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ABSTRACT

A retarded time superposition principle is formulated and proved for two-particle correlation function in
a 111ultispc¢ics relativistic, anq fully clectromagnetic plasma. This principle is used to obtain the relativistic
collision operator. Stasting from the relativistic Klimontovich cquation, the statistical (Liouville) average of
the Klimontovich equation yiclds an expression for the collision operator in terms of the two-time two—point
correlation function for fwo particles, Ga(1, ¢1; 2, £5). It is proved that Gia(1, ¢);2, &) can be written in a
retarded time superposition form in terms of the self correlation Wii(1, 81; 2, t3) and the discreteness response
function P(1, t;; 2, t;). The equation for the pair correlation function Glg(l; t;t, t) excluding triplet or higher
- order correlations, is thus replaced by the simpler equation for P(1, t;; 2, ). This is the test particle problem,
which relates P(1, ¢1; 2, t,) to the discreteness source term Wy (1, ¢;; 2, 3). The Equaﬁons for P(1,t;2,t;) and
WL, 52, 5) are solved for stationary, homogeneous plasmas without external fields. With these solutions,

the collision opcrator is expressed in terms of the relativistic dielectric propertics of the plasma.




I. Introduction

In this paper, the shielded clectromagnetic and rclativistic collision operator is derived for a multi-
specics plasma. The unshiclded opcrator for electrostatic interactions was first derived by Landau!; Balescu!
and Lenard® independently found the shiclded operator. In 1961, Silin* derived the collision operator for
clectromagnetic interactions. This derivation was based upon taking the nonquantum limit of the weak inter-
action approximation for one time pair correlation determined by a quantum mechanical equation previously
obtained by Klimontovich and Temko.® In taking the nonquantum limit, Silin also uscs a result obtained
by Moller8 Silin characterizes his derivation inconsistently as relativistic.. The one time pair correction that
he uses is written for non-relativistic particles (for which p = muv). It is clear that a consistent relativistic—
clectromagnetic generalization of the pair correlation should incorporate a self-consistent treatment of the
clectromagnetic ficld coupled with the relativistic particle dynamics. This leads to a retarded time reformulation
of the whole problem of calculating the pair correlations which is inherently diﬂ’crcnt- from that considered
by Klimontovich and Temko. The collision integral derived by Silin is formally identical to that obtained
in this paper, the only difference being in the way the momenta are related to the velocitics involved in the
final formula. This agreement is only superficial, because Silin’s approach is originated from a nonrclativistic
treatment of particle dynamics. It should be mentioned that there is much literature’ on the solution of the

equation for the one time pair correlation.

In a recent paper by Bezzerides and Dubois® a very elaborate approach to the relativistic plasmas was
developéd. The authors combine the Feynman-Schwinger eléctrodynamics with .the Green’s function theory
of nonequilibrium quantum statistical mechanics for treating ultrarelativistic plasmas. It is clear that quantum
effects become very important for such plasmas and thercfore that a quantum mechanical treatment should
be used. In this paper, the classical limit of the collision term reduces to that given by Silin in addition to
non-adiabatic correction term, which becomes important in the case of unstable plasmas modes or for very
small plasma emission and absorption rates in the collisionless limit, The Bezzerides and Dubois treatment of
the non-adiabatic correction is, however, based on an ansatz. This ansatz is used in deriving the equation for
the contributions to the degree of excitation of the fields in excess of the adiabatic limit. The model is linear
in the sense that it ignores possible coll.sional modifications of the non—adiabatic contributions. The authors

clearly state that an accurate evaluation of the validity of the adiabatic limit requires a collisional treatment of




the damping of the non-adiabatic fluctuaticns. The decoupling between collisional and non—-adiabatic effects,
which is introduced by this ansatz, leads to a collision integral separated from the non-adiabatic contribution,
in the source term of the covariant kinctic cquation. This is in favor of the idea that a quantum clectrodynami-
cal treatment of the ultrarclativistic cicctrons, excluding the non-adiabatic contribution, could be simpler, if
necessary, leading to the result that Silin heuristically derived. Whether or not a relativistic analysis or, to what
extent, a lincar treatment of the non-adiabatic cont.ribﬁtjons should be appropriate is still, to the extent of' our

knowledge, an open question.

Beliaev and Budker,? and most recently chstcin,10 derived the collision integral for relativistic and

clectromagnetic plasmas in cases where screening cffects could be ignored.

In the present paper, we clarify some of these issues using a classical approach. The main point is the use
of the “superposition form” for the pair corrclation function. This idea was introduced 'by Rostoker.'! In this
paper, Rostoker’s result is generalized to include retardation effects and then the validity of the generalization is
proved for a multi-species plasma. The proof does not assume the exclusion of external fields, inhomogeneities,
and non-stationary bchavior, as long as this inclusion conforms with the truncation of thé hierarchy of the
kinetic cquations, i.e., the exclusion of triplet higher order correlations. It is not, however, the purpose of the
present paper to pursue this question of consistencys; it is rather td dcnonstrate how the collision integral can
be derived on thesc generalized, but still classical, 'grourllds for thc case of an infinitcly extended homogencous,

external field free and stationary plasma.

In Section 11, starting from the microscopic Maxwell-Klimontovich equations, the electromagnetic interac-
tion is formulated in terms of the retarded Green’s functions G(r, p, ¢; 7, ¢/, t/). The six dimensional pair (r, p)
corresponds to a point of the relativistic phase space and p is related to the velocity » and the rest mass in the
usual manner p = myuy = (1 — 23", and §? = 22 The retarded formulation expresses the fact that the

particles correlate with each other through retarded electromagnetic interactions.
\«

To find the collision integral two point correlations must be computed. In general, such correlations are
linked by an infinite hierarchy of e.quations to three and more point correlations. In the quiescent plasma
theory; this hierarchy is truncated by an expansion in the discreteness parameter and triplet or higher order
correlation are ignored. This procedure is followed here so that a closed hierarchy »f equations is obtained for

the one particle distribution functions, the two point correlation functions, and the two point self correlation




functions. The latter additional- function is a consequence of the retarded time formula‘tion and cxpresses the
probability of finding the same particle at two different positions in phase space and time. For well-defined
particle orbits, the sclf correlation functions is an irreducible physical quantity. This irreducibility property is
the result of the mutual dependence of the relativistic particle dynamics and the space and time cvolution of
its own clectromagnetic ficld. The two point correlation function, on the other hand. correlates two different
particles at two different positions in phase space and time. The two time character of this function is a result of

the finite speed of propagation of the interactions.

In Section 111, the statistical apparatus needed to compute the observable quantities is developed. These
quantities have to be ensemble averaged over all possible microscopic particle m’bité. To formalize this average,
Liouville functions are used. The one time Liouville functions for one or more specics are defined. The two
points and two time kinctic functions are also required because of the retarded character of the interaction.
Therefore, the two time Liouville functions for one or more species are defined and related to the one time

Liouville functions in the equal time limit.

The Liouville functions are used to carry out the ensemble average, denoted by brackets (<C>). The
averaged one point distribution for species a is then denoted by f,(r, p,t), and is defined as < Fiq(r, p,t) >
, the enscmble average of Fyo(r, p, t), the Klimontovich function for N, particles of species a. 'ljle two
point functions come from < Fnq(r, p, t)Fns(?, ¢, 1) >, the ensemble average of the prpduct of two
Klimontovich functions for species a and 8; here (r,p,t) and (7, p,t), are, in general, two different
phase space and time points. This last averaged product expressed in terms of the two point-two time cor-
relations Gug(r, p,t; 7, ¢/, 1) and the two point-two time sclf correlation W(r, p, ¢; 7, p/,t). The function
Gap(r,p, t; 7, P, t') refers to two different particles of species a and 8, (a could be the same as B) at phase

space-time points (r, p, t) and (¥, p, t).

The function Wy(r, p, ¢; 7P/, t') accounts for the possibility of looking at the same particle orbiting between
two phase space-time points and interacting with its own electromagnetic ficld. The collision integral is ex-
pressed in terms of those correlations. This resulting expression is correct to first order in the discreteness

parameter.

Finally, in Section I1I, the closed system of kinetic equations is obtained. It contains the cquations for one

particle distribution for f(r, p, £) where the collision integral enters, the two point correlation Gop(r, p, t; 7, 9/, '), -
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the equal time two point correlation g,s(r, p, t; ¥, P, t), and for the sclf corrclation Wy(r, p, t; 7, p/,t). The

cqual time conditions are included as boundary conditions.

The superposition form for G.5(r, p, ¢; 7, p/, 1) and correspondingly for Gug(r, p, t; 7, P, t) is introduced

in Section 1V, and is

¢ '
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where V is the volume of the system and n., the average density for the species 4. This form decouples
the kinctic cquations. The new function Pog(r, p, t; 7, ¢/, t'), the discreteness response function, describes the
shielding of a test particle of specics a at the point (r, p, t) by the response of a field particle of species 8 at the
point (¢, ¢/, t/).

The physical meaning of the P,4(r, p, t; ¥, ¢/, t') function and the derivation of the equation it satisfies are
considered in Section V. In this section, the plasma is taken to be homogeneous and stationary; the external

Jfields are also excluded. Under these ‘conditions the cduation satisficd by the discreteness response function

Pos(r, pt; 7, p, t') becomes very simple in form. It is then proved that the distribution function perturbation
of a Vlasov plasma made of species @ induced by a discrete test particle of species 8 can be expressed as the
time history integral of the function Pog(r, p, t; 7, 9, ¥').

In Section VI, the collision integral is formulated in terms of the discreteness response function Pg(r, p, t; 7, ¢/, ')

and the self correlation function Wy(r, p, t; 7, P, t'). This reduces the problem to a much simpler one where

only the equations for Pys(r, p, t; ¥, ¢, t') and W,(r, p, t; ¥, p/, t') must be solved.

In thé solution for Pag(r, p,t;7, ¢/, ') two additional physical quantities are introduced. These are

ﬁap, k.(p) and Jaﬂ’ kw(P)' the density and current perturbations, respectively, induced by discreteness. These

quantities are related by
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where the subscripts k, w are the Fourier and Laplace transform components in r and . These quantitics obey a

continuity equation which greatly simplified the form of the solution for Pa/,, k,w(p(, P).

In Section VII, the current pcrturbation‘l,;, is related to the dispersive propertics of the medium charac-

terized by the tensor Zk,w' This tensor is related to the diclectric tensor e kw byl

ka . A'k.w =1 (3a)

and

k*?, .~ kk, ’
Ak'w .E Ck'w —_ 7([‘—' p) : (3b)

where [is the unit tensor. The diclectric tensor € is the relativistic electromagnetic one. Finally, the collision
intcgral Co{fa(p.)) (which determines the rate of change of the distribution function of specics a) is expressed

in terms of the tensor Z and the distribution functions of all the species. It is given in Balescu-Lenard form as

‘ ‘ ok vy — k-
Ca(ﬁ)(l’u)) = ;mﬁq%nﬁdl /dapﬁfdak ( (';c ”a)4 vﬁ)

195 - Z .o, - 0al*kk (Sp, — B, ) 5(Po) (o) (4)

where q,, g3 are the charges for species a and 8. Once this collision integral is in generalized Balescu-Lenard
form, its conservation properties can be easily demonstrated. This form of the collision integral is also manipu-
lated into another form and it is also shown how it reduces to the form derived by Belyaev-Budker and

Bernstein in the absence of shiclding.

Finally, in Section VIIL, the results obtained here are summarized and the significance and application of

these results arc discussed.




It. The Microscopic Formulation of the Flectromagnetic Interaction Operator

The microscopic dynamics of the system is devclopcd, on the basis of the single species Klimontovich
function. The internal clectromagnetic forces are expressed in terms of the poientials which are, sclf-
consistently and causally, related back to the particie dynamics they determine. This is done using the retarded
Green's function which solves the inhomogencous wave equations for the potentials. The sclf-consistent force
term in the Klimontovich cquation is finally expressed as an integral over all specics and all particle orbits in
phase space and time of an operator acting on the Klimontovich function. This clectromagnetic interaction

operator is related to the Green’s function.

The Klimontovich function Fi(r, p, t) completely specifies the microscopic state of a system of particles

of species a

FNa(* 1 t) = FNQ(T: 1 {%a(t } t) == 25 'm(t 6(p pm(t)) (5)

a—-l

where n,, is the average density at specics @ and N, is the number of particles of species @. Here, {%(t)}
denotes the phase space orbits of all particles of specics a and 7,;(t) and p,;(t) are the position and momentum

orbits of the ¢-th particle of species a.

The Klimontovich function obeys the equation,

”XQ<%nmum-o (6

where the notation is that a number by itself denotes the corresponding phase space point

[dl + Lu(l tl) + qa(

1= (r,p) (7)

The operator Ly(1,¢;) includes part of the unperturbed orbit operator and also accounts for the ac-

celerated motion due to the external fields

p1 X Bexi(n, t)
O + | Bl ) + | g, ®)

MaYal mMaYalC
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Note thatd, is the partial derivative 5% and &, is the gradient operator V, e and b arc the clectric and mag-
netic microficlds, respectively, and the prime in Eq. (6) denotes the exclusion of the scif-force. The microfields

obey Maxwell’s cquations

& b=0 (9a)
- e=4T ) daNa / Fnad’p (95)
1 '
a’ X e== —zab (90)
1 4 oMo
S e ; %—:7 / %Fwadap | (9d)

Using the Lorentz gauge, the microfields can be expressed in terms of the salar potential ¢(r, t) and the

vector potential a{r, t)

e=~d¢——i—da - (10a)
b= Xa _ (100)

By virtue of Egs. (9) and (10) ¢ and a satisfy the following equation

6 — :—23?')¢(r, t) = Znoqa[ / Inalp, 1, 8)d%p — 1] (11)
(62—-1-32)a(rt)=§:%/ Ly (.rt)d3 (12)
r o2 t ’ -~ P MaYo Nalp T, p

These inhomogenecus wave equations are solved using the Green’s function,




st —t 4 =0

(13)

where the retarded solution is adopted to enforce causality. The microficlds, their gradients, and their time
derivatives are assumed to be zero on the boundaries of the system and in the infinite past. The microfields are

then expressed in terms of G so that the Klimontovich equation becomes

_ .
A1+ Lo(1, 41) '—'2/42/ dtaFnp(2, ta)Vas(L, 815 2, &) [FNa(L, t) = 0 (14)
p - ’

where
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This operator V, describes the electromagnetic effect of a particle at (2, £2) on a particle at (1, ¢;). In the
limit ¢ — oo only the first term on the right side of Eq. (15) contributes, and accounts then for the electrostatic

interaction.




II. The Kinetic Equations

The statistical apparatus, which provides the link between the microscopic description of the previous
section and the macroscopic description is developed here. The local observable macrb.scopic quantitics in
phase space and time are obtained as cnéemblc averages of microscopic dynamical quantitics over the whole
* N-dimensional space where a one time Liouville function is postulated to exist. The non-local macroscopic
observables involving two phase space points are also expressed as cnsemble averages of products of micro-
scopic dynarhical quantities via thé same one time Liouville function. This function provides performing the
appropriate integrations, the most restricted Liouville functions for one or more specics. The retarded character
of the interactions creatcs non-local correlations in phase space and time which arc expressed as ensemble

averages of products of microscopic dynamical quantitics via a two—time, two point Liouville function.

This statistical apparatus is now used to develop a hicrarchy of cquations for the one species distribution
functions and the two~time co.rrclations of every order. The hierarchy is truncated to form, along with the cqual
time conditions, a closed system of equations. This is done.by dropping triplet and higher order correlations.
This truncation is based on the smallness of the plasma discreteness paramcter and it 1s appropriate for studying
quiescent plasmas, although the external fields, inhomogencities and non-stationary bchavior are being kept

throughout, for the sake of generality.

The Klimontovich function is broken up into average and fluctuating pieces. Thus -

Fno(r, p t) = for, p,t) + 6fna(r, p, t) (16a)

where (as discussed previously) f(r, p, t) is

L(npt) =<Fna(rpt)> (160)

To formalize the average, the one-time Liouville function D;({%}, ) is introduced. Here {%} is

(B} ={la,2a- - Ny 13,25, .. s N, 1, 24, .., Ny -} (17
the set of all the phase space points of all the particles of all species a, 3, ~y, etc. Then, Dy({%} ; t)d{%} is the
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fraction of systems of all the particles in the statistical cnsemble which are in the phase space volume clement

d{%}

d{%} = d1,d2,.. .dN,d15d2s.. dNpd1,d2,.. .dN,... (18)

about the phase space point {%} at time ¢.

The one species, one-time Liouville function for specics a is defined as

Dia({%a},t) = / d{%;} / d{%.} / ...Dy({%}, 1)
8,7 ... #a) (19)

Similarly, the two specics one-time Liouville function is obtained by integrating the Liouville function

overall species expected,

]

Dyop({%a}, {Fs}, t) = / d{%.} / d{%s} f ...Dy({%}, 1)
' (1,6,... 7% o, p) (20)

The Liouville functions are used to effect the ensémble average of microscopic dynamical quantities. In

, &encral, a microscopic dynamical quantity A is of the form A(r, Pt {%5(t)}), so that the value of A measured
depends on the phase-space-time point of observation (r, p,t), and on the phése space positions of all the
particles in the system, {%(¢)}. The cnsemble average of A(r, p, t; {%(t)}) i.e. the corresponding observable

ficld in physical space-time, is then defined as

< Alr 5 50N >= [ ASIDEY, DA, p, 50N e

Applying Eq. (21) to the Klimontovich function, Eq. (5) yields

< Fno(l,4) > =< Fnolr, p1, 8 {B(8)}) >

p—l V/ d2ad3a. . .dNa.D]_a({l, 2('" 3a’ . -Na}: tl)
1 .

= J:l ;tl) (22)
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where V is the volume of the system.

To evaluate the ensemble average of §Fna(L,1)6FNa(2,t2) a two-time, two-point Liouville function
Do({%},¢; {%},t) is necded. Dy({%B}, ¢; {%'},1')d{B}d {B'} is defined as the fraction of all particle systems
in the ensemble which arc in the phase space volume elements d{%} about the phasc space point {%} at time

t, and in the volume clement d{%'} about the phase space point {%'} at time £. In the cqual time limit (¢ = t')

Dy({®},£;{%'}, 1) = Dy({%}, 1)6({ B} — {%}) (23)

where

s — @)= [ TLotrs— 7 lps— o) )

i=a,B,7,... j==1

Eq. (23) just expresses the fact that a system cannot be at two different places in the generalized 6N
dimensional (N = ) N,) phase space at the same time. The two-time, two-specics Liouville function is

defined as

Dt 55,0 = | ). [ a0t D (3,0
| (05, £, O

Note that @ could be the same as 8, (a = ,6) in this definition (in that case, Eq. (25) defines the two-time,

one-species Liouville function).

In the equal time limit (¢ == t'), Egs. (25), (20), and (23) yield for unlike species (a 7% 8)

D2aﬂ({%a}»t {% }:t) _‘Dlaﬂ({%a} {% } t) (26)

and for the same species (@ = B)

Daao{%a}, t; {BL}, £) = Dia({Ba}, )5({Ba} — {BL}) (27)

The ensemble average of the product of two observable quantities A(r, p, t; {%(t)}) and B(r, p, ¢; {%'(¢'}})

can then be defined as

12




(Als 8 (SONBLY, 1,85 (50N = [ BIFIDEY, 6 (1,0
. Al {SONBY, B, {BE)) (28)

This definition must now be applied to the products Fio(1, £)Fns(2, t2) and §Fn (1, t1)0FN3(2, ) to

compute the collision integral.

A. Unlike Species,a 7%

Using Egs. (28), (25), and (5),

< Fo(X, )Fnp(X ) > = V2 / d2,d3,. . AN, / d2,d3,. . AN,
' D2nﬂ({X; 2a; 30; [T Na}: t; {X,; 2Ip: 3 ety ;i}: t,)
= f.5(X, t; X', t') | (29)

where, f,5(X, ¢; X', t')dXd X" is the joint probability of finding a particle of specics a in dX around X at ¢ and
a particle of species 8 in d X’ around X" at #'. This function can be expanded as the sum of the product of one

point functions plus an irreducible part which is the two point corrclation

(X, 8 X, V) = £(X, ) fa(X", 8 + Gog(X, t; X', 1) (30)

Egs. (16), (29), and (30) imply that

Gaﬁ(X, t; X’, t’) == 5FNQ(X, t)(SFNp(X,, t') > (31)

In the equal time limit (¢ = ¢'), by virtue of Eq. (26)

< Fno(X, t)Fnp(X',t) > = V? / d20d3,. . .dN, / d2d3;. .. dN
- Drap({X, 203a. . No}, {X', 2,35 N}, 1)
= f.5(X, X";t) (29')

13




where f,5(X, X’; t) is the one-time, two particle distribution which can be expanded as

faﬁ(Xr Xl; t) = fa(X: t)fﬂ(x’: t) + gtlﬁ(X) Xl; t) (30,)

so that g3(X, X"; ) is the onc-time corrclation, which is the cqual time limit of Gug(X, t; X7, t')

lim Gop(X, & X',8) = gop(X, X58) (31')

B. Like Species,a = )

Using Egs. (28), (25), (16), and (1) yiclds

< 6FNolX, I FNS(X", ) >= NI-WQ(X,’t; X', 8) 4 Gool X, & X, ¥) (32)
. {+3

Here the function W,(X, ¢; X', t') is defined by

Wa X, t; X', ) = V2 / dl,. . .d(i — 1)od(i + 1)a.. AN,

’ / dl’...d(j — 1),d(G +1),.. .dN*a
Droo({1a...(t — oy X, (¢ + Ve .., No},
(.. — D, X, 6+ 0, X, G+ 1...,... N}, E) (33)

Physically, Wy(X, t; X, t’) is the sclf-correlation which gives the probability that the same particle is at the
point X at time ¢ and at point X" at ', The second term in Eq. (32) accounts for the correlation between two

different particles of the same species.

In the equal time limit the Eq. (27) is used instead of Eq. (26). Using Eq (27) in Eq. (33) then yields

WalX, 5 X', 1) = VA(X, 06X — X) (34)
Eq. (32) becomes

14




< 6FnalX, O6FNa(X!, 1) >= ;11. 10, 60X — X') 4 gaalX, X'58) (35)
'Q

This completes the formal cvaluation of Liouville averaged products of fluctuations. The results may be

summarized as follows

I
< 6F (X, )0FN (X', ) >= Gog(X, ; X', V') + N@w(,(x, £ X', t) (36a)
Jim  GaglX, X, t) = guplX, X';t) (36b)
Llim WalX, X, ¥) = VA(X, 65X — X) (36¢)

where 8, is the Kronecker delta.

The Liouville average of the Klimontovich equation can thus be evaluated, using Egs. (36a)~(36b), and is

13 ‘
[dl + Lo(Lt) — ) / d2 / dt;Vap(1, 1; 2, 82)f5(2, t2)]fn(1; t)
) —o0

ty .
= 2/(12/ dtzVaﬁ(l,t1;2, tz)[Gaﬁ(l,tl;2,t2) + %EWO(I,tI;Z tz)]
8 —00 a
= Gi{L,t) | (37)

This equation is correct to all orders in the plasma discreteness parameter. The quantity C,(1, ¢;) is the
collision integral for species a. The functions fo(1, 1) and f3(2, t2) in Eq. (37) can be replaced by Fy (1, t;) —
8Fna(L, ) and Fno(2, t3) — 8FNa(2, t2), respectively. Multiplying both terms of this cquation by 6Fn (3, £3)

Liouville averaging and dropping the triplet correlation, yields the equation for the evolution of Gop(1, ¢1;2, &)

t
-+ ML tIGos(L 52,0 = 3 [ a3 [ (53,1
i
)
[Gﬂ’)‘(2) t’l; 37 t3) + Nﬁﬁwﬁ(z; t2; 3; t3) ﬁz(l; tl) (38)

15




This equation is correct to first order in the plasma discreteness parameter. The operator My(1, ¢) is

defined as

. .
Ma(l, tl) = La(l, tl) - E de/ dtzv,,,,(l, tl; 2, t2)fg(2, tz) (39)
3 —00

The operator My(1, ¢;) contains the effects of inhomogencity and non-stationary behavior, which are not

included in L,(1, t;). -

The same technique is also applied in obtaining the equation for the cvolution of gus(1, 2;¢1). Replacing
Jof1, t1) and f5(2, t2) in Eq. (37) as before by Fa(1, t1) —6FNa(1, 41) and Fin (2, &) —6Fn (2, 2), multiply-

ing by 6F . (3; t1) and continuing as before, taking into account Eq. (31c), yiclds the equation for 905(1, 3; t1)

B Mlh, 00+ Mo o1, 2 = 35 [ a3 [t
)

0,
Gﬂ"l(zy tl; 37 t3) + _lsgwﬁ(zl th 3; t3)]va'1(1) tl; 31 t3)fa(1; tl)
6,
+ l:Ga"l(ll tl; 3, t3) + "jslwa(ly tl; 3) t3)jlvl3'7(2t ti; 3: t3)fﬂ(2l tl)
a

.
— 81— )1, + Malt, )L, 1)} (40)

which is also correct to first-order in the discreteness parameter.

To complete the system of kinetic equations, the equation of evolution of the sclf-correlation is needed.
The collision integral is here calculated to first order in the plasma discreteness parameter and therefore both
Gas(1,t1; 2, ) and M‘—)%’—g—ti) are required to first order, so that, W,(1, t;; 2, {o) itself need only be correct to

zero-th order.

The equation which Wy(1, ¢;;2, ;) satisfies can be obtained most easily by introducing one-particle

Klimontovich function for species a

Fio{X,t) = §(X — X14(?)) (41)
where X ,(¢) is the particle orbit in phase space.
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This micfodcnsity clearly satisfics

¢ -
a+Lx,) =Y / XA Fs(X"E)WVas(X, 4 X" 47 |[FLo( X, £) = 0 (42)
ﬂ -—00

- Summing Eq. (42) over all N, particles of species a yiclds the N, particle Eq. (5). Multiplying Eq. (42) by

Fio(X’, "), Liouville averaging and dropping terms of order §Fiy, yiclds

B+ Mu(X, )] < Fio(X, )F1a(X', 1) >=0 (43)
Noting that
- 1
< Fio(X, ) Fo(X, V) >= -V—zwa(X, t; X', t) (44)
then implies that
H + My(X, t)]Wa(X, t; X', tl) =0 (45&)
and, in a similar manner
ki,, + My(X', t’)]Wa(X, LX) =0 (45b)

Equations (37), (38), (40), (45), and the equal time condiﬁons (36b) and (36c) form a closed system
of kinetic cquations whose solution is extremely complicated because of the coupling of Gag(1, £ ;'2, tg) to

gaﬂ(l; t]} 2) tl) and vva(-ly tl; 2) t2)'
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IV. Superposition Principle

In this section the superposition form for the pair correlation functions Gag(1, t1; 2, t2) and 9a5(1, 2; 4;) is
formulated and proved for a multispecies plasma. ‘The use of this form decouples the cquations derived in the

previous section and reduces the problem to solving two relatively simple and uncoupled equations.

The two-time pair corrclation G,(1, t1; 2, t2) can be written according to the superposition form as fol-

lows

-
Gop(1,t1; 2, 8) = -l‘/d3/ dtsWo(L, t5; 3,13)Pap(2, t2; 3, 13)

+ /d3 dt3w[3 2 t2,3 t3)Pag(1 t1,3 t3)

VZn,,/d3/d4/ dty [ dt4

.,(3, 13; 4, L4) Pas(t, t1; 3, t3)Pp-7(2, t2; 4, t4) (1)
where P,5(1,¢); 2,1,) is a discreteness response function. (wa equal time limit of Eq. (1’) gives the correspond-
ing superposition principle form for gas(1, 2; t).) The properties of P,g(1, ty; 2, t2) will be closely examined in
the next section. This superposition form satisfies the equations of evolution for Ga(1, t1; 2, t2) and gas(1, 2;t)

if Pog(1, t1; 2, t2) obeys the following equations

{8, +8, + Ma(1, 1) + Ms(2, 1)} Pas(L, t1; 2, t5) (46a)

1.
= s ap(l t1; 2, ta) a1, t1).

Pag(l, t1; 2, t2) = (fort; < &, (46b)

where

Vas(l, t1;2,8) = Vag(l, t1; 2, )

)
+ng) f d3 /tz dtsPy5(3, 13 2, t2)Var (1, t1; 3, 83) (460
2]
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The first term on the right-hand side of Eq. (46¢) is the "bare” electromagnetic interaction operator defined
in Scction 1. In P,a(L, t; 2, t) the labels (1, £,) and a correspond to a particle of specics a at the phase space
~ point 1 at time ¢, interacting with a particle of specics 8 at the phase space point 2 at the time ¢ which
corresponds to the labcis (2,t2) and B. PurLiclg:s of every specics shield each of these particles, affecting the
interaction between them. The labels (3, 83) and «y in Eq. (46¢) correspond to such shielding particles of specics
~. Summing over all species and integrating over their phase space position and over the time integral £ to
t, thus provides this additional shiclding effect which modifies the bare clectromagnetic interaction operator
Vas(l, t1; 2, 1y) yiclding ﬂ1e shiclded operator V,,,,(l, t; 2, 8).

To prove the supcrposition form for Gup(l, 442, 1), Fq. (1) is substituted in Eq. (38), which yiclds the

following cight terms

A E—‘!/—/d3Wﬁ(2, ty; 3, tl)Pog(l, t;; 3, t[) ' : (47(1)
t;
Ag Eézn,, / d3 / d4 [_ bW (3, 1 4, ) ATH)P(1, 1133, ) Pon(2, i 4,00 (47b)
ny . v
1 &
ar= (a3 [ ansa, + Mot 00} Puglt, 3, W2, 53,1 (47¢)
oo :
. £ ta .
A=Y n, / d3 / d4 / dty / W3, 1334, E)Pas(2, b; 4, ta)
|4 " —0 —co
{81+ Mo(1, 4))} Por (1443 3, ts) (41d)
ty
As=— / d3 / dtsVas(L, 13 3, t3) w,,(z ba; 3, ta)falL, 1) (47¢)

Ae——-E / d4 / dt, / d3 dt3V051t1,3t3)ﬁ,(1 tl) Wis(3,t3; 4, 84)Pas(2, ta; 4,ta)  (471)

A= —E [ d4 /__ dty / d3 / dtzVas(L, t1,3 )AL B2 wﬁ(z ta; 4, t)Pss(3, b3; 4 t))  (47g)

EZ/ﬁ/h dta/d4/ dt4/d5 _dts

Vaoll, 153, 6l 1) W4 (4, 65, 6)Pn(2, i 4, £4)Por(3, 55, ) (47h)

where the sum of them, A -+ A2 + . . . -+ Ag must be proved to be zero. Noting that the electromagnetic inter-

action operator operates, through its first label, on the momentum coordinate of its operant [see Eq. (15)] and
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that the M operator operates, also through its first fabel, on the spacc coordinate as well as on the momentum

coordinate of its 6pcr:mt (see Eqgs. (8) and (38)), and using Eq. (46), then yiclds

A = — é/dBW,g(?, ty; 3, tl)R)ﬂ(l,tl;B t1)

a[i(l t173 t3) : '
v d3 MM@ZQ?Q%-;— (L, ) (4T)

Adding Eq. (47a) to Ay, As, and A7, gives

p 1 l a
Al +A3+HAs A= V/dB/dta—ﬁ;Wp(th; 3, t3)Vas(l, ti; 3, 3)£u(1, £1)

1/ f‘ 1 . }
v [ 48] d Wal by 3,t3){Vaﬂ(1,.t1,3:t3)+nﬁ§6:

t) ) .
/d4[ disVes(1,t1; 4, ta)Psp(4, 14 3, t3)}a(1,t1) (477)
3

which is identically zero by virtue of the definition of the shielded clectromagnetic interaction operator (46b).

Therefore

A+ As+As+ A7 =0 | (47k)

Applying the same facts to the sum Ag -+ A4 - Ag - Asg yields

Ay +As+ Ao +As = Z"”’/‘M dts
Pﬁ’v(2, t2; 4, t4){Al +A3 + As + A?} (47[)

which is zero by virtue of Eq. (47k). Thercfore

A+ A+ ...+ A+ Ag=0 : (47Tm)

which proves the superposition form for Gag.

20




The superposition form for g,3 must now be proved. Substituting q. (1') in Eq. (40) yiclds the following

o= [ 431, 3500 P2, 310)
w2 =5 [ d3Ws(3, 152, t)Pa(l, b3, 1)
ny " -
N3 == Z —_— /d3/d4/ dt3W—7(3, t3; 4, tl)Paq(l, tl; 3, t;g)Pﬁq(z, tl; 4, tl)
y

a4—-2 / d3 / d4 dt,w.,(s b 4, E)Par(L, b 3, £0)Par (2, b1 4, £2)

5 == o L /d3/ dt;; a(l t1,3 t3){(9¢ +Mﬂ(2 tl)}Pﬂa 2 t1,3 t3)

/ d3 / dt;Ws(3, t3; 2, UG, + Ma(L, 1)} Pap(1, £1; 3, 83)

Ill

t ty i
ar = Z %/d:;/d‘i dtg/ dt4W.,.(3, t3; 4, t4)Pﬁ.7(2, tl; 4,t4)
—00 —00
”
@, + Ma(lv t1)}Par(1,11; 3, ts)
a7 = Z v / d3 / d4 / dts | dt4W,,(3 t3; 4, t4)Par(L, t1; 3, 3)

{5:1 + Mp(2, 1)} Ps~(2, b1; 4, L)
Wa(2, tr; 3,5)

3]
ag = _2 / d3 / dt3Vea(1, 1,3, t3)fu(1, 41 )8 ——55

: 31 ‘ . i3
Ca=-Y o aven s onend faf a
- . vl

Ws(2,t1; 4,t4)P.5(3, t3; 4, L4)
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am——Z/dB/tl dtVan(1, 1533, ta)fo(L, 1) 5 /d4/ dty,

W,(4, t4; 3, 13)Ps-(2, t1; 4, 3)

4 . el t3
ayy = -Z‘/daf dt3Vor(1, 1 3, ts),:,(l_,tl)zfvé/M/ds/ dt4/ _dts
- oo : - oo V)

- Ws(4, ts; 5, t5)Pas(2, t1; 4, t1)Pys(3, t3; 5, 15)

b . ba
ayy = —_2 / d3 / dt3Vay(2, t1; 3, t3)fa(2, t,)-lwa(l, t); 3,t3)

4 .
a3 = —’Z/d3/ dt3Vp7(2 t1,3 t3 f[j(2 tl)V/d4 dt4

Wall, b1, 4, t9)Pya(3, t3; 4, £9)

4
ayy = —2/d3/ dthﬁ7(2 t1,3 tg)fﬁ 2 tl) /d4 dity

W. (4 t4; 3 ta)PQ',(l t,l; 4 t4)

4
a5 = —Z/d3 / _9tsVan(2, 43, 15)/(2, tl)E v /d4/d5/ dts | dt5

w,;(4 ts; 5, t5)Pas(L, ty; 4, £4)Pys(3, t3; 5, t5)

‘where the sum of the a,’s must be show to be Zero.,

By taking the equal time limit of Eq. (47m), it is immediately clear that

0+ a3+ ao + 071 + as + 6y -+ aro ++ a1y = {A1 + Az + ...+ A7 + Aghymyy = 0

and also that

a1+a3tas+antaztaztastas={A+A+...4+A47+A4g}1=0
where the notation 1 ~ 2 means that the indice_s 1, 2 have been interchanged. Therefore
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(48k)

(481)

(48m)

(48n)

(480)

(48p)

(48¢)

(48r)




atat..astas=0 (48s)

which proves the superposition form for g, (1, 2; ¢).
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V. The Discreteness Response Function

The physical interpretation of the discreteness response function Pog(1, ¢1; 2, £2), will be examined in this
scction. As well as in the preceding sections, homogencity and stationarity are assumed for the system and

cxternal ficlds are excluded. Under these assumptions, Ly(1, ¢1) and M,(1, ¢;) simplify to

M1, t)) = Lo(L, t)) = —,;fg— O | (49)

ay

Consider first the Viasov limit of a multi-species plasma, so that Eq. (37) reduces to the Vlasov cquation

8,+ -G, — 2 / d2 / dtaVes(L, t1;2, ) 3fs(1, 8) = 0 (50)

MaTYa,
The distribution function response for the species a (or 8) induced by a test particle of species s, is now
derived. Expanding the distribution function around its equilibrium form (the medium is homogeneous and

stationary) yields

11, ) = Folen) + 8anll, 10, 8) + 61 — 7} Q)

The first term accounts for the cquilibrium distributioﬁ function. The second one refers to the distribution
function perturbation due to a test particle of species s whose initial position and momentum at time ¢, denoted
by 0, and whose current position in phase space is denoted by 7. The third term accounts for the contribution to
the distribution if the test particle happens to be of the species a and at the phase space position 1 at the time ¢;.
Note that these last two terms are first order in the discreteness parameter. Substituting Eq. (51) in Eq. (50) and

dropping terms of second order in the discreteness parameter then yields

oo

}6]},8 1, t;0,t,) = Z / d2 / dts8£54(2, 12; 0, to)Vap(L, t1; 2, t2)F o(21)

1 : .
o ; ng /d2 /dt25(2 — 7)05Vap(L, t1; 2, 2)f (1) (52)
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The perturbation induced in the distribution function by the test particle can also he formally expressed as

]
6fns(l; tl; 0; to) = / dt-T ]_—_[(1; tl; T, t’l‘) ' (53)
o aT ' )
where
[Tt r ) = _.‘Lafm(l tyrtr) | (54)
aT dtT ? . LA |

Physically, this expresses the fact that the test particle interacts over its whole orbit history with the specics
a, inducing a rate of response in £, given by the quantity Ha (L, t5; 7, t7). Substituting Eq. (53) in Eq. (52) for
612 and 6 f3, then gives

(a,+ q) / dtrpH(l t; 7, tr) = 2 / d2 /h dtr / tldtz]](2 ty; 7, 1)

Vas(l, t1; 2, 82)7.(p1) + 7:3 dbrVeo(L, b 77)F (1) (55)

—0

Taking into account Eq. (46¢), Eq. (55) can be rewritten as

t
/_ dty [(c?,l +4, 4+ - 7 X s - 7 - &) H(l, ty; 7, tr)
Vaa(l; tl; T, tT)_
— T 0] =0 (50)

which is true for arbitrary value of t; and so implies that

@, +4, + &+ ;n#’% - Oy} g(l,tl; rtr)

ma'Ya

Vas(ly tl; 7, tT)_
——————— (1) (57)

I

Ng
Comparing Eq. (57) to Eq. (46) then yields, by virtue of Eq. (54)
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d
I)aﬂ(-l; tl) 2) t2) == —dTg(Sﬁlﬁ(l’ tl; 2; (tl)t2) : (58)

which says that the discreteness response function Pag(1,1; 2, t2) can be identificd as the total rate of change of
tlie perturbation of the equilibrium distribution function of spccies a at 1 at time ¢y, induced by a test particle
of species @ whose orbit is 2(f2). The total time derivative d /dt is cquivalent to the time derivative in the test

particle rest frame,

VI. Solution of the Kinctic Fquations

The collision integral is expressed in terms of the discreteness response and sclf corrclation functions.
These functions satisfy relatively simple and most important, uncouplcd equations of cvolution in the absence
of external ficlds, inhomogencitics and non-stationary behavior, The time evoltution of the sclf corrclation func-
tion involves causal and. acausal propagators. The solution of the equation for the discreteness response function
is facilitated by utilizing a continuity rclationship between two of its mofnents, i.e., the density and current
response functions induced by discreteness. The discreteness response function is, however finally expressed

in terms of the induced current response function but this is preciscly the form which will be used in the next

scction for the calculation of the generalized collision integral.

Substituting Eq. (1) in Eq. (37) yields for the collision integral

th :
Ca(lr tl) = Z Niﬂ' /d2/ dt2vaﬁ(1; t1;2, t2)[6aﬂwﬂ(1’ t1; 2, tZ) ,
) —o00

]
+np/d3/ dt3Pag(l,t1;3,t3)Wp(3, t3; 2, t2)] (59)

The first term accounts for the contributions to the collision integral due to the retarded interaction of a
particle of species a at 1 ét time ¢; with its own field; this interaction is shielded due to the presence of all the
other particles. The second term is the contribution due to the shielded retarded interaction of a particle of
species @ at 1 at time ¢; with the fields of the rest of the particles. The equation for Pop(1, t1; 2, t2) , under the

assumptions of Section V, becomes
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[dl+a2 P g+ g, Pus(L, 12, )

MaYal mgsYg2

1

= ;I.— V oﬁ(lr tl; 2; t’z)ﬁ:(l’l) (60)
3 .

Eqs. (45a) and (45b) for the sclf correlation function W, (1, &;; 2, £,), and its cqual time limit Eq. (36c), also

simplify to '

[dl + 2 - a’x]wa(lr tl; 2; t2) =0 (610.)
MaYal

[ag 2 -ar,]wa(l, bi2,6) =0 e

MaYa2 )

WallL, 52, 1) = VA(p)S(1 — 2) (61¢)

Egs. (60) and (61) with Eq. (59), as the new form for the collision integral, form the new system of kinetic

cquations to be solved.

The adv_antage of this system over the previous one is apparent in the simplicity of the equation for the
discreteness response function. There are only two equations to be solved and, most importantly, they are not
coupled. 'Equations (61a) and (61) consist of an initial and a final value problem. Equations (61a) and (61b) are
true for times ¢; > t3 and ¢; > ), respectively. Therefore Eq. (61a) can be solved as an initial value problem

and Eq. (61b) as a final value problem.

Introducing the one-sided functions WX (L, £y; 2, £2)

WE(L 52, ) = Wu(l, t1; 2, )H (L (8 — t2)) (62a)
where
1 ift >0 ‘
H(t) = (62b)
0 ift<<0
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It is evident that the functions W~ and W satisfy (61a) and (61b), respectively, and that both satisfy the equal

time condition (61c).

The Fourier transform of the self coriclation function W, in the difference variables in space and time

(which is appropriate since the system is homogeneous and stationary) satisfies

W, (o1 22) = WL (o1 p2) + W (o1, 22) (63)

Here the vector klabels the Fourier transform in ry — ry, and the scalar w the Laplace transform in ¢, — 5.

Fourier transforming 1gs. (54a) - (54b) and taking into account Eq. (62) gives

-

Vi(p)s(p — p2
Whalpum) = —— +,.'k_%) | (64a)

|4 é6(p) —
Woilo ) = L= 2] (641

Taking into account the causal (anticausal) propertiecs of the function W;"k w(Wa“k,w), Eqgs. (63) and (64) finally

yield

W, kolp1,22) = 20V 1(p0)8(p1 — p2)6(w — k- 010) (65)

which gives the solution for the self correlation function Wa(1, 41; 2, 1) in Fourier space.

The next step is to solve Eq. (60) for the discreteness response function Pys(1, t1; 2, t2). Homogeneity
implies that the function P,g(L, t; 2,12) is only a function of ny — . In general, Pos(1, ¢; 2,£2) can be
expressed as a function of £, — ¢y and t; - t5. Furthermore, f,(1,t;) and f5(2, %) evolve on a time scale
large compared to the time scale on which the discreteness response function Pog(1, ¢1; 2, t;) evolves (this is
the‘ usual Bogoliubov ansatz). Fourier transforming in space (n — r, — k) and Laplace transforming in time

-(t1 + ty — Wy ty — g — wd) then yields

28




["’{ws + ik (040 — vm)] : {—i%Pﬂﬁkw w([’l;l’l)] — [_iwapnﬁkw - d(pnpfz; b+t = 0)]

fa(pl) , ——w+zc .
a,Bk w,,wd(pl’ p)) + Z a D3 zwsva,’,k’wd,wz(pl ) p3)

—oo--tc 2'”'

Pq,,k,w,_wg(m,m)]ﬁ,(m) (66)

Therefore, by employing the final value theorem for the Laplace transform of the function Pos(1, ty; 2, £),
the time asymptollc stationary function to which the function P,4(1, tl, 2, t2) relaxes is obtained. Applying the

final value theorem to Eq. (66) then gives

ik (via — 020)P, 51 (P2, P2)

Jolpr)
- +Z/d3mv‘”kw(m,p‘;) —,pkw(PS;l’z)ﬁz(Pl)

+ Vopkolpr, 22)—

V osioP1 P2)falPr)
na

(67)

where w = wy.

Eq. (67) is now interpreted as the Fourier transform in the difference variables in both space and time,
since it describes stationary correlations. Note also, that while such a function P4 k,w(Pl» p2) does not satisfy
Eq. (60c), this is unimportant to the calculation of the collision integral, where only products of Pag's and Vog's

appcar. Equation (24) can also be written as

1 o®
Ca(k: w; pl) = Z Np— / damv(xﬂk,w(pl)m)[aaﬁwﬁk,w(pl)pl)
A

+ng / d®p3P, ﬁkw(Ply p3) ﬂk,w(PB;m)] (68a)

- where the quantity C,(k, w; p;) satisfies

o) = | ot Colwim), (680

the &, w components of all the involved quantmes but Cy(k, w; ;) are Fourier components, and * denotes

complex conjugation. Fourier transforming the electromagnetic interaction operator defined in Eq. (15) yields
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tdmngq, v,
Va[ik,w(pl)p‘l) = —kz—[ﬁ;(jlé[k - w"éﬂ * (I)(ky L, vul) ’ q11 (69(1)
— .

where

k- vy SL

k w: = (1 — 9%
(I)( y W3 val) (1 w )I+ w (6 )
Two moments of the rransformed discretencss response function P_ sk .(p3, p2) arc defined
gl =, [ 0Py (p) (9
‘71ﬂk,w(p2) = n’?/d p3P ﬂkw(pli p2)0a3 (4b)
which are the density and current perturbation respectively, induced by discreteness..
Using Eqs. (4) and (69) in Eq. (67) yiclds
41rq,,qﬁ k— %9 - Ok, w; v51) .
aﬁkw(phpz) _ ‘232_ k- (v L — ‘0p2) q’lfa(pl)
+ E 47rqaq,, 7ok olP2)k— 4T, 5kw(ﬂ2) P(k, w; vay)
k- (vai — v32)
-aplﬁ,(m) | )

A continuity relation between the density and the current perturbations is proved as follows. Using Eq.

(70) in Eq. (2b), dot multiplying by the vector k and dividing by the frequency w yields

k- jwkw(pz)

, 4 goke - 052 -
- 7fn7q’7 Z [65g + naﬁk,w(pz)]
3 k- &.f(p3) _ w[ 5 ] . 3 ®(k, w; v,3) - &p.f(p3)
/d mm ) 5052 + o ,(P2) /d P (0 = v )} (71)
where the property
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I, - B(k,w; 9,3) = 0 | (72)

has been used.

Substituting the expression for the function Pﬁ’ ok w(p3, p,) in the definition (2a) for the density pcmirba—

tion gy (P2} yiclds

. 41n.q . k- .1\ p3)
n'yﬁk,w(pl) = ]‘;2-.:1%} ; {[6Eﬂ + nb'ﬁk,w(p'l)] / d3p3 m}j
w N B(k, w; v3) - G, f,(P3)
— ;2-[653052 +J5ﬂk,w(p2)] . / d3p; T (1’:3 — "32; } (73)
Comparing Eq. (73) to Eq. (71) gives
k- ‘77ﬁk,w(p2)
—— =15 (P) (14)

w
-provided that w = k- vg . The conditionw = k- vg is automatically satisfied because of the presence of the

delta function §(w — k- vf) in the collision integral, as will be shown in Sec. VII. Using Eq. (74) in Eq. (70)

~ finally gives
P Kk (p1 P2) — 47q, 1 _ Z‘q é. 30 2—|—-.7 kk (pz) (75a)
aflt, K Ogs V0 1— (i‘ ﬂﬂ2)2 k- vgo(k- 051 — k- v37) " & 8K &0y .
. [icic—— (k- B2l 0(k K- 05 v,,l)] & lp1)
where

o
I
| =

(750)

=
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VIL.  Generalized Collision Integral

In this scction, the induced current response is related to the dispersion tensor of the relativistic multi-
species plasma. This makes possible the expression of the collision integral in a generalized Balescu-Lenard
form. The form, in terms of thc longitudinal and transverse dielectric functions is also obtained. This second
form provides casily the collision integral in the abscnce of shlddmg Substituting Eqgs. (75) in the definition

- (4b) for the induced current response function J gk kv, (pz) and summing over all species, yiclds

93052 + Z'v qWJvﬂ’@k”ﬂz(m)
[L- (k- pﬂ)z]lcc(ic- ﬂpz)

. kk— (k- Ba2)®(k k- v3o; 0
Y 4ngin, / d°py (& Bk k- oo M)'(‘b,ﬁ»(m)nﬂ:-
a a

k- (v, — v33)

Z W sk ks, =
o]

which also can be written as

2 i (i 2 )
1 wpa / 3 kk— (k . ﬂpg) (I’(k, k- 0132, val)
d
w92 + E‘h ﬁkko,,,(h) [ L (e gy & v Pi (oo — 052)
: q)lﬁz(Pl)%] = Qg0 . (76)
a

Now, the transpose of the relativistic, electromagnetic diclectric tensor e k., can be written as

=1 E Pa/d3 <I>(kwvn) %(p)p (77)

Using Eq. (77) in Eq. (76) finally yields

(I— ¢k ko,,) - Kk (k- Bs2)?
= 1— (k- Bao)? 1— (k- B 2)2([- “Ukvs)

[gs052 + Z sk ke v, (P2)) = Qo082 (78)

The dispersion tensor Z is defined!2 as
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!
|
7= L _i_.z_ (79aq)
€L ér — E‘gp
where the scalars ¢/, and ¢7 are the longitudinal and transposc diclectric functions, respectively
k-e -k - s
(L= s =kek ~(79%)
ETIT == € — eLlL . ' (790)
with the projectors I), and I defined as
I, = kg Iy = I— kk - (79d)
Using Egs. (79) in Eq. (76), yields
. 1—(k-Bn),
90992+ 3 S0 ok k 0,,(P2) =592 Z ) I — _;_%L IT] )
y (k- Ba2)
Substituting Eq. (80) in Eq. (75) and taking into account Eq. (67) yields
p 1. p2) = Vosk k9, (P1s P2)falp1) 1)
ok kv, \PLs P2) = ingk - (va1 — v39)
where
Vaﬂk,k,.,,,,,(m,m) = t4dng.gsng
(ke By, sa N
V32 Zk,k-o;n . [IL - l—(i((—%%;%)*h{l . {kk b (k . ﬂﬂ2)2<1>(k, k- 032, 001)] -
— A '61’1 (82)
k- "ﬁZ[l — (k- ﬂﬂ2)2]
Substituting now the expressions for the functions W, k,w(l’h p)and P, ak.(P1, p2) in Eq. (68) gives
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2n .
Cokolp) =) n / o2V sk olpr, P2 [f5(01)6 (01 — o) — k- 952)00s)
. B '

znﬂk- (001 — 17/;3)

_ . 4 ' P2)fa
+ 2 / d’py / dJPsVoﬂk,w(Pl,Pz)[ ."ﬂk'W(m i (m)Jfﬂ(Pa)
]

6(ps — p2)b(w — k- v33) | . (83)

Because of the delta function 5(p3 — P2), the causal nature of the integral in the sccond terr~ of the right-
hand side of Eq. (83) and the fact that the principal value term is zero (since the intregrand is odd under

(w, &) — (—w, —K); cverything else is even in this term). Eq. (83) can be written after performing the w-

integration, as

Coklp1) = 5; CakwlP1)
=y o / Epfs(2)V ot ey 1 pz)[ﬁ(k' 92—k 1)V, 55 4 uﬂ,(phm)fa(pl)]
s .

+ Z ‘1“ /damfﬂ(m)‘saﬁ,“/;ﬂk'k.vﬁz(pb 02)6(p1 “P2) | (84)
IR

The presence now of the delta fuﬁction 6(k- v — k- vy)) in Eq. (84) makes Fg. (82) equivalent (for the
purposes of substituting Eq. (82) into Eq. (84)) to

Angagsng :
Vaﬁkkvm(pl,pz)_zz-k——)-vpg 7kkv‘92 Vo1 k- @l . (82/)

Performing the A-integral in Eq. (84) and taking into account Eq. (7%) finally yields

: 3
= [ troum | )
“‘Z 20295m5%, / daka(k'g? vﬁ;‘ val)lvﬁz Zkka.,ﬁ2 o1kl - G, fo(01)f5(p2)

2¢.9315 d k
Z 6aﬂ 27|')2n’3 - (k v )zfa(pl)kvﬁl Z;(’k.vﬁl'val
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To simplify this result further, Eq. (80) is manipulated into the form

Dy o»
vﬂ] Zkkvm Vel = ”ﬁl +2q ’ﬂjkkvﬂl( l”)

1, (k- Ba) ‘o |
[IL 1—-—(k ﬂp[)zl] al (86)

This eqration is used to simplify the second term of the collision integral as it is written in Eq. (85). The
term o) in the first bracket of the right-hand side of Eq. (86) does not contribute anything in the collision
integral since it leads to a term which is odd in k. Using this fact twice and expressing the transformed induced

current response functlon J ok, k vs, in terms of the function P”/ﬂ kK-, in an intermediate step, yiclds for the

second term of the collision integral

o 20agang / 3, JolB1) My s 4
— )  10ep kd’k ) —=Js-(k % v31; 0
; “Rang P ) 031)22 % ”2+‘\;% bl - 0g1; )

1, (k- Ba)? _
[’L I-(ic-nmv] s &

Taking into account Eq. (86) for re-expressing Eq. (87) finally yields for the whole collision integral

Ca(Pa) = Ca(f;z(m)) '
*2% Tanocpa /d3 /dak e )k %oy Zioko, " %l

kk - (Gpa 5p3)fﬂ(1’ﬁ)fcx(ﬁa) (88)

where the labels 1 and 2 were absorbed into the indices @ and 8 respectively, since they occur in pairs (1, @) and
(2, B). This is the relativistic, electromagnetic generahzauon of the Balescu-Lenard form for the non-relativistic,

electrostatic collision operator.

The collision operator Co(p,) can also be expressed in terms of the longitudinal and transverse dielectric
functions‘(73b), (73c). Eq. (78) can be re-written, expanding the identity tensor in its transverse and longitudinal

parts, as

35




59+ D sk k- 05 pa)
v

1— (k- Bs)’ 1
= PR Qi LA .- By TR 8
qﬂv'?l {l — (k- Bg2)%er b €L IL} ' (89)

where Egs. (79b)-(79¢) have also been used.

Using Eq. (89) in combination with Eq. (86) and keeping in mind the propertics of the projectors I, and
(B =I;B=Ip; I, Ir = Ip- I, = 0) yiclds

[95Z) g " Tl = (k-o)t 1 K% 9y — (k- oo ?
e K eikken (k- ta)erg fq,— K2

(90)

Substituting this form |05 - Zy g o - o|? back into Eq. (88) then gives

Ca(ﬁl(pa)) = EzqgQ%nﬁq’a ) /dapﬁ/daka(k v, — k- ‘Ug)
B

1 kv, - 05 — (k- v,)?
‘Lhkkoa (K va)Perp g o — k%2

? O — ool (88)

This form can easily be applied to no-relativistic plasmas; the only difference exists in the definition of momen-

tum in the classical versus relativistic cases. This form, for non-relativistic plasma was derived in 1961 by Silin?,

who used the quantum mechanical approach.

When the shiclding is absent ¢;, = er == 1 and the form (88") is reduced to the one Belyaev and Budker®

and independently Bernstein'® derived for the Lorentz gas

~ (1—8-8)?
C(f(p)) = 2¢*ndp- / d’kb(k- 0 — k- Vo= pp

G- ) (91)
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VHI. - Conclusion

The retarded time generalization of Rostoker’s supcrposition principle is formulated and proved for the
two-particle correlation function in the casc of a multispecies, relativistic and fully electromagnetic plasma,

including extcrnal fields, inhomogeneities and nonstationary 'bchavjor.

Using one and two-time Liouville functions for one or more species to carry out the cnsemble averages,
a closed system of equations is obtained which involves the one particles distribution function, the two-point
correlation functions and the two-point self-correlation. The infinite hierarchy of cquations for correlations is

then truncated by neglecting terms of second and higher order in the plasma discreteness parameter.

The gencralized superposition principle then rcdt.xces the system of coupled kinetic equations to a much
simpler one, involving only the one particle distribution, the two-point sclf-correlation, and the discretencss
response function Pyp(l, ¢;; 2, £2) equation in an uncbuplcd fashion. In the spccial case of homogencous, sta-
tionary and external field frec plasma, the Pog(1, ¢;; 2, £2) equation is easily solved; in this case, the discreteness
response function Pap(l, ty; 2, t,) is identified to be the total time derivative of the perturbation of the distribu-
tion function of a Vlasovian particle of species a at 1 at time £;, induced by a test particle of species # whose
 orbitis 2(t).

The shielded, relativistic, electromagnetic operator is then derived using the solqtions for Pop(1, 1132, t)
and the self-correlation function in a simple and straightforward fashion. The collisiovn operator is then manipu-
lated into the Balescu-Lenard form, and into the form first derived by Silin who calculated the operator for

the non-relativistic case using a quantum-mechanical approach. It is also shown that the generalized operator

‘reduces to the form derived by Bernstein in the absence of shielding.

Knowledge of the shielded relativistic and electromagnetic collision operator could be important in dealing
with the runaway electron problem. In this Spitzer-Harm type of problem, a steady state can be attained by
balancing two competing mechanisins. One is the acceleration of the electrons up to very high velocities due
to the action of external fields; the othér is the collisional interaction of the relativistic electron tail of the
steady-state distribution with the bulk of the electrons which have a Maxwellian distribution of arbitrarily high

' temperature. This last mechanism is precisely that which is expressed by the generalized collision operator.
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