
Preprint PFC/JA-80-28

NUMERICAL SIMULATION OF OSCILLATING MAGNETRONS

A. Palevsky and G. Bekefi

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

and

A. T. Drobot

Science Applications, Inc.
McLean, Virginia, 22101

December 1980



NUMERICAL SIMULATION OF OSCILLATING MAGNETRONS*

A. Palevsky and G. Bekefi

Department- of Physics and Research Laboratory of Electronics

Massachusetts Institute of Technology

Cambridge, Massachusetts, 02139

and

A. T. Drobot

Science Applications, Inc.

McLean, Virginia, 22101

ABSTRACT

The temporal evolution of the current, voltage and rf fields

in magnetron-type devices has been simulated numerically by a two-

dimensional, electromagnetic, fully relativistic particle-in-cell

code. The simulation allows for the complete geometry of the

anode vane structure, space-charge limited cathode emission, and

the external power source. The code has been applied to mag-

netrons operating in the relativistic energy regime.
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Unprecedented rf powers (-300MW to -3GW) have been achieved

in elativistic magnetronsl-9 operating at voltages from several

hundred kilovolts to 1MV, and drawing kiloamperes of current from

field emission cathodes. These impressive results have reawakened

an interest to better understand the interaction of the electro-

magnetic field and the dense space charge cloud in magnetron-type

devices. Numerous attempts have been made over a span of forty

years,"- 1 4 to calculate self-consistently the rf fields under the

large signal conditions prevalent in the magnetron, and from these

to predict the current, voltage, microwave power and efficiency.

Since these studies are based on certain assumed steady state con-

figurations, they give but a qualitative understanding of the

phenomena. At best, they yield magnetron scaling lawsi useful to

microwave tube designers. This Letter describes a self-consistent

numerical simulation which addresses itself to those questions

that have eluded analytic techniques. The simulation is a two-

dimensional, electromagnetic, fully relativistic particle-in-

cell"'1,17 code. It includes the complete geometry of the vane

resonators embedded in the anode block, rf loading of the resona-

tors, space-charge limited emission from the cathode, and the ex-

ternal voltage source of finite impedance. The simulation is also

applicable to smooth bore magnetrons's, 1120 and to the study of

magnetically insulated high-voltage transmission systems.2' The

code embodies several major improvements over an earlier magnetron

simulation22 which was electrostatic (in the moving wave frame),

and which did not treat the anode geometry in detail.

Our simulation has been applied to a 54 vane inverted rela-

tivistic magnetron9 operating at a voltage of -300kV and a magnetic
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field of -0.17T. Because of the large radius of curvature of the

anode block, it was possible to approximate the cylindrical device

by a planar analog, two vanes of which are shown to scale in Fig.

1. In the simulation, the two-vane structure was represented on a

32x32 mesh, and the fields and particle positions were integrated

forward in time with successive time steps of 2x10- 12 s. Each of

the simulation particles contained 2x1010 electrons. At time t=O,

a voltage ramp was applied to the cathode-anode gap with a rise

time of 3x10-'s (-15 cyclotron periods) reaching a maximum value

of 600kV. A series resistance of 375P. was placed in the external

circuit.

Figure 1 shows the particle distribution at two instances of

time. At 5ns, the magnetron is essentially in its "preoscilla-

tion" 23 stage. No particles reach the anode and the diode is said

to be "magnetically insulated". Most particles are confined to a

region which extends from the surface of the cathode to the top of

the theoretical space charge layer (shown by the horizontal dashed

line) above which no particles could in principle reside if steady

state, equilibrium conditions were reached in an adiabatic manner.20

That particles do find their way above this layer is indicative of

the fact that the space charge cloud is perturbed by transit time

effects even in the preoscillation stage of development. Indeed,

the absence 24,25 of a sharp space charge boundary and the presence

of turbulent oscillations 20 ,26 have been observed in a variety of

experiments. At 15ns the magnetron is in its fully oscillating

state. This is characterized by the presence of rotating space

charge spokes,1 0 ,1 2 ,2 2 one of which is seen in the lower half of

Fig. 1. Now, despite the strong perpendicular magnetic field,
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particles can cross from cathode to anode under the influence of

the large rf fields which exist both in the gap and in the vane reso-

nators. The change in thickness of the space charge cloud in go-

ing from 5ns to 15ns is due to a fall in the magnetron voltage.

Our numerical simulation also yields a complete space-time

history of the particle momenta. Figure 2 illustrates the spatial

distribution of the momentum components parallel to the cathode

surface during the preoscillation stage (5ns), and during the

fully oscillating stage (15ns). The vertical dashed lines once

again delineate the "classical" boundary of the space charge cloud,

and the horizontal dot-dashed lines give the corresponding values

of the momenta of these boundary partidles, as calculated for

Brillouin equilibrium. We see from the top diagram of Fig. 2 that

at early times (5ns), the momentum is strongly sheared, rising al-

most linearly from zero at the cathode to its maximum value at the

space charge boundary. This behavior is in good agreement with

predictions of steady state, cold fluid theory." Of course, the

spread of momenta about the average, suggesting finite temperature

effects, is not predicted by the fluid model. At late times (15ns),

particles residing within the space charge cloud continue to have

an approximately linear momentum versus position behavior. How-

ever, particles near the top of the spat-e charge layer are scat-.

tered by the strong, synchronous rf fields that exist there. For

efficient wave-particle interaction to occur, near synchronism

must exist between the particle velocity and the phase velocity of

the slow electromagnetic wave traveling along the structure. We

find that at 15ns, synchronism occurs for particles residing at

the very top of the Brillouin layer, traveling at a velocity of
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1.13xlOm/s. Lower lying particles are not synchronous, and here

the rf fields, though strong, have little effect beyond possibly

causing mild particle heating. We note that the observed synchro-

nism of the uppermost layer is a statement of the fact that our

fully oscillating magnetron operates exactly at the Buneman-

Hartree7, 2 8 oscillation threshold.

A study of the spatial distribution of the vertical particle

momenta sheds light on a long standing controversy between two

steady-state models. Is the electron flow laminar, parallel to

the cathode, as proponents" -3 4 of Brillouin or "parapotential"

flow would have it? Or are the electron paths cycloidal, begin-

ning and ending on the. cathode, as Gabor and others have claimed?
3 5-40

Results from our simulation show that the flow is mixed: at any

given time, there is a class of particles whose motion is largely

laminar, and a class of particles whose motion is largely cycloi-

dal, together with particles exhibiting a gradual transition be-

tween these two states. Cold fluid- theory ddes not predict the

existence of the in-between type- of motions.

The temporal buildup of the current, voltage, and the rf

fields is illustrated in Fig. 3. The amplitude of the rf field in

the expected mode of operation (the 7 model in which fields in

adjacent vanes are 180* out of phase) was initialized in the com-

puter code. This "priming" was done in order to reduce computer

costs, since it was not known a priori how long it would take the

signal to grow from noise (as it does in an actual magnetron).

The current drawn during the first three nanoseconds is due mainly

to the capacitive charging of the device which has initially a

very large impedance. In the time interval from -5ns to -8ns,
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the current rises, the voltage falls, and magnetic insulation is

broken; the rf fields grow exponentially. This short time inter-

val, less than 10 cyclotron periods long delineates the "small

signal" stage of operation. From 8 to 13ns, the current and the

fields increase more slowly and beyond -13ns the system settles to

an approximate steady state. At this time, 8% of the total power

from the external circuit appears as microwave power deposited in

the rf loads which terminate the vane resonators. The remainder

of the power is deposited in the form of heat in the anode (74%),

and through back bombardment" ,23 of the cathode (18%). The rf

fields are high both in the vanes and in the gap, and are of the

order of or greater than the dc field. Consequently, there is

strong coupling between the way particles are created at the cath-

ode (the emission law), and the rf fields that exist there. For

example, at 15ns, the ratio Vrf/Vdc= 1 .8 where Vrf is the rf elec-

tric field integrated over the length of the vane resonator and

Vdc is the dc voltage across the anode-cathode gap. This high

value of the ratio Vrf/Vdc is undesirable from the point of view

of a practical device, and is probably due in part to the high Q

we have chosen for the vane resonators (Q=550). Lowering the Q

may also improve the efficiency of the device. However, no attempt

has yet been made to optimize the magnetron by varying parameters

in the simulation.

We have also begun a particle simulation (in r, e coordinates)

of a compact six vane magnetron1' 2,3 operating at a frequency of

4.6GHz and capable of delivering7 an average power of -400MW at a

voltage of 350kV and'1 -900MW at a voltage of lMV. This unusual

magnetron is characterized by a very small anode-cathode gap size
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(0.55cm), which has the tendency to short out the tangential rf

electric fields. Consequently,7 the device operates in the 27r

mode, in which the rf fields in adjacent vanes are in phase rather

than being out of phase as is the case in conventional magnetrons.

In conclusion, then, we have presented some initial results

from our magnetron simulation. To achieve these results several

innovations were incorporated in the code. The first was the in-

clusion of the complete anode vane structure in the treatment of

the applied and rf fields. Previous simulations 22 modeled only

the anode-cathode gap and used L-C lumped circuit models for the

resonators. Second, rf loads were included in the resonators to

allow for the adjustment of the cavity Q and load symmetry. Third,

the cathode was modeled by an algorithm that produces local space-

charge limited emission. This was accomplished by placing enough

new particles into the simulation along the cathode at every time

step to reduce the local perpendicular electric field to zero.

The technique4 2 leads to the correct relativistic form of the

Child-Langmuir law"3 for the case of smooth surfaces, and zero in-

sulating magnetic fields. The advantage of this algorithm is that

it performs correctly for irregular geometry and in the presence

of the large.dc magnetic field and rf fields. The technique has

been previously used only in electrostatic codes.

Finally, the power supply for the magnetron was included in

the simulation, by coupling a lumped circuit model for the gener-

ator to the particle-in-cell code. The circuit consisted of a

voltage source with a series resistor and inductor, (but this

could easily be extended to include more components). A time in-

tegration of the circuit parameters and of the voltage across the
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anode-cathode gap generated the circuit current. This current ap-

peared as a displacement current in the simulation and generated

an electric field there. However, in the presence of strong rf

fields the conventional definition of voltages, V=fE-dt, is not

appropriate. A more general definition was therefore invented 4

which reduces to the conventional result for purely electrostatic

fields and also leads to energy and charge conservation in the

combined lumped circuit and 2-d particle-in-cell simulation.
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Fig. 1.

Fig., 2.

Fig. 3.

FIGURE CAPTIONS

Particle positions in the cathode-anode gap of a linear

magnetron 5ns and 15ns after applying the external volt-

age. The anode block is shown shaded. A dc magnetic

field of 0.172T is perpendicular to the page.

Distribution of particle momenta resolved parallel to

the cathode surface at 5ns and l5ns. The cathode is at

position zero meters. The anode is at 1.97x10-2m and

the top of the resonator vanes is at 4.50x10-2m.

The temporal development of the magnetron current, volt-

age and rf magnetic field. The field is measured inside

a vane resonator and its amplitude is in relative units.
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