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ABSTR ACT

The Einstein coefficient method is used to calculate the growth rate of a low gain FEL

for a tenuous relativistic electron beam propagating in the combined axial and transverse

helical wiggler fields Bo, - (Bcoskozi, + 6Bsinkozli). The analysis assumes that the

system is close to rcsonance between the electron cyclotron frequency in the guide field

(w, = eBj/-ymc) and the wiggler frequency in the beam frame (Lao - koVb). It is shown

that the gain near resonance can be substantially enhanced relative to the gain obtained in the

region far from resonance.
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I. INTRODUCTION

The growthrate for a low gain FEL has been calculated theoretically 1-5 and observed

experimentally 6,7 for a tenuous electron beam far from resonance between the electron

cyclotron frequency in the axial guide field (we = eBo/ymc) and the wiggler frequency in

the beam frame (wo = koV). There have also been theoretical considerations of exploiting

the cyclotron resonance effect to enhance the FEL gain 8-10, although the approximations

used in these studies break down close to resonance. Experiments have been performed

in the Raman FEL regime near cyclotron resonance with the results that either there is no

radiation emission 11-13 or the emission is enhanced, 14 indicating that conditions for FEL

operation near cyclotron resonance have not been explored adequately.

In this article, we make use of the Einstein coefficient method to calculate the growth

rate of a low gain FEL for a tenuous electron beam propagating in the combined axial guide

and transverse helical wiggler fields

B o =B0 + 6B

=Boi, - 6B(coskoz4 + sinkoziy), (1)

where Bo and 6B are assumed constant, Xo = 21r/ko is the wiggler wavelength, and the

expression for the wiggler magnetic field is valid near the z-axis (koRb < 1). Near cyclotron

resonance (we ao), it is found that the gain can be orders of magnitude larger than the

equivalent gain obtained in the region far from resonance. It is also found that narrow

band emission requires that the axial electron momentum p, = ymvz be approximately

constant. To satisfy this condition and the condition that the system be close to cyclotron

resonance (w, F "o) imposes the requirement that pI . 6B > 0, where p_ = -ym(v.,i +

vyi,) is the transverse momentum and ymc2 = (m 2c 4 + c2j2)1/ 2 is the electron energy.

Experimentally, the requirementp_ -6B > 0 is difficult to achieve and may explain the null

emission results."--" Previous theoretical analyses have not considered this requirement,

since in a standard FEL the electrons enter the wiggler magnetic field with negligibly small

transverse momentum. Allowing finite transverse momentum has the effect of reducing the

relativistic output frequency upshift. Also, since the system is near cyclotron resonance and

p_ is finite, the cyclotron maser effect may be excited, and we obtain the condition for FEL

cmission to dominate over cyclotron maser emission.
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II. ELECTRON TRAJECTORIES IN THE WIGGLER FIELD

The equation of motion for an electron moving in the combined axial guide and wiggler

fields BO = BO, + 6B [Eq. (1)] is given by dp'/dt' = -et? X Bfl(x')/c, where -e is the

electron charge, c is the speed of light in vacuo, ' = p'/'m is the electron velocity, and m

is the electron rest mass, and we assume "initial" conditions such that the particle trajectories

(x, p') pass through the phase space point (x, p) at time t' = t. Defining the shifted axial

momentum coordinate 77 by Wf = ckop'/eBo - 1 = kov'/w - 1, where we = eBo/ymc

is the relativistic electron cyclotron frequency and -mc 2 = ymc 2 
- const is the electron

energy, it is straightforward to show that 77'(t') satisfies the nonlinear Duffing equation 15,16

1 d2r1' 2' + [(6B)2 
- 1I(kV )n+ ~ =O 22t2+ r 7' 1 2 , 117 r/ + 6) = 0, (2)

where V,~ = C,/m is the exact axial invariant (dV,/dt'= 0) defined by 1

(kOV zi_ ) 2 _7 2 _2cko()
- 1 = /2- 's- B(x'). (3)

For SB = 0, it follows from Eq. (3) and the definition t/ = kov'/w, - 1 that v' = V,

and the axial invariant V can be identified (exactly) with the axial velocity t',. For SB : 0,

however, the axial invariant V, = const is generally different from the axial velocity V',

which varies as a function of t'. We now assume that the system is very close to cyclotron

resonance with

-) (< <)2 (4)

in Eqs. (2) and (3). In particular, it is assumed that the beam equilibrium distribution

function f2(x,p) is strongly peaked about values of V, and -y satisfying Eq. (4). Within

the context of Eq. (4), the pseudopotential for the r7 motion [Eq. (2)] is given by V(?Y) =

r7'/8 + (6B/B) 2 (,q, 2/2 + rl'), which has the equilibrium point 70 ~ -21/ 3(bB/B) 2/3

(which solvcsV/6r' = 0). Solving Eq. (2) for small-amplitude oscillations about r70, i.e., for

Iti - rol < iol, we find for v' = (wc/ko)(r' + 1)

V= Vb +(v - V)cos[w6(t' - t)

bB wekov 1
+ sin(koz - #)sinwj(t' - t)], (5)Bo ko w6

where

= ()/2(6B) 2/3

W6 = 21/3 WC,

v6 = 11 I- 2 106323,(6)
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and 0 is the t' = t phase of the transverse momentum p_ = (picos0, psinO). The

coefficient of sin[w6(t' - t)] in Eq. (5) has been determined from the boundary condition

= -(e/ymc)(vL x 6B). at t' = t. Moreover, jvz - VbI < Vb and

I(6B/Bo)(wc/ko)(kov±/w 6 ) < Vb are assumed in Eq. (5), corresponding to small-amplitude

oscilllations of v, about the average value Vb.

With regard to the perpendicular motion, we note from Eq. (3) that p' -6B(x')/Bo is

required to satisfy the approximate condition pL -6B(x')/Bo = (eBo/2cko)ly 2

= (1/2)-ym(w./ko)>'2 > 0 close to resonance [Eq. (4)], which places a strong constraint

on the perpendicular electron motion in the wiggler field. If we estimate the characteristic

size of t' by its average value 7o = -21/ 3(6B/Bo)2/ 3, then the condition p' -6B(x')/Bo s

(1/2)_Ym(w/k)yo gives p' > (1/2)ym(wc/ko)2 2 / 3(6B/Bo)'/ 3 _ -ymVb(6B/213)1/ 3 for

the characteristic size of pl. This is a relatively large value of transverse momentum com-

pared with that assumed in a standard FEL far from resonance.

Eq. (5) can be integrated to determine z'(t') with boundary condition z'(t' = t) =

z, and the result substituted into the perpendicular equations of motion for v'(t') and

t',(t'). Defining, w' = v' + iv'y, the perpendicular motion satisfies dw'/dt' = iww' +

iwc(6B/Bo)v'exp(ikjz') = iwew' + (wc/ko)(SB/Bo)(d/dt')exp(ikoz'). It is convenient to

rewrite Eq. (5) in the form v' = Vb + eVbcos(w6r + a) so that ' can be expressed as

z' = z + Vbr +e~ sin(wr + a) - sina], (7)

where r =t' - t , and e and a are defined by

V, =1 2, + , k0 _ i 2(koZ -_ 1/2

_ _ _ __6 B w , k o vk2[(ivz=- -- s2 + (kB - ) sn kz- /

Bo koVb W

ecosa = -Vb (8)Vb

The orbit factor exp(ikoz') occurring in the equation for dw'/dt' can then be expressed

as

exp(ikoz') = expi[koz - F(ko'/w6)sina]

X E J"( CXh)i[bV)J + mwo]r exp(ima), (9)
ni =_ - i
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where use has been made of ezp(ibsina) = F __, Jm(b)ezp(ima), and Jm(b) is the

Bessel function of the first kind of order m.

Integrating dw'/dt' = iwcw'+ (wc/ko)(6B/Bo)(d/dt')exp(ik4z') with respect to t', and

imposing v',(t' = t) = vx = vcos4 and =(t' t) = v. = vjsin, we find

v'(t') + iv'(t') = vcos(wer + 4) + ivisin(wer + #)

+ expi[koz - e(koVb/w)sinaj

x (koVb+mw) ep(ima)
wM } (koVb-we+mW6 )

x [expi(koVb + mUo)r - exp(iwT)]. (10)

II. SPONTANEOUS EMISSION COEFFICIENT

The spontaneous emission coefficient rin(x, p) is the energy radiated by an electron per

unit frequency interval per unit solid angle divided by the time T = L/Vb that the electron

is being accelerated in the wiggler field. (Here L is the length of the interaction region.) We

assume a circularly polarized radiation field 6E = 6E(ex ± iey)exp(ikzr - iwt) propagating

in the z-direction, where w and k are related by w = kc in the tenuous beam limit. For

observation along the z-axis, the spontaneous emission coefficient 7i(x, p) is given by 18

1 d21 T22
1-T dd 42 T dr4 X (4 X vj)ezpi(kz- wr)j. (11)

TwdQ2 = 47rcT f

In Eq. (11), the transverse orbit ej is given by Eq. (10), and the factor expi(kz' - wr)can be

expressed as

expi(kz' - wr) = expi[kz - e(k/ko)(koh/w 6)sina]

X J w ) ezpi(kVb - W + ewb)r exp(iea). (12)

Making use of Eqs. (10) and (12), the r-integration in Eq. (11) can be carried out in a

straightforward manner. This leads to two types of resonant factors contributing to 7 :

(w - kVbF w, - w6)~' (CyclotronResonance).

and

1(w - (k ± k))Il% - (t d- m)av)]~' (BeamResonance).
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For present purposes, we examine the spontaneous emission coefficient 71 for frequency w

near the fundamental beam resonance (t + m = 0 and w - kV6 - koVb 0) and the

fundamental cyclotron resonance corresponding to right-hand circular polarization (t = 0

and w - kVb - w, r 0), and neglect those terms in 17, corresponding to sideband emission

at harmonics of w6. Substituting Eqs. (10) and (12) into Eq. (11) then gives

e2W2 CO ko% V
7(x, p) 82rc3T 7, Jme .6)exp(ima) vLexpi(O - koz)

we 6B kob+ mw6  ( k koVb) [expi(we+kV -w)T-1]
koBokoVb - W+ mw 6  j o _W6 i(w + kVb - w)

+ B )(exp(_im )J k koV koVb + mw6

ko U c 6 o b - 6 + M406

X [expi(koVb + kV - w)T - 11 2 (13)
i(koVb + kVb - w) ,

where T = L/Vb is the length of time the beam spends in the interaction region, and use has

been made of the identity exp[if(koVb/w 6)sina = F , J ..(EkuVb/w)ep(ima). In

obtaining Eq. (13), we have retained only the t = 0 contribution in the cyclotron resonance

term and the t + m = 0 contribution in the beam resonance term. We now consider Eq.

(13) for ekoVb/w 6 < I and retain only the lowest-order m = 0 contribution. (Typically,

if we estimate v, Vb and v_ P Vb(6B/2BO)'1 3 , then ekOVb/w 6 < 1/3.) This gives the

simplified expression for t7,

e W 2(AkOVb'\A k koVb)7L(x, ) = 87r2c3T 0( W6  J
X Ivexpi(#-J koz) + (B )1/3V [expi(w + kVb - w)T -1]

2Bo J i(w + kVb - w)

6B [( 1/ 3vb] [expi(ko Vb + kVb - w)T - 1] 2
2 BO} i(koVb + kVb -w)

wdhere use has been made of (5B/Bo)(wc/ko)koVb/(ko1b - we) = -(B/2B)/ 3 [Eq.

(6)1. -

It is important to note that the wiggler field contributes a relatively large transverse

velocity component (SB/2E) b/3 ' to the cyclotron maser term in Eq. (14). Indeed, it is

evident from Eq. (14) that the cyclotron maser and FEL beam resonance contributions to the

spontaneous C11iSSiOn 7 are generally comparable in si.c and represent competing processes

when the system is close to beam-cyclotron resonance (k- a w,). For simplicity, we now
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consider Eq. (14) in circumstances where the system is either close to cyclotron resonance

(w - kVb - w~ 0) or close to beam resonance (w - kVb - koVb ~ 0) and neglect the

cross terms in Eq. (14). This gives

rL(x, p) = riM"(x, ) + rEL(x, )
e22T 2 koVb k koVb
87r2C3 - ) k-a-w.5

X V2 + (B \2/3 V2 + 2vLVb 1/3 S(# - kz) sin2 [(w - kVb - w,)T/2]
2B [ 2B [(w - kVb - w,)T/2

+ (B 7) 2 sin[ - kVb - koVb)T/2] (15)2 N[(w - kVb - koVb)T/2]2

We reiterate that the cyclotron maser and FEL contributions in Eq. (15) are generally

competing processes. It is important to note, however, that one or other of the emission

processes can be made to dominate by judicious choice of the length L = V6T of the

interaction region. For example, for the FEL contribution to dominate with w - kVb -

koVb 0, the cyclotron maser contribution in Eq. (15) is negligibly small whenever (w -

kVb - we)(L/2Vb) ~ n~r where n is an integer and the first sin2 factor in Eq. (15) is ap-

proximately zero. Forw - kVb - koVb ~ 0, this condition becomes (koVb - wc)(L/2Vb) =

-(B/2B) 2/3 (Lc/Vb) ~ n~r, which determines the critical length for suppression of the

cyclotron maser effect. Here, use has been made of Eq. (6) to evaluate koVb - w.

IV. AMPLITUDE GAIN IN TENUOUS BEAM LIMIT

With the expression for the spontaneous emission coefficient q, given in Eq. (15)

the amplitude gain r can be determined from the classical limit of the Einstein coefficient

method. 18 The amplitude gain per unit length is given by (r > 0 for amplification)

4&rc *
r = -- rF ] d4] dp, dppr

Wm o T fCf of

X o -- + Vi-- (16)

where fj(p 2 , p.) is the equilibrium distribution function for the beam electrons, w = kc

is assumed in the tenuous beam limit, v: = pz/-m and v 1 = p_/ym are the axial and

transverse Nelocities, and 1mc2 = (m2 c' + c2p + c2p2)'/2 is the electron energy. In Eq.

(16). we havc introduced a phenomenological geometric filling factor F which is related to

the ratio of the electron beam cross sectional area to the area of the emitted radiatior.3
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For present purposes, we consider an electron beam that is cold in the axial direction

and has constant transverse momentum, i.e.,

f = (p - -/bmVO)6(p2 - -YbmV), (17)27rpL-

where nb = 27r f_*, dp, f* dpjpiff = const is the beam density, and -1 = (1 - /C2 /c2)/ 2

Substituting Eqs. (15) and (17) into Eq. (16) and integrating by parts with respect to p, and

p_, we obtain for the gain r

r wwFL2  ( SB )2/3( a sin2o'

16-bc3  GBb ) O20 kO e2 )

-- FL [a(sin0 i2  ,(18)

where w = 4irnbe2/m, and

0= (w - kV - koVb)T/2,

= (w - kV - wb)T/2,

= J(b_) + 2 J_(b), (19)
n= I

with T = L/Vb, Wcb = eBo/-ymc and b_ = (k/2ko)(wc/w 6)(B/Bo)(koV0 /w). In obtain-

ing Eq. (18), we have approximated J2(ekoV/w 6) - I in Eq. (15) since ekoV/w < 1. On

the other hand, the factor J2(FkV/w 6 ) has been retained since (k/ko)E(kVb/w 6) is typically

of order unity because of the upshift in k/ko. The factors a, and a 2 occurring in Eq. (18) are

defined by

a,= (1 - C V ) GI(b),

a2= 4 1 VL GO(b)

-3(B/ 21 )/3V _ _c + 23 Gi(b±), (20)
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where G1(b_) = f' da/27r sin a Jo(2bsina)Ji(2bsina).

Equation (18)-is valid for low gain (rL < 1) and c/wL < 1. A careful examination

of Eqs. (18) - (21) shows that the terms proportional to a, and a2 can be neglected for

typical parameters of experimental interest, provided Go(b_) is not too small (b_ < 1.5, for

example). In this case, Eq. (18) can be approximated by

ww2 L2 ( 6B )2/3( a in20 ) VO 2 + B )2/]( , sin2o
1636c3 GVb) 2 2B ft t2

(21)

The first term in Eq. (21) corresponds to the FEL (beam resonance) contribution calcu-

lated near cyclotron resonance. The second term in Eq. (21) corresponds to the cyclotron

maser contribution, including the important influence of the wiggler field. As indicated ear-

lier, both effects are generally competing, although radiation generation by one process can

be made to dominate over the other by judicious choice of the length L of the interaction

region. For example, if the FEL contribution in Eq. (21) dominates, then the maximum

gain occurs for (92 /80 2)(sin 20/ 2) = 0, which gives 6 :: 1.3, The corresponding value of

(68)(sin 2 0/0 2 ) is -0.54, and the maximum FEL gain from Eq. (21) is

wwyFL26B 2/3
S fAx = 0.54 16-ycO Go(b_)() (22)

It is important to note that the FEL gain far from cyclotron resonance (w - kV ~.

koV > we) can be calculated for a tenuous beam in the low gain regime using entirely

similar techniques 1-5. The basic modification of the present analysis is to replace Eq. (7) by

z'= z+vr, Eq. (10) by v'+iv,, = vexpi(wer+O)+w(6B/Bo)(kov, - we)-lezp(ikoz)X

[exp(ikovzr) - exp(iwer)], and to assume that the beam has small transverse momentum

with V0 < VI in Eq. (17). The resulting value for the maximum FEL gain ro far from

cyclotron resonance (w - kV t kVb > we) is given by 1-5

ro = 0.54 16-3 k W WF 2 B(). (23)

Comparing Eqs. (22) and (23), we see that the FEL gain close to cyclotron resonance is

enhanced relative to its valic far from resonance by the factor

1' _1 ( 21PGo(b ) (24)
17 0 41\ 61 J \ r0b
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For Go(b_) of order unity, the gain enhancement in Eq. (24) can be several orders of

magnitude, depending on the values of 6B/Bo, -1, etc. The frequency upshift close to

cyclotron resonance will be somewhat lower, however, because of the sizeable transverse

energy. Solving w - kVb ~ koV and w ~ kc gives

koVb (I + Vb/c)7 koVb (25)
(1 - Vs/c) I+ -y2VO2/c2

where (1 - V /c2 _OL2/c2)-1/2. If we estimate V'sA' (6B/2Bo)1/3', close to

cyclotron resonance, then the VO 2 reduction factor in Eq. (25) is negligibly small provided

(6B/2Bo)2 / 3(V/c)2

Finally, we point out that the expression for the growth rate derived here is valid

only when the small longitudinal and transverse spreads in electron momenta Ap, and

Ap_, respectively, satisfy the inequalities c/Lw > (Vb/c) 2 Ap,/-mVb and c/Lw >

(V'L/c) 2 p±/-YbmV' .

This research was supported by the Office of Naval Research.
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