analyze the dispersion relation given by Eq. (27) for various limiting cases. First, we

determine the relevant effective susceptibilities for a beam of electrons having all the same transverse momen-

tum and a "cold" distribution in axial momentum. With the resulting expressions the dispersion relation is

examined first for a low beam density and large wiggler amplitude, then for a small wiggler amplitude and large

beam density, and finally for a large wiggler amplitude and large beam density.

We take all the electrons to have the same transverse momentum with the distribution in axial momentum

being cold so that the unperturbed distribution f(O) is given by

__ 
6(p± -P~a) 6(p3 -p)

f(o) = P- p (28)
21r pL

where p = rnv7 is now the axial electron momentum and v the corresponding axial electron velocity. Using

the above expression for f(') in xo, X1, X4, X5 and integrating by parts once over momentum yields
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Q2W2J f (w2 - k2 - kko)v 2  2(w - kv - k/v)
X~ 8 [(k+Ico)v+w-w2+ (k+k)v+w.-w (29)

-W Fj 2(w -(k +ko)v) Div 2 O
2-y (k +k,)v +w. -w [(k+k.)v +w:-w 2  (3 )

-Q 2wF 2(w - (k + k0)v) - (k + k.)p 0/ pE Div 1
16y 2  (k + ko)v +w. -w [(k + ko)v + w 2

r2(w - (k + ka)v) - kp 0o/pE W 2-k kk 1 1o
IX( (31)

(k + k)v+ w. -w { k )v + w. -w1 2

In evaluating the momentum integrals we have assumed that the distribution function f(O) is more rapidly

varying than the resonant denominator [(k + k0)v3 + w, - w]'1, i.e., the width of the distribution is less than

the width of the resonant denominator which requires that the following inequalities be satisfied

r (I + v)kov + wp, (vI-o )
-- -and - > 1-- -- (32)

W WV 73 W \V P-Lo

where F = -Im k = amplitude gain per unit length, and Ap, Ap_ are the small axial and transverse spreads

in electron momenta, respectively.

Maximum gain is obtained when the velocity matching wavenumber k, = (w - w - kov)/v is precisely

equal to w which occurs when w = wm = (w, + kov)/(1 - v). With this assumption in Eqs. (29)-(31) the

dispersion relation given by Eq. (27) becomes, after some tedious algebra,

X2[(X - a/4 + (a2 /16 - b) / 2 )(X - a/4 - (a2 /16 - b)1/ 2 )] = (33)

kobQ 2  Q2b2

8wFl/2z 16

where z = (k - w)/wPF'/ 2 , a = (F1/2wp/w)(w,/vko), b = v2O/2yv 2, and Q = e6B/Ikp < 1. In

Eq. (33) we have retained only the largest coefficients of each power of x keeping in mind the assumptions

k s w >> k0, wp, w.c; k > |k - wI; vk, > w.; w., ke > wp. '[he first term on the left-hand side of Eq.

(33) is due to the freely propagating electromagnetic mode, while the square bracketed term is due to the beam

cyclotron mode with the coupling of these modes given by the terms on the right-hand side of the equation.

From the above inequalities we see that the quantity a is very small and in what follows we will be assuming

that b > a2 /16. In order to evaluate Eq. (33) we will look at various limiting cases and determine the real and

imaginary parts of the mismatch parameter z.

Case 1: In this limit we take jxI > b'/ 2 > a/4 so that the beam cyclotron mode is but weakly excited.
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Furthermore, we will assume that the beam density is sufficiently low so that IX14 > Q2b2 /16. The dispersion

relation then becomes a simple cubic equation given by

X3 w 2 = 0 (34)

The solution to the above equation giving amplification is

k - w = (Fw kobQ2)1/3 -i (Fw k bQ 2)1/3  (35)

which gives for the growth rate

1' = (FwpkobQ2)'/3  (36)

The above result has the same functional dependence upon Q, w,, k0, and -y as does the cold beam, Compton

effect, free electron laser growth rate. 4 Because of the dependence of 1 on (vwo/v) 2 / 3 which is typically less

than one, the growth rate given by Eq. (36) will be somewhat less than that for the free electron laser with the

same values of Q, w,, k, -y, unless v±O/v ~ 1. The expression given by Eq. (36) is valid only when Eq. (32) is

satisfied along with

624, F k /43 4w 1/3

>4 (3 bl/ 3 Q2/ 3 > b1/ 2 >> a/4 (37)

which is obeyed for sufficiently large wiggler magnetic field amplitudes and low beam densities. The amplification

in this parameter range is due to both transverse and axial bunching of the electrons with the axial bunching

being dominant.

Case 2: We take the opposite limit of Case 1, b/ 2 > z > a/4, with the beam cyclotron mode again

weakly excited. In this limit the dispersion relation becomes a simple quadratic given by

kQ 2  Q2bX2 + z1 +- = 0 (38)

The solution to the above equation giving amplification is

kkQ2 .FI/ 2 W[Q2b k0Q
2 )2]2

k - w = f6 2z Y 4 _ ( 8FI/2WTI (39)

Amplification occurs when the first term under the square root is dominant, which occurs for sufficiently large

beam densities and incident transverse beam velocity v 1 O. In the limit where the first termi under the square

root is much larger than the other term the growth rate is given by
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= F1/ 2wpQb'/ 2  (40)
4

The expression for r2 is valid when the conditions on allowable momentum spread given by Eq. (32) are

satisfied as well as the inequalities

1/2 Qb1/ 2  k Q2 a(41)
b >> 4 81/2wP T >> 4

In the present case, the growth rate r2 depends linearly upon the quantity wpQ whereas r, depended

upon (wPQ)1/ 3. When conditions of Case 2 apply the amplification r 2 is due to transverse bunching of the
electrons whereas r1 was due primarily to axial bunching. Note from Eq. (35) that the wave phase velocity

when axial bunching occurs is less than the speed of light in vacuum, whereas Eq. (39) shows that the wave
phase velocity is greater than the speed of light in vacuum when transverse bunching occurs.

Case 3: For this case we take b1/ 2 >> a/4 and assume that the beam cyclotron mode is strongly excited
with x s -ib/ 2 . With these assumptions Eq. (33) becomes

z 2 [z + ib1/ 2](-i2b1/2) 2 - 2b2 (42)
8F1/2wP 16

Substituting x s -ibl/ 2 for z2 appearing on the left-hand side and z on the right-hand side of Eq. (42) and
keeping the dominant terms results in

k - w = kQ2 _iF112wpb/ 2  (43)16

The growth rate is then given by

r3 = F 1/2 wbl/ 2  (44)

This expression for the growth rate is similar to that of the Weibel cyclotron instability,9 and is independent of
the wiggler amplitude 6B. P3 is valid as long as Eq. (32) is satisfied and

b3/2 > ko Q2b b512  /(!! / 2 )2
()3  >> F1/2  I / (45)3 ,/2Wl6 2

which requires a sufficiently large incident transverse velocity v_, and low beam densities. The lower bound on
Q appearing in Eq. (45) has been estimated from the requirement IXo(k + k0)| >> |X 4(k - k)| namely that
the terms in Fq. (23) proportional to the resonant denominator [(k + k)v + w, - w]~- be dominant. For
the present case the amplification is due to transverse and axial bunching of the electrons with axial bunching
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dominating. Also, in this case the wave phase velocity is seen to be less than the speed of light in vacuum as it

was for the axial bunching Case 1. Next, we will obtain estimates for the efficiency of radiative energy extraction

at saturation.

IV. Efficiency Estimates

In this section we derive estimates for the efficiency of radiative energy extraction at saturation. It is as-

sumed that the saturation mechansim is trapping of the electrons in the periodic potential wells of the bunching

wave. The trapped electrons will all be moving at the phase velocity of the bunching force (w-wc)/(k+k,) =

v. The difference in energy between the initial electron energy and trapped electron energy is then determined

by the above expression to be

JAE|= pvjAk (46)
(1 + v)k, + w(

where Ak = Re(k - w). Assuming that all of the energy loss from the electrons is converted to radiation, the

efficiency is then the ratio of AE to initial electron kinetic energy

77 = E V =|Y (47)
M(-Y - 1) (-Y - 1)[(t + V)k + Wc]

From Eq. (35) we see that the efficiency when Case 1 conditions apply is

V2 y(Fw2kobQ 2)1/ 3

?h = P(48)4(y - 1)[(1 + v)k + w(]

while from Eqs. (39) and (43) when Case 2 and Case 3 conditions apply the efficiency is given by

t2,3 = (kOQ2)
,3 16(-t - 1)[(l + v)k + w](9

It is noteworthy that although in Case 3 the gain 13 is independent of Q (and is therefore independent of the

wiggler amplitude), the efficiency 173 is strongly dependent on Q.
When -y > 1, ko > we, v ~ I it is seen from Eq. (49) that the efficiency for Case 2 and Case 3 is

772,3 = Q2/32. Since Q < 1, 72,3 are limited to values less than 3.1%. For Case 1 the efficiency is less than

or equal to 0.29 r 1/k and since r 1/ik < I the efliciency for this case will be limited to values less than 29%.

TIypically for experimentally-accessible parameters, the efliciency is expected to be less than a few percent. To

increase the efficiency it may be possible to use the various efficiency enhancement techniques suggested to

14



i.nprove the efficiency of the free electron laser such as tapering the wiggler magnet amplitude and period2 3 or

use a depressed collector 2 4 as in conventional traveling wave tubes.

V. Summary and Numerical Examples

We have given a relativistic, classical derivation of the gain coefficients in the high gain regime (rL > I

where L is the interaction distance ) for stimulated emission from a cold, pencil beam of electrons traveling

in a combined solenoidal and longitudinally polarized wiggler magnetic field. The amplification is due to the

Lorentz 0 X b or ponderomotive force inducing transverse and axial bunching of the electrons with the wiggler

magnet coupling a freely propagating electromagnetic mode to the beam cyclotron mode.

In Table 1 we summarize the analytic expressions for the peak amplitude gain with conditions on the

various parameters for the applicability of the gain expression and the saturated efficiency estimates. In Table 1,

6 = (vi.0/v) 2 /23y, Q = et5B/kop, a = (wF'/2 /w)(w1ckov), w, = eB0/-m, c = speed of light = 1, F =

filling factor, Ap, Apj arc the small axial and transverse spreads in momentum, and the emission frequency is

at the fundamental harmonic k,, i.e., w = (1 + v~h 2 {vk0 + wc]/(1 + -Y2 v02). From Table 1 it is seen that

for a given k, and b, the peak amplitude gain Pi occurs for a large wiggler amplitude and low beam density;

r2 occurs for small wiggler amplitude and large beam density; and 13 occurs for large wiggler amplitude and

large beam density. Note, however, that the beam density must remain small enough to allow us to neglect

self-electrostatic fields. Also, from Table 1 for the case when TI applies the saturated efficiency in the extreme

relativistic limit is limited to values much less than 29%and for the other two cases it is limited to values less

than 3%.

In Table II, we give numerical examples for the three cases considered in Table I and compare with the

FEL and Weibel instabilities. In all three cases we take F = 1, -y = 3, v_,, = 0.37 (c = speed of light = 1),

k, = 6cm- B, = 10kG. We also assume a beam radius of 1.54 mm which equals one Larmor radius. For the

FEL the initial transverse velocity v1 0 = 0 and the transverse velocity is imparted by the transverse wiggler

magnet. In Case 1 the beam current is I = 1A with 6B = 8.33 kG; Case 2 has a beam current I =1.41 kA

with 6B = 2.78 kG; and Case 3 has a beam current I = 1.41 kA with 6B = 8.33 kG.

Table II shows that for the given parameters the lowbitron and FEL operate at a much higher emission

frequency than the Weibel instability. In all three cases, the lowbitron and FEL have comparable peak output

power growth rates. In all three cases the momentum spread requirements for the lowbitron and Weibel

instabilities are somewhat less stringent than for the FEL. For the low density Case 1 the lowbitron and FEL

have a much better efficiency than the Weibel instability, while for the high density Cases 2 and 3 the FEL and

Weibel instabilities have better efficiency than the lowbitron.
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In conclusion, we have described the basic properties of a novel source of coherent radiation capable

of generating or amplifying electromagnetic radiation in the submillimeter wavelength range. It uses a lon-

gitudinal, periodic wiggler magnetic field which interacts with an electron beam having initial transverse energy.

This results in a frequency upshift given by Eq. (5) of the right circularly polarized wave propagating along

the guiding magnetic field. The process can be viewed as a three-wave parametric coupling between a freely

propagating electromagnetic wave, a beam cyclotron mode supported by the gyrating electrons, and the peri-

odic wiggler field . It is noteworthy that this resonant coupling requires that the wiggler magnetic field be

longitudinal. In the case of a purely transverse periodic magnetic field and a uniform longitudinal guide field,

there are no resonances whose frequency is given by Eq. (5). In this latter situation one find25 solutions

corresponding to gyrotron and Weibel modes on the one hand, and FEL modes on the other hand, and they are

uncoupled except when kov = w.

Our calculations are performed for thin, solid paraxial electron beams whose transverse dimensions satisfy

the inequality kor < 1. This gives assurance that the periodic magnetic field be primarily longitudinal and

of the form given by Eq. (1). When kor > 1, the longitudinal and transverse periodic perturbationsbecome

comparable in magnitude, and a solution to this problem becomes intractable. Of course, in experiments that

use thick beams or annular beams, lowbitron-type modes satisfying Eq. (5) may well exist due to the presence

of the longitudinal wiggler field component.

The periodic, multiple-mirror wiggler which generates the longitudinal field modulation has several ad-

vantages over the circularly polarized bifilar wigglers used in conventional FEL's. It is easier to construct, it

gives larger amplitudes, its periodicity is easily changed, and an input adiabatic field shaper is readily incor-

porated.17 ,2 2 It has also considerable advantage over transverse, linearly polarized wigglers. It is known that

in traversing a linearly polarized wiggler, longitudinal oscillations are induced in the electrons'motion which

can cause paricle untrapping2o from the potential "buckets" when the excursions become comparable with

the radiation wavelength. In the lowbitron configuration, the axial electron momentum is constant and this

difficulty does not arise.
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TABLE II.

Radiation characteristics of the LOWBITRON,

FEL, and Weibel instabilties

(for beam parameters in Section V)

Radiation Peak power Maximum momentum Saturated Saturated

frequency gain 21' spread efficiency power

(GHz) (cm-1) Ap/p APj/Po (%) (kW)

LOWBITRON (1) 260 0.031 10-3 10-3 0.1 1.0

(2) 260 0.026 10-3 10-3 0.03 428

(3) 260 0.7 10-2 10-2 0.3 4,283

FEL (1) 296 0.1 10-4 - 2 20

(2) 423 0.066 1 0 -4 - 3 42,830

(3) 296 0.95 10-4 - 3 42,830

Weibel (1) 72 0.018 10-3 10-3 0.001 0.01

(2) 72 0.7 10-1 10-1 1.2 17,132

(3) 72 0.7 10-1 10-1 1.2 17,132
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