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Abstmat

The nonlinear coupling of lower hybrid waves excited by a waveguide array is examined
numerically and analytically in a model of a Tokamak plasma. The nonlinearity considered is
the ponderomotive force and the fields are evolved self-consistently in time to the steady-state.
Simplified coupling models are derived for the loading of large and small arrays and for different
phasings of the waveguides. It is found that the reflection coefficient can be modified considerably
by the nonlinear effects. It is also found that the nonlinear modification of the power spectrum is
especially large when the array excites two resonance cones. The fields filament and the spectrum
is broadened and upshifted. The travelling-wave excitation, which excites a single resonance cone
and is considered for current drive, is less affected nonlinearly; the fields do not filament and the
spectrum remains narrow.

1. Introduction

In this paper we study how nonlinear effects modify the coupling of a waveguide array which

excites lower hybrid waves in a Tokamak plasma. The nonlinearity considered is that of the

"ponderomotive force" exerted by the RF fields. This force creates density depressions in the

plasma, and results in a nonlinear modification of the loading of the waveguides. It also modifies

the power spectrum of waves excited inside the plasma, that is their distribution in the parallel

wave index n, = --. The ponderomotive force becomes important when the oscillation energy of

the particles in the electric field becomes comparable to their thermal energy. Because of the low

edge temperatures in the plasma (a few electron volts) the ponderomotive force is sizeable even for

moderate power densities, say I kW/cm2.

The aim of this paper is to examine a number of representative excitations, and to gauge

numerically and analytically the importance of nonlinear effects in each case. Of prime interest is

the effect of the finite parallel extent of the excitation, an effect not included in previous treatments

of the problem. The importance of the parallel modulation has been pointed out by Bers~l1.
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To summarize results, it is found that the plasma admittance presented to the waveguides

can be substantially modified at large powers. The effects are more pronounced if the density

gradient is weak or if the excitation spectrum is wide in k4 space. We also found that the power

spectrum can be changed appreciably because the fields self-focuse and filament in real space, and

this results in a broadening of the spectrum. These nonlinear effects are more pronounced for the

standing-wave excitation. For the travelling wave, the power spectrum remains unidirectional and

narrow.

Though the basic work is numerical, we derive simplified analytic models to compute the

nonlinear loading of the waveguides. We consider three types of excitation: (I) a large travelling-

wave array, (II) a large standing-wave array, and (III) a two-waveguide array. In each case we

find a relatively simple "coupling equation", and compared its predictions with the full numerical

solution of the nonlinear lower hybrid equation.

The numerical approach is to evolve in time the propagation equations of the lower hybrid

waves so as to achieve a steady-state. With such an approach causality in the solutions is automati-

cally satisfied. A similar method has been used in the solution of the Complex Modified Korteweg

deVries equation[2], though in that case a steady state was not necessarily obtained.

Previous work on nonlinear effects in propagation is of limited applicability, because the edge

region in front of the waveguides is either excluded from the analysis or because only a simplified

excitation is considered. For instance, a nonlinear Schroedinger equation or a "Complex Modified

Korteweg deVries" equation can be derived to describe the modification of a single lower hybrid

resonance cone[3,4,5]. However this formulation does not predict the waveguide loading, which

depends to a large extent on the edge region where both resonance cones interact, and it also

assumes weak nonlinearity, an assumption which is not valid near the edge at large power densities.

In treating the edge region, only travelling-wave excitations have been considered [6,7,8], and this

requires a narrow and unidirectional parallel wave spectrum. Such a spectrum would be produced

by a large array with I progressive phasing. Other phasings are excluded from the analysis.

The importance of assuming a travelling wave excitation is that it eliminates the parallel z

coordinate from the propagation equations. The problem becomes one-dimensional in space, and

this is a great simplification. Morales[6] has looked at the time-dependent problem for the coupling

of an infinite travelling-wave excitation. The results of his numerical calculation show that a steady-

state is not achieved, but rather that energy is coupled into the plasma through a quasi-periodic
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series of bursts of wave packets. It should be noted however that the exponent used by Morales

for the nonlinear density is not correct, as it incorporates the equilibrium density in a denominator.

This overestimates the amplitude of the nonlinearity at the low densities, where the denominator

goes to zero. Furthermore, the work of Chan and Chiu[7], and of Fukuyama et al.[8]. shows that

steady states to the travelling-wave excitation do exist and can be evaluated numerically.

In this paper, we go beyond the travelling wave theory of refs.[7,8] and emphasize the two-

dimensional nature of the edge problem by studying excitations of finite extent in z. To do this,

we must solve the "Nonlinear Klein Gordon Equation", derived by Krapchev and Bers[9]. An

analytic treatment of this equation has been given by Krapchev et al.[10], but under the assumption

that the perpendicular dependence of the density modulation can be neglected. The numerical

results of the present paper indicate that this assumption may not be valid. In Section 7 we present

a simplified coupling equation which accounts for the perpendicular dependence of the density

modulation, and which produces results in agreement with the numerical solution of the Nonlinear

Klein Gordon Equation.

Several investigators are at present engaged in the numerical solution of the coupling problem

[11,12,13]. Their work both parallels and complements the approach of the present paper[14].

2. Basic Equations

The geometry for the coupling is shown in fig.(1). A slab geometry is used, with z in the

direction of the toroidal magnetic field and z in the direction of the density gradient. The system

is assumed uniform in y, and the waveguides are modeled by parallel plates infinite in the y direc-

tion. The TM mode is excited so that at the waveguide apertures the electric field E is in the zz

plane.

In fig.(1) we indicate the boundaries of the "coupling region", the region which determines

the loading of the waveguides and in which the ponderomotive nonlinearity is large. This region

extends from the waveguide mouths to just beyond the limiter shadow. We model the edge

conditions[15l by taking the density profile as linear and by assuming the temperature is constant

(Tei = 1-5 eV) up to the limiter shadow, beyond which it rises rapidly. Roughly, we concentrate

on a region which extends a few free-space wavelengths in z (say 20-30 cm) and of extent 1-3 cm in

X.
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To derive an evolution equation for the electric field we decompose E(r, t) into fast and slow

components[6]:

E(r, t) = t(r, t)e-"' + c.C. (1)

where E is slowly-varying in time and ub is the source frequency. Expanding Maxwell's equations

yields:

V X V X = w2 K(w) -E+ i (W2K) - (2)

where K(w) is the cold-plasma dielectric tensor[16]. We neglect thermal dispersion in this high fre-

quency equation. For lower hybrid waves, we have Qj < u < 0e, where f4,, are the cyclotron

frequencies, and in the low-density coupling region wpe(x) < re, wip(x) < , where wpe,,p are

the plasma frequencies. With the approximations allowed by these conditions, and assuming that

Ey = 0 and0/Oy = 0, we find to first order in9/Ot:

.a, 2 a2k,
O jZ+ +1 -- azo 0 (3)

k a2+0 (4)

where space and time have been normalized, r -+ " r and r = yt. In cqs.(3,4) the nonlinear term

is the parallel element of the dielectric tensor, K11 = I - where n, is the local electron

density which is modulated by the ponderomotive force.

As noted in the introduction, we construct evolution equations chiefly to obtain a steady-state.

In so doing, we neglect the details of the low-frequency dynamics and assume the ponderomotive

density modulation is produced instantaneously.

A general expression for the ponderomotive potential is given in [17]. In the coupling region

we have E, = 0, E :: E.. With these magnitudes the electrons are assumed infinitely mag-

netized, with ponderomotive potential:

oi=l,:: 2  (5)4mpw

4



and the ponderomotive force on the ions is negligible, #,i :: Mj#,e. We assume quasineutrality

and an electrostatic potential and balance low-frequency electric and ponderomotive forces with

the thermal pressure for both the electrons and the ions. After some elimination this yields the

steady-state density modification:

n, = ft = no(z) exp 4mew2 (Te+ T1) (6)

We define:

E e2 )1/2(7

4me(Teo + TYo)

#(z) Te0 + Tio (8)
Te!(X)+ Ti(X)

Ao(z) W 2 (9)

where E now denotes a normalized electric field. The factor 3(x) allows for a nonuniform tempera-

ture, and we define Te,iO = T,,i(O). The density term is Ao(z) = W , which is proportional to

the equilibrium density. Eqs.(3,4) become:

E_ + (2'+1 E - zoE=- (10)

E + a 1 - Ao(zx)e-O l2' E --- = 0 (11)

Where E is the normalized electric field. Finally, we simplify eqs.(10,11) by eliminating E.. This

can be done by noting from eq.(10) that (i4r + o + 1)E, = ZE . Multiplying eq.(11) by

the operator (ir + o + 1) and interchanging this operator with 2, yields the term 83Oa2E,.

Expanding the other terms yields:

82EZ a ((0 2 a2
-i +I+ 2 I Ez

2E) (12)
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We neglect c9., and also, to lowest order, we note that0fE c -(o2 + 1)(KIIE.). This results in

the final equation:

i E.+ fj2(Ao(z)e- ( E.)) - + 1)((A(z)e( -)E) = 0

(13)

In the steady-state, the time-derivative term disappears:

92 -_9 + 1)((Ao(x)e-(_)IEI2 - I)E,) = 0 (14)

and it is the solution of this "Nonlinear Klein-Gordon Equation"[9], that we shall be seeking by

evolving eq.(13) numerically to the steady-state. We shall refer to eq.(14) as the "2D" equation as

it incorporates both z and z modulation of the fields. In Appendix A, we show the connection of

eq.(14) with the equations derived for weak nonlinearity and a single resonance cone[3,5], in other

words for beyond the coupling region.

3. Complex Poynting Flux and Power Conservation

Eq.(14) has a simple conservation law. Writing the y component of Faraday's Law and using

eq.(10) with 0/Or = 0 to eliminate E., we find the steady-state magnetic field:

2 + I H = i - ( 1 5 )

We define a complex Poynting Flux:

P(z) = (-EH*) dz = PR(z) + iP(z) (16)

From eq.(14) and (15) it can be shown that in the steady-state APn(z) = 0. This is simply the

conservation of time-averaged power flux. The quantity P(x) is not conserved, but its value at the

source, Pt(0), is a measure of the reactive loading of the exciting structure.
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4. Normalized Equation

We assume a linear density profile in the coupling region, so that in eq.(13) we have Ao(z) =
W2 0(-) W'Peo(X)

= ax, where a = f . The gradient parameter a is in general quite large.

For example consider the ALCATOR-A experiment, with frequency f = 2.45 GHz. For this

frequency, the cutoff density, determined by wpo = w, is no, = 7.5 X 10 10 cm~ 3. Let us assume

an edge plasma where the density rises from being underdense, no, < no, to about 10% of the

central density, say to n02 = 1013cm- 3. We assume this rise occurs in 6Z,.., = 0.5 cm, which is

consistent with probe measurements of the ALCATOR-A discharge[15]. With z normalized by ko,

we find 6x = ko6x,.,e = 0.256, and a = (no2 /no,)/6z = 520.

We also specify a temperature profile in the definition of the term 6(z) of eq.(13). We model

the physical conditions by assuming that the temperature is constant in 0 < z < z and then that

it rises to infinity in some range zi < z < Z2. Thus 3(x) = I in 0 < x < xi, #8(z) = 0 for

z > x2 and we define 1(x) = (1 - (z - zI) 2/(X2 - zI) 2 )2 in z < z < z 2 .

It is convenient to normalize the density term. We write:

S=a 1 /z ao = 1 (17)
a 2/ 3

and eq.(13) becomes:

j9 ( a2 (e--(E)E,2E,) + aoE) + 2E - + 1)((eC-(E)E,2 - ao)E.) = 0 (18)

where N( = P(z).

The term ao accounts for the presence of the cutoff layer. Since in general a > 1, ao is

negligible. This has the advantage of removing the explicit dependence of eq.(18) on the gradient

parameter a, in the range 0 < e < el. What remains is an implicit dependence on the extent of

the nonlinear region in normalized space, the transition to the linear region occurring over 6,2 =

al/3XJ,2. It is found empirically that the wavcguide loading is not very sensitive to the depth of

the nonlinear region. Provided E 2 > 2, the nonlinear plasma admittance is independent of the

exact values of 6,2. This is because at all but very large field amplitudes the plasma admittance is

determined by a region close to the source. Of course, the spectrum of the waMes Cxiting at the far

end of the coupling region is very sensitive to the depth of the nonlinear region.
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The numerical method of solution for eq.(18) is outlined in Appendix B. We evolve eq.(18) in

time to the steady state, a procedure which usually takes about 150 time steps. All the numerical

results which follow refer to this steady-state. As explained in Appendix B, a limitation of the

numerical scheme is the lack of a physical mechanism to balance the effects of filamentation. We

use a digital filter to limit peaking of the fields, and this entails a penalty in the form of artificial

dissipation. We denote the fractional power loss due to this dissipation by Ep.

5. Long Travelling Wave Array

A. Field Structure

To model a large array with progressive phasing I we consider the excitation:

E(= 0,z) = 0Eo( IzI <0 (19)

1.0, IzI >A

The spectrum of this excitation is centered about n = n.o and has small sidelobes. If b is the

individual waveguide width, then we have no = f.

In fig.(2a) we show the linear field structure (IE(e, z)| plotted for Eo < 1 ) for no = 2.0

and zO = 4.0. For nO = 2.0 the waveguide width is b c 0.8 and there are roughly 2 a 10

waveguides in the array.

The linear fields follow a resonance cone roughly symmetric about its axis. Asymmetry comes

from electromagnetic dispersion which spreads waves with n_ a 1 to larger z. The center of the

resonance cone follows closely the ray trajectory:

zray = f ) de' = 32 - 1 3/2 (20)
o~ ~ ~ ~~ -n (2 . 1)1/2

As we turn up the field amplitude at the edge, there are noticeable effects on the propagation

in real space (fig.(2b)). The peak of the resonance cone penetrates into the plasma at a steeper angle

to the magnetic field (it travels less in z to reach a given e). The shape of the resonance cone is

distorted, displaying a "shock front" in the cross-section of the envelope. That this should happen

is not surprising. In regions where the density is depressed, because of the high fields, the ray

trajectories are steeper, and they intersect with rays issued from regions of more moderate fields.

The convergence of the different rays leads to the formation of the shock.
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The power spectrum is defined by:

P(E, n.) = Re(-E(Q, n.)*(e, n,)) (21)

In linear propagation, power in each n2 is conserved, and we have P(e, n.) = constant. This

is not the case in nonlinear propagation. In Fourier space we see the spectrum broaden with a

power transfer to both higher and lower n,. However, the spectrum remains unidirectional, that is

a negligible amount of negative n,'s are generated and the transfer to lower n_ is essentially limited

to values above 1. The spectrum also exhibits a "tail" to larger n,, but this tail does not carry very

much power. This can be seen in fig.(3), where we graph together the linear and nonlinear power

spectrum for E = 3.5.

We define < n, > as the center of gravity of the power spectrum in positive n,:

fo n.P(n.) dn.
< n. >= (22)

Using < n, > as a measure, we find that the overall shift is downward, 6 < n_ >~ -0.1.

Varying zo and no in the ranges 1.0 < nO < 3.0 and 2.0 < zo < 8.0, we find that in all cases

the downshift is modest, with -0.5 < 6 < n, > < -0.1. The fractional power loss to the

numerical filter remained small, with ep < 0.05.

The discussion above applies to a narrow spectrum centered about some no > 1. Reducing

Nfo or broadening the spectrum by decreasing zo results in increased electromagnetic dispersion,

with a tail forming on the resonance cone which spreads the fields to larger z. However the non-

linear field structure remains qualitatively the same, provided the spectrum in n, < -1 is small.

When the excitation in n, < -1 is not initially small, there is strong coupling between n, > 1

and n, < -1 components, and the spectrum is more strongly modified. We examine this situation

in Section 6.

B. Coupling Equation

From eq.(18) we calculated numerically the complex Poynting flux P(O) coupled at the source

and compared results of our computation with those of the simpler model of refs.[7,8J. As a

refinement to this model, we allowed for the finite width of the envelope by writing:

P(O) = f Y(z)E2(z)dz (23)
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where Eo(z) = IE(0,z)l is the envelope function. For simplicity, we omit a factor of All

admittances are normalized to the free-space value, Yo = = +0-. In particular, the

admittance of the fundamental parallel plate waveguide mode is 1. The admittance Yp(z) is found

for a given z = z, by considering the excitation at that point to be an infinite travelling wave with

constant amplitude ko(zj). The admittance is then found from Yp = al /3  _ E where El

is the solution of the infinite travelling-wave equation:

+ (n, _ I)eeI-EI2 Ei = 0, EI(e = 0) = ko(z) (24)

This ordinary differential equation is solved numerically by assuming radiation conditions at

-+ oo. We refer to eq.(24) as the "LD" equation.

Results of the 2D and ID calculations are compared in fig.(4) for the case n.0 = 2.0 and

zo = 4.0, which represents a ten-waveguide array. The discrete points result from the 2D cal-

culation, the curves are obtained from eq.(24). There is good agreement up to quite large edge

amplitudes, and this confirms the validity of one dimensional model for the coupling of this array.

The 1D model is valid provided the array is "large", and in practice we find this means it must

contain at least six elements. The coupling of a smaller four-waveguide array with j phasing is still

qualitatively described by eq.(24) provided no = r is not too close to 1; roughly, we require that

no > 3. For nO < 3, we have had success with the coupling model described in Section 7.

Having gained confidence that eq.(24) is valid, we can match waveguides to plasma and obtain

the reflection coefficient JR12 as a function of incident power. This has been done in ref.[8J. It is

found that for most density gradients JR12 increases with incident power.

6. Long Standing Wave Array

A. Coupling Equation

When the large array is phased by ir, the excitation spectrum has two narrow peaks centered

about n, = ±nko where now n2 0  . We model the excitation by:

E(E = 0, z) = A-1(z) cos(noz) (25)
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where No(z) is some envelope function. For numerical experimentation it may be chosen smooth as

in eq.(19). More realistically, tj(z) = E = constant in front of the waveguide mouths (assuming

the same amplitudes in all the waveguides) and Eo(z) = 0 everywhere else.

We derive below a simplified one-dimensional coupling equation for the standing wave ex-

citation. The first simplification is to assume that the envelope is of infinite extent. We then

consider a periodic excitation at ( = 0 and assume Fourier series for the fields and the nonlinear

term:

E(e, z) = () , 0- E(z) 2 
-inn (26)

fl=-oo n--ac

With the boundary condition 9(0) = 9.. The coefficients Fn have a complicated functional

dependence on IE(e, z)12.The Fourier components of eq.(18) are:

+ k2e F0 n + k2 Fmn-m = 0 (27)

where k, = (n 2n2 - 1)1/2.

The system of equations (27) is hard to solve, even numerically and in a truncated form. In

what follows, we simplify them drastically and obtain results for the complex power coupled, if

not for the fields deep inside the plasma. We consider the excitation corresponding to eq.(25),

E(O, z) = 291o cos(n7oW). If we assume this field pattern remains dominant inside the plasma, the

density modulation is given by[10]:

00

eC-E(e,.) 2 
, 4C(E)I

2cos
2(noZ) - E (2i2n)

. M-0 2o (28)

F2m = exp(-28iI 2)l,,(2181 2)

where Im is the m-th modified Bessel function. Note that only even harmonics of exp(in~oz)

are present, and that these terms couple only odd harmonics of 9. This occurs even when the

approximation of eq.(28) is not made, provided that in eq.(26) 9, = 9".

The expansion of eq.(28) is used by Krapchev et al.[10] in thcir treatment of waveguide cou-

pling, but it is assumed in their derivation that 9,(E) = constant. We retain here the E dependence

of 91 , while ignoring the effect of hannonic generation on the waveguide loading. We do this by
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neglecting in eq.(27) all but the m = ±1 harmonics. Such an assumption is consistent with the

approximation of the nonlinear term in eq.(28). This yields the coupling equation:

d2  ( _ -)1 e- o(2|1|2) _ I1 (2|s 1|2 ))9 1 = 0, 91(e = 0) = 610 = Eo (29)

where we assume an infinite nonlinear region. This equation is very similar to the one-dimensional

equation derived for the travelling-wave excitation, eq.(24). It merely has a more complicated

"effective" density modification. We expect it to be valid only close to the source, where there

has not been much cascading into the higher harmonics. Thus eq.(29) is primarily an equation to

predict coupling, and does not show what happens to the spectrum inside the plasma.

Eq.(29) gives us the "local" plasma admittance, Yp(z) = a1/3 d6 , where 91 is ob-

tained from eq.(29) with the boundary condition 1( = 0) = ijt(z). We allow for a finite

envelope by weighing as before:

00
P(O) = 4 f Yp(z)E(z)dz (30)

where a factor of I comes from averaging over the cos 2(nzoz) term.

Results for power coupled are compared in fig.(5) for a four-waveguide array, with b = 1.5.

The discrete data points are the results of the 2D integration, the continuous curves were obtained

from the ID model, eq.(29). There is fair agreement up to F- = 3.0, beyond which the reactance

from the 2D model increases more rapidly than predicted by the ID model. This is probably

because the 1D model does not account for the finite extent of the nonlinear region, and the

transition to the linear region leads to increased reflection at large amplitudes.

We can apply eq.(29) to waveguide coupling. The reflection coefficient is given by JR2
-

where Yp is obtained from eq.(29) with no = . Because of the scaling of eq.(29), Yp

can be written Yp = QYp where Q = a'/3 /(n'0 - 1)2/3 and where Yp is independent of a

and n,0. The results are shown in fig.(6), where JR12 is plotted as a function of the incident field

amplitude. The behavior of (R|2 for the standing wave excitation is very similar to that of the

travelling wave. In most cases the reflectivity increases considerably with increasing incident power.

B. Field Structure

Linear and nonlinear field structures are shown in figs.(7). The excitation is eq.(25). with

,~) = (1 -(Z/Z)2 , and n:,() = 1.7, zj = 6.0. This corresponds to a four-waveguide array.
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The strong filamentation seen in fig.(7b) corresponds to generation of odd harmonics in Fourier

space. This can be seen in fig.(8). The peaks of the linear spectrum occur roughly at n, = +1.7,

and in the nonlinear regime we see growth of the Fourier components at n, :: ±5.1, ±8.5,.

It is in the nature of the exponential term of eq.(14) to generate a very broad nonlinear

spectrum, a process controlled by the numerical filter. We studied the power loss ep as a function

of Eb and of the extent of the nonlinear region. In all cases, there is a value of Eo for which the

power loss is maximum, corresponding to maximum filamentation in the nonlinear region. For

larger Eo the density depression becomes so uniform in z as to produce less parallel nonlinear

effects. With el = 1.0 and E2 = 1.5 we had eP,ma, = 0.15, while for el = 2.0 and E2 = 2.5 we

had E =,ma= 0.27. These large values point to the need of a more physical mechanism to control

the nonlinearity. However, we expect the qualitative results of filamentation to remain valid.

7. Two Waveguide Array

A. Basic Excitation

We now consider the coupling of a two-waveguide array. The waveguides each have width b,

and the fields in the apertures are given a relative phase #. The fields are specified by:

Ele/ 0 <z<b

E(=0,z) = 02C-i0/2, -b<z< (31)

10, jzj > b

where E01 ,2 is the total field amplitude in each aperture. The simplest case occurs when the excita-

tion is symmetrical, with 4 = 0 or r = . The reflection coefficients are then equal in right

and left waveguides, and we have, assuming the same incident amplitude, A, = F-02 -.= . The

Fourier transform of the excitation is:

2sin(jbn,)cos(I(bn, -))
= 0, n.) = Eo 0(n.) 0(n.) = < (32)

1 nz

In this analysis we ignore higher order modes, and ED is the sum of the incident and reflected

amplitudes E and E, of the fundamental waveguide mode. Only Ej. which is imposed by the

power source at the other end of the waveguide, is known beforehand.
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The linear problem has been solved by Brambilla[18]. In his approach, electric and magnetic

fields are matched at the mouths of the waveguides with those inside the plasma. In our simplified

analysis the plasma acts as a simple load with complex admittance. The reflection coefficient is:

IR 2  I - YT 2(33)
I+ Y

where YT is an effective plasma admittance, to be evaluated for # = 0 or 4 = . It is given by:

YT = a/ 13 = I b Hy,N( = 0, z) dz (34)
EboiO/2 b fo

where Hy,N is the normalized magnetic field found analytically or numerically from:

.2 .9E.(e, z)
+ I N(,Z) = i (35)

When a > 1, which is almost always the case, Hy,N(R = 0, z) is only weakly dependent

on a. This simplification reduces considerably the numerical work needed to explore the coupling

regimes.

An alternative expression for kT can be found by expressing eq.(34) in terms of Fourier

transforms:

0r
kT = - p(n,.)kb(n)I2 dnz P(n) = -y,N(E = 0, (36)

b -E = 0, n,)

B. Linear Admittance and Numerical Method for the Nonlinear Admittance

In the linear steady-state we have:

P( ) eil Ai'(0)
(n. - 1)2/3 Ai(O)

where Ai is the Airy function, and where (n - 1)1/3 = eiw/3I _ 1/ 3 for Inj| < 1 and

(n2 - 1)1/3 = ei 2w/31n _ 1 11/3 for In,| > 1. The singularities in kp(n.) come from the

inversion of eq.(35), which, in Fourier space, has resonances at n. = ±I. These resonances persist

in the nonlinear calculation. because eq.(35) is unchanged.

Though the singularities in Y,'(n.) are integrable, their presence may lead to numerical inac-

curacy. In the plasma region, we have imposed periodic boundary conditions in z, at z = ±Zm-
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This is equivalent to solving a problem with the source repeated at regular intervals of 2zm. The

periodicity requirement has the effect of singling out the Fourier components at n., = n/zm =

nAn., n = 0, ±1, ±2, . The numerical counterpart of eq.(36) is:

00
- perioic = 7r 12A.
Y~periodic Yp(n.n)bp(nn) 2 Anz (38)

where An_ = w/zM. In the bulk of the Fourier spectrum, this sum may be a fair approximation

to the integral of eq.(36). But near the resonances at n. = ±1, the approximation becomes

inaccurate. As a check we considered linear coupling and compared the results of eq.(36) with

eq.(38) and with the results of the 2D integration. It is found that there is close agreement between

the 2D results and eq.(38). This verifies the validity of the numerical scheme. On the other hand,
k per

T differs considerably from T in eq.(36) whenever the spectrum is sizeable near n_ = ±1.
Furthermore, the convergence of per to kT is very slow. Typically, to get a 5% accuracy, we

need An, 0.02. This requires z, ~ 150, and keeping Az = 0.15, we need N, ~ 2000. This

large number of mesh points is totally unfeasible in the 2D integration.

In view of the problems associated with the n, = ±1 resonances, our approach will be the

following. In the next section we propose a simpler model for the waveguide coupling. We verify
perthis model by comparing kTr eq.(38), with the results of the 2D computations. We then use the

model to evaluate accurately the continuous integrals of eq.(36). This is now feasible because the

numerical evaluation of k(%) is much simpler with the ID model. The final result for YT is our

estimate of the "true", physical nonlinear plasma admittance.

C. Coupling Equation

We integrated numerically the wave equation for the excitation of the two-waveguide array.

We considered a number of waveguide widths and the two phasings, 0 = 0 and 7r. For instance,

results for the admittance kT are shown in figs.(9) for # = 0 and b = 1.5. We plot Re(YT)

(crosses) and lm(YT) (squares) against Eo, the total field amplitude at the waveguide mouth. The

general tendency is for kYn and k, to decrease with increasing Eo, k, being less sensitive to increas-

ing nonlinearity. The continuous curves are obtained from the model which we describe below.

In the previous sections, we examined large arrays of waveguides and found simplified models

for the coupling. 'liese models are valid provided the excitation spectrumn is narrow, centered

about one or two peaks in Fourier space, and is small in the vicinity of n- = ±1. Clearly this is
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not the case for the two-waveguide array.

Our approach here is to remain in real space and make a simplifying assumption about the

nonlinear modification of the density profile. We assume (I) that the E-dependence of the density

profile is the dominant effect in the loading of the waveguides, and (II) that this dependence can be

approximated by assuming the density depression in front of the waveguides is infinite in z, and is

created by a uniform field of amplitude Bo.

In accordance with this model, we first solve for the uniform density modification. Since

8/Oz = 0, eq.(14) reduces to:

d 2Ep
d2'' - ( exp(-|Ee,. 2)Ee, = 0, Edep(0) = 3  (39)

where "dep" stands for "depression". We then define a new density:

f( ) = Cexp(-EdeP(E)2 ) (40)

which is obtained by solving eq.(39) numerically. We then solve a linear coupling problem, but one

which incorporates the modified density. Eq.(14) becomes:

82E 82
- fz(0) + 1 =0 (41)

Because the density term is z-independent, we can Fourier transform eq.(41) and obtain an ordi-

nary differential equation:

d2kE, n,) 2
d + (nz - 1)h( )E(E, n.) = 0 (42)

For each value of n,, eq.(42) must be solved numerically. However, this is a relatively simple

procedure, and can be done for a very large number of Fourier modes, a number much larger than

that allowed in the 2D integration. Thus, assuming the model is valid, we can hope to approximate

much more closely the total plasma admittance.

We tested the coupling model for a number of waveguide widths (0.5 < b < 2.0) and for

both # = 0 and ir phasings. For instance, consider fig.(9). For comparison with the 21) results,

plotted as discrete data points, the curves of figs.(9) were derived from the 11) model aking into

account the effect of periodicity in the boundaries. Thus we evaluated f per from eq.(38), instead
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of kT from eq.(36), and used 256 Fourier modes in the summation. In general, there is good agree-

ment between 2D and 1D results for real part 1R, and lesser but qualitatively correct agreement

with Yj.

Having gained confidence that the 1D model approximates the nonlinear coupling, we extend

it to the "continuum" limit, by taking many more modes (> 256) in the summation of eq.(38).

Then we can compute the power reflection in the waveguides according to eq.(33). The incident

field amplitude, E, is given by E = (1 + a'1YT)E. The results for the reflection coefficient

are shown in figs.(10), where JR12 is plotted parametrically against E for b = 1.0 and for density

gradients a = 64, 540. These values are representative of the ALCATOR-A and PETULA experi-

ments. In the calculations, we took An, = 0.02, with 2000 Fourier modes.

Figs.(10) allow for extremely large nonlinearity, Ej = 40.0. In fact, such large fields can never

be attained. A convenient formula for estimating the normalized field amplitude is:

2.9 __-_Ei = -29- (43)
f Te+T,

where a plane wave is assumed incident in the parallel plate waveguides. In eq.(43) S is in

kW/cm 2, f is in GHz, and Te,i are in eV. Assuming rather extreme values f = 0.5 GHz, T, +

Tj = 2 eV and S = 10 kW/cm 2, we find a maximum E, Ei,ma - 13.0.

In the range 0 < Ej < 13.0, the results of the coupling model show that nonlinear effects

are more pronounced at weak gradients and are stronger for the narrower waveguides. This is not

suprising. At weak gradients, the linear coupling is better because there is less mismatch between

plasma and waveguides. The transmitted field amplitudes are larger and hence the nonlinearity

is enhanced from the outset. Also, a narrow waveguide has a broader spectrum, and the shorter

wavelengths excited by this spectrum are more affected by the nonlinear density profile. The

nonlinear density modification is of finite extent in E, and more transparent to long wavelengths.

D. Numerical Results for the Spectrum of the Two-Waveguide Array

In figs.(l1) are shown results for an excitation of two waveguides in phase, # = 0, with each

waveguide of width b = 1.0. In our model we neglect the existence of a septum, so that this

excitation looks like a single waveguide of width b = 2.0. Three regimes can be discerned as a

ftnction of increasing nonlinearity:

(1) Weak Nonlinearity : For F1 < I modifications on fields and spectra are weak. In real
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space, there is weak focusing of the fields near the source. There is some enhancement of the

side lobes of the Fourier spectrum at the exit plane, but the spectrum retains its original shape

(figs.(11a, 12a)).

(2) Moderate Nonlinearity: In the range I < Eo < 2 a sharp transition of nonlinear

effects occurs, and this leads to strong modification of the fields. In real space, we see the formation

of a sharply peaked "ridge" in front of the waveguide which extends some distance into the plasma

( fig.(11b) ). Because of this region of strong focusing, the Fourier spectrum is broadened and

shifted (fig.(12b)). In the range In.j > 1, some of the lower n, are "depleted" to larger values. As

FO is increased, more ridges form on the edges of the field profile.

(3) Large Nonlinearity: For Eb > 2, we see a "tunnelling effect" effect becoming

dominant (fig.(11c)). Right in front of the source, a large density trough forms, and in this trough

the fields are fairly smooth. -It is only some distance into the plasma that sharp ridges form in the

field profile, and the nonlinear effects on the spectrum are reduced (fig.(12c)). With a nonlinear

region of finite length, and sufficiently large Eo, the region of strong self-focusing may disappear

completely.

In discussing the power spectra obtained for the examples discussed above, we look at the

power in three regions of n. space: (1) 1.0 < n, < 2.0, (II) 2.0 < n, < 6.0 and (III) 6.0 <

nz < oo. P and P 1 are calculated by summing Fourier components in the power spectrum. Pinj

is defined as the power dissipated in the numerical filter, which is simply PTOT - P - P11, where

PTOT is the total power coupled at the source. Results are shown in fig.(13a). We see that for

Eb < I most of the power coupled at the exit plane lies in region (I), that is in n, < 2.0. As Lb

increases, there appears to be a fairly sharp threshold for dumping power into region (II), and to

a lesser extent into region (III). This corresponds to the onset of strong self-focusing of the fields.

Finally, at large field amplitudes, region (11) is depleted again, and most power at large n. is in

region (III). Presumably, in this extreme regime it is in the sharp sides of the density trough that

most power is dissipated. Inside the trough, the fields are smooth and dissipate little power.

We repeated the numerical runs described above for the waveguides out of phase, 4 = 7r.

The qualitative discussion given above applies to this case as well. In fig.(13b) we show how power

is transferred between the three regions in n_ space. Here there is no intermediate regime where

power from region (1) (1.0 < n- < 2.0) is dumped into region (11) (2.0 < n, < 6.0). Rather,

power from (1) and (11) is transferred directly to region (111).
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In comparing figs.(13a) (0 = 0) and (13b) (0 = ir) we note that at the largest field amplitude

roughly as much power ends up in region (III) in both cases, with region (II) depleted relative to

the other two regions. However, we cannot conclude that both phasings will produce the same

power spectrum (and hence the same heating effects inside the plasma). First, because as discussed

above the power transfer picture of figs.(13) is at best qualitative, and second, because the ini-

tial total power coupled at the source may be quite different because of the different reflection

coefficients.

8. Comparison with Experiment

A. Reflection Coefficient

In the PETULA experiment[19,20], twin waveguides radiated up to 1 MW at a frequency of

1.25 GHz. Two array designs were used, one with total area of 117 cm 2 (3.55 cm X 16.5 cm aper-

tures), the other with an area of 40 cm 2( 1.8 cm x 11 cm apertures). In both cases, the maximum

incident power was about 10 kW/cm2. Experimental results for the reflection coefficient are the

following. For the 117 cm 2 Grill, there is a strong reduction of JR12 in the range 2.6 kW/cm 2 <

P < 6.0 kW/cm2. This occurs for both waveguide phasings. For the 40 cm 2 Grill, JR12 is fairly

constant for 0 = 0, and increases steadily for 0 = w.

We apply the 1D model of eqs.(39,40,41) to obtain theoretical values for the reflection

coefficient. The normalized waveguide widths are b = 0.92 for the 117 cm 2 array and b = 0.64

for the 40 cm 2 array. We estimate the density gradient by assuming that the low-power regime is

predicted by Brambilla theory. For linear experimental and theoretical values to concur, we find

that we need a = 500. We estimate the edge temperature by taking T, = Tj = 1 eV. The results

of the 1D model are shown in figs.(14).

In the case of the 117 cm 2 Grill, there is little agreement between model and experiment. The

salient feature of the experimental results, the decrease of JR12 for both phasings, is not seen. For

the 40 cm 2 Grill, there is qualitative agreement in the results. The model predicts successfully that

the 0 = 7r phasing is more sensitive to nonlinearity and that JR12 should increase for this phasing.

We emphasize that because of uncertainty in the edge temperature, the horizontal scales of figs.(14)

could change considerably. This may better or worsen the fit of the theoretical predictions.

In the ALCATOR-A121,221 experiment, two waveguides of dimensions 1.3cm X 8.1 cm,

radiated up to 90 kW of R F at 2.45 G H z. The peak power density was lower than in thc PETU LA
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experiment, Pi,m.., ~ 5 kW/cm2 . In this experiment, nonlinear effects were not seen in the

reflection coefficient which retained its linear phase dependence at all incident powers.

What is the prediction of the 1D model, eqs.(39-41)? The normalized waveguide width is

b = 0.66, and the best fit to Brambilla results at low power obtains for a C:: 60. We assume T, =

Tj = 3 eV, roughly the values observed in probe measurements[15]. The results are shown in

fig.(15). In the range 0 < Pi < 5 kW/cm2 , the theory predicts only small changes in reflectivity.

In the experiment performed on the JFT-2 Tokamak{23], an array of four waveguides handled

up to 300 kW of incident power at a frequency of 750 MHz. A strong dependence of the coupling

on incident power was observed, with IR12 decreasing with increasing power at all phasings of

the array. Above about 50 kW, the effect saturated, with reflectivity becoming uniformly small,

[R2 < 0.1.

In an attempt to explain these results by ponderomotive effects, we use all the 1D coupling

models derived above. The waveguides have dimensions 1.4 cm X 29.0 cm. In normalized units,

the waveguide width is b = 0.22. The gradient parameter is determined once again by a fit of

Brambilla theory to the low-power data. It is found to be a = 2.7 X 104. The power density

is roughly S = 0.27 kW/cm 2 at 50 kW and S = 1.7 kW/cm2 at 300 kW. We assume edge

temperatures T, = Tj = 1 eV.

We consider separately the three phasings, # = 0, 1, 7r. We determine JR12 for 4 = 0 from

eqs.(39,40,41). For # = f we use the travelling wave model, eq.(24), and for 4 = ir we use the

standing wave model, eq.(29). The results are shown in fig.(16). The theoretical predictions are

not consistent with the experiment. According to theory, JR12 should increase for 4 = 1, w, and

decrease very little for # = 0, while in the experiment JR12 decreases markedly for all phasings,

# = , r and 0.

B. Spectrum

We saw that filamentation of the fields and broadening of the power spectrum occurred when

e2 JEj 2 /4mM 2 (T + T,) ~ 1, a condition well reached if we make the same assumptions about

edge temperatures as above. However, there is no strong evidence for a nonlinear upshift of the

spectrum. In JFF-2 the excited spectrum appeared to be linear. In ALCATOR-A, an upshift was

deduced, but this upshift is constant over a broad range of incident power. This suggest rather that

a linear mechanism is in cause[24].
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11. Conclusions

We analysed the importance of ponderomotive effects in the coupling of a number of

waveguide excitations. Both numerical and semi-analytic methods were used and three simplified

models were derived to cover a large number of cases.

We first studied the coupling of a large array, which has narrow peaks in its Fourier spectrum.

Both travelling wave (0 = g) and standing wave (4 = 7r) excitations were considered. We derived

a model to predict power coupled by the standing wave.

The power spectrum of the travelling wave is broadened and downshifted by nonlinear

effects, but remains unidirectional. The power spectrum of the standing wave is more sensitive to

nonlinearity. Because of harmonic generation in Fourier space, it may be considerably upshifted.

In real space, the fields undergo filamentation.

We next studied small arrays and derived a coupling theory for the two waveguide array. The

theory predicts that substantial changes in reflectivity can occur, but these require weak density

gradients or large power densities. Narrow waveguides are also more sensitive to nonlinear effects.

The new coupling theory differs substantially from that of Chan and Chiu[7]. It predicts coupling

of excitations with power near n,, = 1, a regime where the other theory breaks down.

The power spectra of the small array can be considerably broadened by nonlinearity. This

again corresponds to filamentation in real space. The results suggest that the power spectra for

0 = 0 and 4 = i may be made similar by nonlinear effects, but limitations on the numerical

scheme did not permit quantitative estimates.

Comparison of the coupling theory with experimental data was inconclusive. This negative

result is mitigated by the fact that other effects not included in the theory (low frequency

fluctuations, parametric excitations) might be responsible for suppressing the ponderomotive

effects. This would not preclude regimes where the ponderomotive effects might be important.

A major limitation of the numerical scheme is that it requires artificial dissipation to control

nonlinear instability. A suggestion for future work is to replace the dissipation by a physical

mechanism, in the form of thermal dispersion in the high frequency equation. This would compli-

cate the physics but yield more satisfactory solutions.

A second suggestion for extending the present work is to retain the low-frequency dynamics

and allow for coupling to ion-acoustic waves. This is the approach followed by Fukuyama et a1. 12].

21



It is a numerically more demanding problem but allows for richer physics.
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Appendix A. Weak Nonlinearity

The Nonlinear Klein-Gordon Equation includes electromagnetic effects, and allows for the

strong interaction of both resonance cones. To see the connection with other nonlinear equations,

we consider the region beyond the limiter shadow where the temperature is much larger. In this

region the nonlinearity is weak and can be considered a perturbation to linear propagation. We

include thermal dispersion by adding higher order derivatives corresponding to higher order terms

in the linear dispersion relation[25J. With the exponential nonlinearity expanded we have:

a2E (a2 I 'Q a4E a4E 4E
+ _2+ (IE2E)+61 +%Z2e2 +63 4 =0 (44)

For simplicity we assume a homogeneous plasma, Ao(z) = constant > 1. The new coordinate

is ( =A1/ 2z. The coefficients bj are given by: 61 = 3 +3 ,-20=9- +

6 (!L ,63 = t( 2 + 3 , where vi, =(T,/m,)

In the outer plasma layers we have wpi(z) < w and wp,(x) < f2. With these conditions we

find 63 < 6 < 61 3() , and we may neglect terms in 62,3.

If we assume the excitation spectrum at the edge is narrow, and centered about n, = nO,

we can derive a nonlinear Schoedinger equation (NLSE) from eq.(44). This is done by a reductive

treatment of the equation[26]. 'he form of the solution is:

E(e, z) = el'oze*At5(E, z) (45)
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where k(e, z) is a slowly-varying function of e and z and where no is imposed by the source. To

lowest order, ko = -(nl - 1)1/2. This slow dependence is further broken up by writing:

k(e, Z) =$ , ) =z - " 2O (46)(njo - 1)1/2

where denotes deviation from the central ray and C measures the distance over which there are

nonlinear and linear dispersive effects. We obtain the NLSE:

1- + 3In20 61 a2k (,
i- i - - '0 ( _- 1)1/21EI2. = 0 (47)
ae (nA' - 1)'/2 2(n2 1)3/2)%2 +2

This equation, but without thermal dispersion, has been derived by Krapchev and Bers[9I. Eq.(20)

shows that electromagnetic dispersion opposes thermal effects. The equation is modulationally

unstable when the coefficients of the second-order derivative and of the nonlinear term are of the

same sign(27. By inspection, we see that this requires:

no > no, = 0.676--'/4 = 0.5 (48)

For instance, with Te = 100 eV, we find ne ~ 5, which is not small. Thus electromagnetic

dispersion can inhibit filamentation over a large part of the spectrum, at least in the outer plasma

layers.

If we consider perturbations of a single resonance cone, but do not assume a narrow spectrum,

we can derive a CMKdV equation with electromagnetic effects. In eq.(44), we take E(e, z) =

$(e, z - C) = k(e, ), where measures deviation from the resonance cone and is a weak de-

pendency which scales as the nonlinearity and thermal dispersion. Expanding eq.(44) with c/6 >

1, we obtain:

(9E 61 &E 1 (9 1 5
7 -Z- (!E12E)+ - Ed' = 0 (49)

OT2e - 2a 2 .- 00

where we assume E(E, = -oo) = 0. This is an equation analysed by Hsu and Kuehl[281. They

have found that the electromagnetic term tends to suppress filamentation, a conclusion consistent

with the results obtahied from the NI SE.
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Appendix B. Numerical Method for the Nonlinear Equation

We solve eq.(18) with zero field initial conditions. The fields are imposed at e = 0, starting

with zero amplitude, and are ramped in a few time steps to a constant value. We use a finite

difference, implicit scheme to advance the numerical analog of eq.(18). The computational region

is a rectangle, with dimensions 0 < e < em and -z. < z < z,,,, and this region is covered

by a grid of dimensions Ne X N,. At e = , a numerical radiation boundary condition is

implemented[29. This condition requires linear propagation and is the reason for introducing a

transition to the linear region. At the boundaries z = ±zm, periodic boundary conditions are

imposed. At each time step we invert a very large but very sparse matrix by relaxation.

The usual mesh size is Ne x N = 27 x 256, and we take Ae = 0.135 and Az = 0.15, for

which Em = 3.5 and zm = 19.5. This is consistent with the ALCATOR-A parameters discussed

above, for which the extent in e is 6e = a1/36z = 2.05. We made this region a little bigger

to allow for the linear transition region, and took Em = 3.5. The value of zm is large enough to

accomodate most of the dispersion in propagation across the coupling region. A typical time step is

Ar = 0.25 and roughly 150 time steps are necessary to reach the steady-state after the excitation

is turned on. As for the depth of the nonlinear region, in the computer runs discussed below we

took E = 2.0 and E = 2.5.

To avoid aliasing problems with the nonlinearity, a digital filter was used[30]. This filter intro-

duces artificial dissipation in InzI > ni. For In-I < ni, the dissipation is negligible. The cutoff of

the filter is given roughly by ni = 0.3 nz,m.., = 0.3". Because of the filter, we are not really

solving the finite-difference approximation of eq.(18), but the finite-difference approximation of

eq.(18) to which a dissipative term has been added. The "harm" done to the spectrum can be

gauged by the total power lost as waves propagate from the source to the far boundary. The

fractional power loss is:

PR(O) - PR(Emaz)
PR(O) (50)

and we require that -p be small for a solution to be an acceptable approximation to the solution of

the dissipationless problem.

In practice, we have found that in many cases of nonlinear propagation cp is large (ep c::

0.3 - 0.4) and it is hard to reduce this fractional power loss. For instance, increasing the mesh
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resolution, say by going to a 54 x 512 mesh with Ae = 0.0675 and Az = 0.075 does not help

because the spectrum has become prohibitively large, even for the broader Fourier space afforded

by the finer mesh. This situation is due to the filamentation of the fields in real space and points

out a basic limitation of the numerical scheme. Because we have neglected thermal dispersion in

the high frequency equation, there is no physical mechanism for balancing the strong self-focusing

effects. It is the filter which keeps the spectrum from "running away", at the price of dissipating

energy. This limits the physical validity of the power spectra obtained inside the plasma, whenever

ep is "large", say ep > 0.1.

On the other hand, it is found empirically that the numerical value of the plasma admittance

at the waveguide mouths is not sensitive to the mesh size or to the amount of dissipation. This

is because filamentation does not occur immediately in front of the waveguide apertures. In the

region which determines the waveguide loading, propagation is adequately handled by the numeri-

cal scheme.
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Figure Captions

1. Slab model of the coupling geometry.

2. Field amplitudes for the travelling wave excitation, eq.(19) (no = 2.0, zo = 4.0,

e = 2.0, 6 = 2.5): (a)E&o = 0.01, (b) A - 3.0.

3. Power spectra for the travelling wave excitation (n.o = 2.0, zo = 4.0, E = 2.0,

6 = 2.5): (a) EO = 0.01, (b) .E = 3.0. The vertical scale is arbitrary, and the curves are

normalized to the same peak amplitude.

4. Complex power coupled for the travelling wave excitation (2a-'/3 P(0) for n.o =

2.0, zo = 4.0, E = 2.0, E = 2.5): Comparison of the two coupling models. Re(P): crosses

(2D) and full line (1D); Im(P): squares (2D) and dashed line (ID).

5. Complex power coupled for the standing wave excitation (2a-1/3P(0) for no =

1.7, zb = 6.0, E = 1.5, 6 = 2.0): comparison of two coupling models. Re(P): crosses (2D)

and full line (1D); Im(P): squares (2D) and dashed line (1D).

6. Reflection coefficient for the standing wave array (large array with 4 = r phasing);

Q = a'/ 3/(n2 ._ 1)2/3.

7. Field amplitudes for the standing wave excitation, eq.(25) (n,o 1.7, zo = 6.0,

E = 1.5, E = 2.0): (a) E= 1.0, linear propagation,(b) F= 1.5.

8. Fourier spectra at ( = 3.5 for the standing wave excitation (n.o = 1.7, z = 6.0,

e = 1.5, 6 = 2.0): (a)Eo = 1.0, linear propagation, (b) = 1.5.

9. Total plasma admittance for a two-wavcguide array (b = 1.5, 4 = 0): comparison

of the 2D model (discrete points) with the ID model (curves).

10. Reflection coefficient for a two waveguide array, as predicted by the 1D model (

b = 1.0, 0 = 0 or 7r): (a) a = 64, (b) a = 540.

11. Field amplitudes for the two waveguide excitation, eq.(31) (b = 1.5, 4 = 0,

l= 2.0, E2 = 2.5): (a)E = 0.01.(b) E = 1.414, (c) = 3.0.
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12. Power spectra at E = 3.5 for the two waveguide excitation, eq.(31) (b = 1.5,

0 = 0, I = 2.0, E2 = 2.5): (a) Eo = 1.0, linear propagation, O(z) = 0, (b) EO = 1.414,

(c)E<j = 3.0.

13. Power transfer results for the two waveguide excitation ( b = 1.0, El =

2.0, C2 = 2.5); P = P(I < In,. < 2), PI, = P(2 < In.j < 6), P11 =

P(power dissipated in the filter, Ini > 6): (a)# = 0, (b)# = 0 .

14. Reflection coefficients for PETULA (two waveguides): (a) 117 cm 2 Grill, b =

0.92, a = 500, T, = Ti = I eV, (b) 40 cm 2 Grill, b = 0.64, a = 500, T, = Tj = I eV.

15. Reflection coefficients for ALCATOR-A (two waveguides): b = 0.66, a = 60,

T, = T, = 3eV.

16. Reflection coefficients for JFT-2 (four waveguides): b = 0.22, a = 2.7 X 104,

T, = T, = I eV.
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