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ABSTRACT

A mechanism is proposed to account for the energy release by a bipolar current loop in the solar atmos-

phere. This mechanism is electromagnetic in nature and utilizes the non-zero J X B forces. No dissipation of

the magnetic energy by resistivity, magnetic reconnection, or circuit interruption is required. From the observed

fact that bipolar current loops do exist in quasi-equilibrium in the solar corona, a class of equilibria is deduced.

It is shown that these configurations cannot be force-free. A simple model current loop is used to illustrate

this mechanism. It is found that some equilibrium loops are unstable to major radius perturbations, resulting

in expansion of the loops. The condition for instability is given in terms of a circuit parameter f. A critical

current Ic, o 1011A is found to exist such that a current loop with I >> Cr can attain high supersonic velocities

producing strong shocks while a current loop with I < I,. expands at slower subsonic velocities. As the loop

expands, the J X B force converts the magnetic energy into thermal and particle kinetic energy in the regions

immediately outside the loop. The time scale of the energy release is found to be tens of minutes for the

supersonic case, corresponding to solar flares, and much longer for the subsonic case, corresponding to corona

heating.

* Visiting Scientist, on leave of absence from Institute of Mechanics, Chinese Academy of Sciences. Beijing, China.
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I. INTRODUCTION

It is generally believed that the energy released in solar flares and corona heating is derived from the

magnetic fields associated with currents in the corona. The fundamental unanswered question is the nature

of the mechanisms which convert the magnetic energy into other forms of energy such as thermal and kinetic

energies. For solar flares, the energy release takes place in tens of minutes. while for corona heating, the time

scales may be much longer.

The recent Skylab observations show that a large fraction (up to 80%) of solar flares are associated with

bipolar current loops. A typical loop has a major radius of 104 - 105 km (solar radius R * 7 X 10 km),

minor radius 103 - 101 km, and is immersed in the corona with temperature 2 X 10' K and densities

1010 - 1012 particles/cm3. The energy released is 1028 - 1032 erg. One important observed property of such

toroidal structures is that they may be stable for up to a day.

Previous flare theories have invoked current interruptions (Alfven and Carlqvist,1967), magnetic reconnec-

tion (Vasyliunus,1975), and resistive dissipation (anomalous resistivity) (DeJager and Svestka,1969) of the mag-

netic fields. For recent reviews on solar flares, see Sturrock (1980) and Svestka (1976). The need of anomalous

resistivity arises from the fact that the classical conductivity in the corona is a P 1016 sec- 1, corresponding

to a collision frequency of v/wpe '' 10--7. However, due to the large inductance of the loop, the effective

conductivity must be as low as a ' 105 sec- 1 to allow the loop to dissipate its energy on a time scale of 10

minutes, requiring resistivity (collision frequency) enhancement of eleven orders of magnitude.

Another frequently invoked asusmption is that of force-free equilibrium configurations (I X B = 0),

neglecting the gas pressure. Recently, a number of investigators (Giachetti, Van Hoven, and Chiuderi, 1977)

have pointed out, on the basis of observation, the possible existence of non-zero pressure gradient across

the minor radius. However, the non-zero pressure gradient is still considered negligible in considering the

stability of the current loop and the energy conversion mechanism. In this paper, we point out that the positive

pressure gradient along the minor radius is a necessary requirement for the existence of quasi-equilibrium

toroidal current distribution. Based on this realization, we propose a specific mechanism in which the non-zero

I X B force plays the central role in converting the magnetic energy into thermal and particle kinetic energies.

Furthermore, this model does not require resistive heating (anomalous resistivity), current interruption and

magnetic reconnection.
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A related phenomenon of importance in the solar atmosphere is the heating of the corona to high tempera-

tures ( - 2 x 10) K). Recently, a model for corona heating has been proposed in which resistive heating,

magnetic reconnection, and wave heating are neglected (Book,. 1980). This model, however, also uses a force-

free configuration and buoyancy force. In the context of our present model, corona heating can be understood

as due to current loops evolving on much slower time scales than those of flare-causing loops, while dissipating

the magnetic energy by the non-zero J X B force. In this regard, important parameters 'Cr and c will be intro-

duced. In particular, these two parameters determine the stability properties against major radius perturbations

and the time scales of energy conversion.

It. TH E STRUCTURE OF T" UE SOLAR CORONA.

In this section, we give a brief description of the solar corona and a typical current loop. Throughout

this paper, we will refer to the values given below. The current loop has a major radius R, minor radius a,

temperature T, number density r, and pressure p. It is assumed to be at a height ~ R from the photosphere.

The ambient corona has a density na, temperature T and pressure Pa. The values of these parameters are as

follows:

R = 10 10 cm,
a = 109 cm,

p = average internal pressure,

na = 5 X 10"cm,- 3

Ta = 1.5 X 10 60K,

It = 2 X 10"A.

The corona pressure is thus Pa = 2nakTa = 207dyn/ cm 2 . The characteristic scale height H of the corona is

H' 2kTa = 1.4 X 100 cm,
mig

where g = 2.4 X 104 cm / sec 2 is the gravitational acceleration in the region of the current loop. Thus, the

corona pressure takes the form

Pa(SR) = po exp(-IR/H), (1)

where po is the pressure at the top of the current loop and Ris the distance from the loop measured along the

major radius.
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III. EQUILIBRIUM STRUCTURE OF A CURRENT LOOP.

We start our analysis from the fact that observation shows the existence of quasi-equilibrium bipolar

current loops in the corona. In our analysis, we consider a single isolated loop as shown in Fig. 1. The

electromagnetic and presure forces acting on a toroidal plasma is given by the following quation, well known in

the study of fusion plasmas(Shafranov, 1966);

dV rI[ 8R3I
M = [In ( 2 + , (2)

dt C2  a2 2

where

M = (7r 2 a2Rp) =- total mass of the semi-circular loop,
p = average density of the loop,

V = velocity of the loop along the major radius,

It = total toroidal current,

4j = internal inductance tj = 27r f
[ a2B (a)

FP = drag force.

In the above expression, only the force acting on the loop above the photosphere is included. The quantity ,3 is

defined as follows in terms of the average internal pressure p and the poloidal magnetic fieldBp measured at the

edge of the minor radius;

OP=P - Pa(3
#" (3)

The equilibrium condition is obtained by setting and dV/dt = 0. Thus,

p =-ln(8 R) - + . (4)

Since 4j is of order unity, we see that Pp is negative. Equation (3) shows that a necessary consequence of the

existence of a toroidal current loop is that the average internal pressure be less than the corona pressure;

P - Pa < 0. (5)

Then, pressure gradients inside the current loop must be mostly positive along the minor radius and the fre-

quently used force-free (J X B = 0) assumption is inconsistent with an equilibrium toroidal loop in the

corona. As an example, we take a surface current distribution for which 4j = 0. Then,

Pp = -2.9.
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We deduce another important property of the current loop from the inequality (5). The equation for the

equilibrium force balance along the minor radius is

d p Idp = J B - JtBp), (6)
dr C

where Jp and J refer to the poloidal and toroidal current densities, and Bt and Bp refer to the toroidal and

poloidal components of the magnetic field, respectively, as shown in Fig. 2. For a bipolar current loop with the

toroidal current flowing in one direction, Eq. (6) shows that there must be a sufficiently strong poloidal current

distribution in order for dp/dr to be positive inside the loop. In general, a relationship between Bt and Bp can

be determined from Eq. (4) for a given equilibrium.

The negative #p has two important consequences. One is that toroidal equilibria with sufficiently large

dp/dr > 0 are MID stable (Xue,1980). Secondly, /p < 0 implies that the total electromagnetic force (I X B)

is radially outward along both the major and minor radii. The role this fact plays in energy conversion will be

investigated in the following sections.

IV. THE EVOLUTION OF A CURRENT LOOP.

A. A Model Current Loop.

In this section, we use a simple model current distribution to describe the evolution of a current loop

initially in quasi-equilibrium in the corona. In order to illustrate the basic mechanism unambiguously, we

choose a simple current profile consistent with the requirements obtained in the preceding section.

Let the current be distributed over a thin layer of thickness 6 at the minor radial boundary r = a. We

define It and Ip by the following expressions.

It 27r dr rJ,
and

Ip 2R ftdr Jp.
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In determining the equilibrium pressure profile, we approximate the large aspect ratio (R/a s 10) loop by a

straight cylinder. The equilibrium force balance is given by

d B+B 2  B p
dr 8r 47 r

Inside the current loop, we have

2I,
Bt fp

0, r < a (8)

P =
and outside the current loop, we have

Bt= 0,

Br = ( ) , r > a (9)ca r

P = Pa,

where p,, is matched to the corona pressure. Integrating Eq. (7) across the boundary at r = a, we can relate p

and p,. Expressing this jump condition in terms of#P [Eq. (3)], we find

B(0)

B2(a)'

In this surface current model, we have ti = 0. From Eq. (4), we determine the equilibrium value ofap

Op = -2.9,

where R/a = 10 is used. Thus,

B (a)
p - pa = -2.9( 8x~a87r

Bt(O)
Ba)= 1.97,

By(a)
and

'p ft
_(1 - pp)1/2 19.7.

From the estimated value of It ~ 2 x 10"'A, we find

Bp(a) - 40gauss,

Bt(0) - 78.8gauss,

B2  B 2  2
P = Pa - ( - ) = 22.4dyn/ em,

2
pa = 207dyn/ cm,

and

Ip = 3.9 X 101 A.
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From these values, we estimate the total magnetic energy of the system.

B 2

t = (72a2R) = 2.4 X 10 3 t erg,87r

EP = LtI = 3.0 X 103 erg,

6T = (t + f, = 5.4 X 1031 erg. (11)

where L is the self inductance of the circular current loop given by

41R R L 2
L = -2 [ln(8-) - 2] = 3.33 X 10-' cm sec. (12)ca

Here, only the energy associated with the loop above the photosphere is included. It is of interest to note that

Eq. (2) can be reproduced from Eq. (11) using the principle of virtual work.

From Eq. (11), we find
8=T7 I2 8R 1 3

FEM n----

This is the electromagnetic force acting along the major radius. The partial differentiation with respect to R is

carried out holding the currents constant so that the magnetic field is allowed to vary according to the changes

in the circuit geometry. Note that the electromagnetic force depends on #p. This simply means that the pressure

difference (p - pa) affects the current distribution which determines the electromagnetic force. If we consider

the toroidal and poloidal energy content, we have

O _t 7rI2
ft -(PP-)

and
0_p 7rIt 8R
Oft -P c2 [ln( -a

This shows that during the major radius expansion, the poloidal magnetic field component Bp does work (JtBp)

on the current loop. Thus, Bp loses energy to the loop. On the other hand, the loop does work (JpBt) on the

toroidal magnetic field component so that B gains energy from the loop motion. The net result is a loss of

energy from the magnetic field.

During the minor radius expansion associated with the major radius expansion, the Bp component gains

energy while the Bt component loses energy to the fluid elements moving radially outward. The net loss by the

magnetic field is

C2 a
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where a small displacement 6a is considered.

If we calculate the radially inward pressure force acting on the current layer, we find the total pressure

force Fp is given by

n2

We see that Eq. (2) contains the net electromagnetic force and pressure force acting along the major radius.

During the major radius expansion, the loop does work against the pressure force (Fig. 2).

B. Evolution of the Model Current Loop.

For the evolution of the model current loop, we consider the forces acting on the current loop by perturb-

ing the major radius by a small amount from the initial equilibrium position. Then, Eq. (1) shows that the

corona pressure pa(R) changes by

6R
-Pa = - Pa (13)

where pa refers to thte coronal pressure at the equilibrium position and H is the scale height given in Sec. II. It

should be noted, however, that although the small displacment 6R is applied uniformly to the major radius, the

feet of the current loop are fixed in the photosphere as shown in Fig. 1. The electromagnetic force acting on this

loop is calculated from Eq. (2);
dV 7rI 6R 6a

Md = _(_ - + 63p) (14)
dt C2  R a

where M = 7r 2a2Rp, V = d(SR)/dt, and Sa = change in the minor radius. The quantity 6/p is [Eq. (3)]

6 p 6 - 6Pa -2p6Bp6#p =- 2p,(15)
B2/8r Bp

where 6p is the change in the average internal pressure.

Due to the small resistive dissipation, there are a number of conservation relationships. One is

Bta 2 m const (16)

and another is

LT It const (17)

where LT is the self inductance of the entire circuit including the part below the photosphere. The change in It

actually depends on the geometry of the entire circuit. If the bipolar loop is only a small part of the total circuit,
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then It remains nearly unchanged. In this case, we set

It ~ const. (18)

Moreover, we assume that the current loop is thermally well insulated fiom the corona on the relevant time

scale. This gives the adiabatic expansion law

p V/3 = const,
and

- - 10_a 5 6R
P = 3 a 3 '(19

where V = 7r 2a2R is the volume of the loop.

Using the definition of Op,

6P 6 P, - 5(2 6a+ 6R1+? PR6
-pa =R +(Pa-

B 2 6B B 6Bt
= 2[7( Bp 87 B

Thus, we obtain
6a a paR/H - (5/3)p (20)
6R R 4(B2/8ir)(1/2 - op) + (10/3)-(

For the loop described in Sec. II,
6a .12(a).
6R 01

This shows that the minor radius expands at approximately 0.12 of the major radius expansion rate. Thus, all

the fluid elements inside the current loop have radially outward velocities (6R > 0 for the time being) along

the major radius.

Using Eq. (18), we obtain
6Bp _ 6a

Bp a

and we find

6#3p = 2(1 - #P)(-6a) (21)
a

where p is the average internal pressure and pa, is the corona pressure in the equilibrium position. Using Eq.

(20), we find

63p = 2(1 - p) "paR/IH - (5/3)p 6R (22)
4(B /81r)(1/2 - op) + (10/3)p) R
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Thus, Eq. (14) becomes

1+1-2, 2_ (23)dV __in 1 + (1 - 2#m) paR/H - (5/3)p 6R (23dt c2 4(B /87r)(1/2 - Op) + (10/3)p R ?'

where V = d(6R)/dt. For the current loop described in Sec. II, we have

dV t87It )(R)
dt . c2 RJ

and the current loop is unstable to a small displacement along the major radius. Since the quantity in the square

brackets in Eq. (23) is (SR/R - 6a/a + 6j3p), it is always positive [Eq. (20)].

Integrating Eq. (23) with respect to time, we obtain

611 = 6Roexp( ),

and

V = - exp(-),

where

Mc2R 1/2 paR/H - (5/3)p
T =I [ 1 + (1 - 20p) 4(B2/8r)(1/2 - p) + (10/3)P J (24)

Thus, the major radius expands with the e-folding time r. For the model current loop describe in this paper

r - 270 sec.

Here, the interior number density n is taken to be 1011 cm-. It is of interest to note that r - It1 . A current

loop with smaller It e-folds more slowly.

In the above analysis, we set It = constant. This is equivalent to stating that the observed current loop

in the corona is a small section of a much larger circuit imbedded below the photosphere. If, however, the

structure of the entire circuit is such that the current It can change significantly, then Eq. (17) leads to

6It ln(8R/a) - 1 6R 1 a

It I ln(8R/a) - 2 R ln(8R/a) - 2 a,'

where the important quantity ( is a function of the ratio of the magnetic flux encircled by the loop above the

photosphere and the flux enclosed by the entire circuit. The value of r ranges from zero to unity. If we set

( = 1 in Eq. (25), then

6a = a ( B ,2,) n(8R /a) - 1 (5 3 p B 2I 10 P
_ a 2 In(8R/a) + paR/H - (5/3)p[2(- )(/ + I - 2,3 + 4 ,61? R 87r) ln(8R/a) - 2 J[8r n(8R/a) - 2 ' 3 ~ J
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and

ln(8R/a) - 1 +1 6a 6R
ln(8R/a) - 2 ln(8R/a) - 2 a 8R R

This shows that in the limit e 1, 6p is negative. Substituting the above expression into Eq. (14), we find that

(6R/R - 6a/a + 6,3p) < 0, indicating that the force tends to restore the displacement. Therefore, for e = 1,

the current loop is in stable equilibrium against major radius perturbations. Such a loop may remain in quasi-

equilibrium for an extended period of time. We conclude that a critical value Ecr must exist such that

0 < e. < 1, (26)

corresponding to marginal stability. For a typical loop described in Sec. II, Ccr 0.2.

We deduced the characteristic time r [Eq. (24)] for the major radius of a current loop to e-fold from the

basic laws of physics (for e = 0 case). The exponential expansion is valid for SR such that (6R/H) < 1, where

H - 1.4 X 1010 cm. So far, the drag force Fd has not been specified. From a simple consideration, we obtain

Fd = Cd(27raRV2nami),

where cd is the drag coefficient and ng is the local corona density. This expression shows that the drag force is

determined by naV2 . At the same time, the parameter e increasees as the major radius increases, which tends to

reduce the electromagnetic force. In conjunction with Eq. (2), we see that in some cases, the loop velocity may

attain a quasi-saturation level. Thus, the evolution of a current loop is determined by the competing effects of

naV 2 and e. In particular, if a quasi-saturation level is reached in a region, then we can estimate the order of

magnitude of the saturation velocity 14 by (Cd ~ 0.5 from aerodynamic considerations)

12 1/2
V* t (27)

[mic2naaR(

For example, It = 2 X 10 A, and we have, with na ~ loll cm 3 ,

V* - 108 cm /sec.

The speed of sound in the corona is

52nkT)p 1 7Cnm()1/2~2X10'cm/sec.
3 nmi
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Thus, it is possible for the current loop to attain and exceed the sonic velocity. Note that

V*rvtni/2
a

This shows that loops with low toroidal currents may not attain the speed of sound and loops with high currents

may significantly exceed the speed of sound. We see that there must be a critical current

Icr, t 10"A (28)

which separates the subsonic and supersonic current loops. Moreover, the saturation velocity V decreases for

increasing n. Thus, the loops tend to rise more slowly in the lower corona and the chromosphere.

C. Shock Waves.

If a current loop attains supersonic velocities, shocks are fonned in the corona in front of the expanding

loop. The shock waves propagate with velocity V* with considerable heating in the region behind the shock

front. Thus, heating takes place mainly outside the current loop. In particular, the region near the apex of the

loop undergoes the most heating.

If a shock wave is formed with a velocity V, then we can define

_V11

M = ,

where M is the Mach number and C, is the sound velocity in front of the shock. Since the shock frontmoves

with the current loop (V, = V), the temperature T* behind the shock front can be determined by (Landau and

Lifshitz, 1959)
T* _ [23MS - (- - 1)][(-y - 1)MI + 2] (29)

Ta(y + 1)2M2 (29Ta

where the adiabatic index -y is 5/3. In this example, M, 5 and T*/T ~ M2/3 ~ 8. With T ~

1.5 X 10r K, we obtain

T* c= 1.2 X 10' K.

12



D. Energy Conversion.

It is of interest to estimate the rate at which the magnetic energy is released. For the current loops which

eventually attain high supersonic velocities (M ~ 5) (f < 1 and It >> I), the magnetic energy is converted

into thermal and kinetic energy largely by the shock waves. When the saturation velocity is attained, the

electromagnetic force is equal to the drag force. Thus, the rate at which the magnetic energy is dissipated by the

electromagnetic force is given by Eq. (2) [with the quantity in the square brackets of order unity] multiplied by

the saturation velocity V*,
7rI

2

2 ~ 1.3 X 10 29 erg / sec.

Here, V ~ I X 108 cm / sec and It 2 X 101 "A. We see that a large fraction of the magnetic energy can be

dissipated through shocks on the time scale of hundreds of seconds during the supersonic expansion stage.

For the slower subsonic expansion, we note that the rate of magnetic energy dissipation is proportional to

V3 (Sec. IV.B) and that the saturation velocity V4 for the subsonic expansion is one order of magnitude lower.

Thus, the energy dissipation rate is over three orders of magnitude lower than that of the supersonic case. We

attribute corona heating and solar wind acceleration to energy released by slowly expanding current loops.

V. DISCUSSIONS

In the preceding sections, we investigated the forces acting on a current loop immersed in the solar atmos-

phere (Fig. 1). It was shown that a class of toroidal equilibria exists in the corona and that these configurations

are not force-free, characterized by #p < 0, corresponding to the fact that the average pressure gradient dp/dr

is positive inside the loop. This means that the electromagnetic force is radially outward along both the major

and minor radii. In equilibrium, the electromagnetic force is balanced by the pressure force. If the major radius

expands, then the magnetic field does work to the current loop.

Using a simple model current loop, it was shown that the geometry of the entire circuit, including the

part below the photosphere, is critically important in determining the evolution of the loop. In this regard, we

introduced a parameter e which is a measure of the ratio of the magnetic flux enclosed by the loop above the

photosphere to the flux through the entire circuit. The value of f ranges from zero to one. For e < 1, the

exposed flux is comparable to the total flux of the circuit and for c < 1, the exposed flux is a small fraction

of the total flux. There exists a critical value Ecr [Eq. (26)] such that for e > Ec,, the current loop is a stable
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equilibrium against major radius perturbations. Such a loop may remain in quasi-static equilibrium for an

extended period of time. For e < ec-, the current is an unstable equilibrium. Such unstable current loops

can be further divided into two categories. If the toroidal current It of a loop is less than a critical current

I,. 10"A [Eq. (28)], then the loop expands at subsonic velocities. In this case, the rate of energy conversion

from the magnetic field is relatively slow. We attribute corona heating and solar wind acceleration to the energy

released by such slowly expanding current loops.

If It >> Ic,, then the loop can attain high supersonic velocities, developing shock waves. In this case, the

corona gas in front of the expanding loop can be heated to more than 107 1K, dissipating the magnetic energy

in tens of minutes (Sec. IV.C). We attribute solar flares to these supersonic current loops. In the context of this

model, the dissipated energy manifests itself mainly outside the current loop.

In summary, we have proposed a new model for the evolution of bipolar current loops in the solar atmos-

phere. The model can account for the behavior of current loops with a wide range of parameters; stable current

loops, unstable subsonic loops with low rates of energy release and supersonic loops with high rates of energy

conversion. Furthermore, we have seen that the evolution of a current is not only influenced by what is above

the photosphere but also by what is below. Detailed numerical calculations are being carried out and the results

will be reported in a future publication.
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FIGURE CAPTIONS

Fig. 1. A typical bipolar current loop in the solar atmosphere. R ~ 1010 cm and a ~ 10. cm. V is the

expansion velocity of the loop and V, is the shock velocity. The components of the magnetic field

(Bt, B,) and the components of the current (J, Jp) are indicated.

Fig. 2. The forces acting on the current loop. V is the expansion velocity of the loop, FP is the pressure force

and Frim is the electromagnetic force.
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