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Stability properties are investigated for purely growing (Rey = 0)
tearing modes at marginal stability (Imw = C) for a rotating, non-
relativistiﬁ cylindrically symmetric ion layer immersed in an axial
magnetic field Bg(r)%z = [Bg + Bi(r)]%z. The analysis is carried out
within the framework of a Vlasov-fluid model in which the electrons
are described as a macroscopic, cold fluid, and the layer ions are
described by the Vlasov equation. Tearing-mode‘stability properties
are calculated numerically for azimuthally symmetric perturbations about
an anisotropic ion layer equilibrium described by fg = const x
exp[-(1; + aePe)/Tl - HII/TII]' Here, H, is the perpendicular
energy, H,, is the parallel energy, Pe is the canonical angular momentum,
T, = const. and Tll = const. are the temperatures, “wg = const is the
angular velocity of mean rotation, and the density profile is n(r) =

2
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The marginal stability eigenvalue equation for the perturbation amplitude

2,,.2 4 _ .2 2 2 2
- r0/26 ), where 6 = 2¢ Tl/(miwewpi) and Wi = 4qn

Ae(r) has the form of a Schroedinger equation, with "energy' eigenvalue
kidz and effective potential V(r). This equation is solved numerically

for Ae(r) and the normalized axial wavenumber at marginal stability

(denoted by kgéz) as a function of temperature anisotropy TII/TL’
normalized layer radius ro/é, and magnetic field depression 3;1/2

Oy = . - 2 .
[B0 - Bz(r = 0)]/BO, vhere g, = 8Wn0TL/BO' It is found that the range

of unstable wavenumbers decrezses as T“/Tl is increased, and numerical

estimates are made of the anisotropy required for complete stabilization.




I. INTRODUCTION

There is considerable interest in the basic equilibrium, stability
and transport properties cf intense ion beams in a background plasma.
As a result of recent technological advances in the generation of
intense ion beams, such beams have a variety of possible applications,
including (a) the production of field-reversed configurations for magnetic
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fusion applications,1 “ (b) applications to light ion nd
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heavy ion fusion, and (c) the development of novel techniques for

focussing intense ion beams.17 In this paper, we investigate stability
properties for purely growing (Rew = 0) tearing modes at marginal
stability (Imw = 0) in a rotating, nonrelativistic, cylindrically
symmetric ion layer immersed in an axial magnetic field Bg(r)éz =
{Bo + Bz(r)]éz. The analysis is carried out within the framework
of a hybrid (Vlasov-fluid) model18 in which the electrons are describe&}
as a macroscopic, cold fluid, and the layer ions are described by the
Vlasov equation (Sec. II). Unlike previous detailed'analyses9 of the
tearing-mode instability, no a priori assumption is made that the radial
thickness (6§) of the layer is small in comparison with the mean radius
(ro). Moreover, the numerical analysis is carried out with full cylindrical
effects, and not within the context of the slab approximation.
Tearing-mode stability propertiies are calculated in Sec. III
for tne specific choice of ion distribution function [Eq. (28)]

corresponding to the anisotropic equilibrium
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where H, = (mi/2)(vi + vg) is the perpendicular energy, Hll = (mi/2)v§

is the parallel energy, P . is the canonical angular momentum, T, = const.

6
is the‘perpendicular temperature, Tll = const. 1is the parallel temperature,
n, = const. is the maximum density, and ~wg = const. is the angular

velocity of mean rotation. The density profile corresponding to Eq. (28)

is [Eq. (29)]

r2 - r2
n(r) = nosech2 7 0 >
26
where rz = const. 64 = 2c2T / (m w2w2 ) and wz = 47mn ez/m In the
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present analysis, we assume that the net current carried by the back-
ground electrons is equal to zero, so that the magnetic self field
Bz(r) is penerated entirely by the mean rotational motion of the ions.

The stability analysis in Secs. II and III assumes azimuthally
symmetric perturbations (3/36 = 0) of the form 6w(¥,t) = @(r)exp(ikzz ~ iwt),
and the exact w = 0 eigenvalue equation (18) is derived for the
general class of anisotropic rigid-rotor ion equilibria fg(HL + wePe, Hll)'
For the specific choice of equilibrium ion distribution function in
Eq. (28), the eigenvalue equation (18) is investigated numerically
in Sec. III for two cases: (a) isotropic equilibrium with T, = Tll

and afg/BHl = afg/anl’, and (b) anisotropic equilibrium with T,6, > T,

Ll
and 2£0/3H # afo/aH .
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In the isotropic case (Secs. II.B and III.B), the general
eigenvalue equation (18) reduces exactly to Eq. (35) for the choice of
equilibrium distribution function in Eq. (28). Moreover, Eq. (35) has

the form of a Schroedinger equation for the perturbation amplitude Ae(r),

with "energy" eigenvalue k2 = kidz and effective potential [Eq. (36)]
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where R = r/$§ and R0 = ro/é. In Sec. IIT1.B, Eq. (35) is solved
numerically for both the eigenfunction AG(R) and the eigenvalue
(denoted by kg

normalized magnetic field depression 8;1

62) as a function of normalized layer radius rO/G and
218, - B2(x = 0)1/B,, where

Bi = 8nnOTL/B§.'This procedure determines the critical axial wavenumber
ko corresponding to marginal stability (Imw = 0). In particular,
purely growing (and purely damped) solutions exist for axial wavenumber
kz in the rénge 0 < ki < kg. 9 On the other hand, Imw = 0 for ki > kg,
and Rew is generally non-zero. For ré/éz > 1, the numerical analysis
shows that kgéz can be approximated by [Eq. (39)],

2.2 2,.2
kod = ro/é ,

to a high degree of accuracy.

In the anisotropic case (Secs. II.C and III.C), the eigenvalue
equation (18) can be approximated by Eq. (40) in circumstances where
the ion layer is thin (r0/5 >> 1) and the equilibrium distribution
function is specified by Eq. (28). As in the isotropic case, Eq. (40)
has the form of a Schroedinger equation with effective potential

[Eq. (42)]
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From Eq. (42), it is evident that temperature anisotropy with T y > Ty

]
has the effect of reducing the depth of the potential well, and thereby
2 3

6&

reducing the value of kO

corresponding to marginal stability.
Equation (40) is solved numerically in Sec. III.C for a broad range of

system parameters and marginal stability properties are investigated

in detail as a function of we/wci, T|‘/TL and rg/Sz.




TT1. THEORETICAL MODEL

A. General Eigenvalue Equation at Marginal Stability

The present anaiysis is carried out for perturbation frequencies w
satisfying |w| : w.y» Where o . = eBO/mic is the ion cyclotron frequency
associated with the externally applied field BO. In this regard,
charge neutrality is assumed to first order, and the displacement
current is neglected in the v ox 6% Maxwell equation. It is also
assumed that the equilibrium radial electric field is equal to zero
(Eg = 0), which is consistent with local equilibrium charge neutrality,
ng(r) = ng(r) z n(r). To further simplify the analysis, we assume
that all of the equilibrium current is carried by the layer ions, and
that the mean equilibrium flow velocity of the electrons is equal to
zero (Xg = 0). Moreover, under typical experimental conditions, the
thermal ion gyroradius can be comparable in size to the layer radius.
Thus, in the present analysis, the layer ions are described by the
Vlasov equation, and the electrons are described as a macroscopic
cold fluid. Such a hybrid model18 has proved uséful in describing
the equilibrium and stability properties for a variety of field-reversed
configurations9 and linear fusion systems.19

In the stability analysis, we consider azimuthally symmetric
perturbations characterized by 3/36 = 0. Using the method of charac-
teristics, the linearized Vlasov equation for the ions can be integrated
to give

'y oL
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where the particle trajectories (x',y') satisfy dyx'/dt' = y' and dy'/dt'

A . e . : L | - - \j r
ex' x Bg(r')%zlmic’ with initial conditions p (t' = t) = x and Y (t" = t)
In Eq.'(l),

.
CE(Hy + wgPo, H ) = F(H, + wP )G, ) ,

is a function of the single-particle constants of the motion (HL’PO’HII)
in the equilibrium field configuration. BHere, H, = (mi/Z)(vi + vg)
is the perpendicular kinetic energy, H = (mi/2)v§ is the parallel

kinetic energy, P, = mrvy + (e/c)rAg(r) is the canonical angular

6 6

{e <]

momentum, and G(Hz) is normalized according to j deG(Hz) =1,
—-00

without loss of generality. Moreover, +e is the ion charge, my is

the ion mass, -w, = r—l(deV vefg)/(fd3v fg) = const. is the mean

6

angular velocity of the layer ions, and the equilibrium axial magnetic

field Bg(r) is related to the equilibrium vector potential Ag(r) by

Bg(r) = r_l(a/ar)(rAg). The axial magnetic field Bg(r) is determined

self-consistently from aBg/ar = (4ne/c)mern(r), where the equilibrium

ion density ng(r) = n(r) is defined by

n(r) = jd3v fg(Hl + wP, Hll) . (2)

6 6

The linearized continuity and momentum transfer equations for the cold

fluid electrons can be expressed as

3 , =
T éne + 7 . (nGXe) =0, (3)
and 0
3 Ve * B.Ss
B EE.SXe = e GE + c ’ (%)

where éne(ﬁ,t) is the perturbed electron density and dxe(z,t) is the
perturbed electron fluid velocity. Within the context of the assump-

tions enumerated in the previous paragraph, the perturbed electric

V.
"




and magnetic fields, 6§(¥,t) and 6£(¥,t), are determined self-consistently

from the Maxwell equations

__ 13
Vx8E=-Z3-6B, (5)
4 3 4re
vV x 62 + < efd A Gfi(¥,x,t) - —Ef-néxe(g,t) , 6)
and
Gni(g,t) = Gne(§,t) . (7)

where Vv - 6% = 0, and Gni({,t) = fd3v Gfi(ﬁ’X’t) is the perturbed ion
density. Consistent with first-order charge neutrality [Eq. (7)],
we choose a gauge in which the perturbed electric and magnetic fields
-1
are expressed as Gﬁ(ﬁ,t) = -¢ (a/at)éé(ﬁ,t) and §B(x,t) = V x Gé(ﬁ,t),
with v - 8A = 0.
~n
It is convenient to introduce the Lagrangian displacement vector

é(ﬁ’t) defined by
6Y, (x,8) = - £(x,0) . (8)

Substituting Eq. (8) into Eq. (4) and integrating with respect to t,

we find

SAGKE) = (mc/e)(@/at)E + £ x B0, 9

P

where RO = Bg(r)%z. Moreover, integrating Eq. (3) with respect to t

gives

Gne(¥’t) ==V - [n(r)%(;\c},t)] ’ (10)

for the perturbed electron density.




In the subsequent analysis, it is assumed that all perturbed
quantities vary according to Gw(ﬁ,t) = @(r)exp(ikzz - iwt), where w is
the complex oscillation frequency, and kz is the (real) axial wave-

number of the perturbation. Moreover, we examine the class of purely

growing modes with Rew = 0, and consider the state corresponding to

marginal stability with Imw = 0. Imposing the condition
w=20, (11)

and assuming azimuthally symmetric perturbations (3/36 = 0), then

v . é = 0 and é = é x %0 [Eq. (9)] can be combined to give

Ar(r) = Az(r) =90,
Eg(r) = 0, (12)
E_(x) = A (r)/B%(x)

r ) z ’

at marginal stability. Moreover, making use of 6B = V x 6é and Eq. (12),

we find

B_(r) = ~ik,A (r) ,
By =0, (13)
B,(r) =21 [rh (0]

In addition, the perturbed electric field is SF = i(w/c)éé = 0 for
w = 0., In order to evaluate the perturbed ion distribution function

~ 0 _
Sf, [Eq. (1)], we note from Eq. (13) that vy xB- (a/ax)fi(ﬂl + wePe’Hll) =

~ - 0 ~ - 0 0 _
miw,res v * B (3f;/3H;) + m;v e - v xB (Qf /38, - 9f /3H,) =

0 X N
—miwe(afi/aHL)[lkzver

~

ikzva

~ 0 0
o F v, G/ar)(rA )] + mive(afi/aHl, - 3f /3H,) x

6

Defining Gfi(ﬁ’X’t) = %i(r,x)exp(ikzz - iwt), Eq. (1) then gives




eme afg t
- - L L -
£,(r,9) =~ W, f_w de'exp[ik (z z)]

[r' A (x")]} (14)

R afg afg t
el - __* ' v o_
c\?m,, ~ 38, I-w dt exp[ikz(z z)]

. [ U By '
x 1kzvzveAe(r )

X

1] lA L]
{ikzyzr Ae(r ) + v

Q,r,

for w = 0. The first integrand on the right-hand side of Eq. (14) can
also be expressed as (d/dt'){r'Ae(r')exp[ikz(z' -2z)]} = X' . X' x

{rAe(r')exp[ikz(z' -~ 2z)]}¥for w = 0. Integrating with respect to t',

Eq. (14) gives

. ewy afg
F(2a) = =5 PR () 5y,
(15)
[P0 A\ gt )
- = —— . U : v 1,1 '
o BH'l 3H, J_m dt exp[lkz(z z)]ikzvzveAe(r )
where use has been made of ﬁ'(t' =t) = X Making use of ikzv;exp x

[ik,(z' - z)]v A (r') = (d/dt' - v;a/ar') x exp[ikz(z - z)]v A (")

for 3/3t' = 0 and 3/38' = 0, Eq. (15) can also be expressed as

- ew . Bfg
£5(r,y) = — rA (D) 3,
(16)
. 2£) 3fg
T c\®H,, " omH, [vg A (x) + 8,41

where the orbit integral Sre(kz’X’r) is defined by

ror'

t
Sre = - j-m dt'exp[ikz(z - z)]v! Q__ v (r ) . (17)
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Introducing the perturbed flux function y(r) = rAe(r) and making use of

Eq. (16), the perturbed Maxwell equation (6) can be expressed as

2 0
. 4re”w_ T af \ .
r-a— (-1-3—-@) -.k2w+——2§——(fd3vv ———1->w

or 'r ar z c 6 3H,
- ﬁIEi d3v v ifg_ - ifz (v.p + 1S ) =0 | o
2 o\ 3n,, ~ 31, | Vo¥ ¥ "5y ’

with boundary conditions @(r = 0) = 0 and lim [r—l(a/ar)@(r)] = 0,
oo
Moreover, from Eqs. (7), (10), and (16), the quasineutrality condition

ne(r) = ﬁi(r) can be expressed as

R

ik,ng, - 13- [(i/8))]

ew
- -2 [fd3v(3fg/aH_l)] (19)

T AR
+€ fdv(a—li-;—l-—a—ﬂ—;)[ver+sre] ,
where n(r) = fd3v fg is the equilibrium density profile and Bg(r)

is the equilibrium axial magnetic field. .

The eigenvalue equations (18) and (19) are valid for purely growing
modes at marginal stability (Rew = 0 = Imw) for the general class of
rigid rotor ion equilibria fg(ﬂx + mePe, Hll)' Moreover, as a
procedural point, Eq. (18) can be used to determine the eigenfunction
i(r). Equation (19) can then be used to determine the corresponding

axial displacement éz(r) self-consistently.

B. Eigenvalue Equation for Isotropic Ions

Equation (18) simplifies considerably in circumstances where the

ion equilibrium fg(ﬂx + wePe, H,') is isotropic with
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0o_ .0
fi = fi(H; + Hl| + wg P ) - (20)
, 0 0
In this case, 3fi/8Hll = Bfilaﬂl, and Eq. (18) reduces exactly to
2 0
4dne“w, . r of
3 13 o _ .2° 6 3 i\-
Tor Gag W) ~ k¥t 2 (fd"ve.anl)""o’ | (21)

Before examining Eq. (21) for a specific choice of ion distribution
function fg, it is useful to derive some equilibrium identities

valid for general f (H, + H, +w PG) First, noting that H, + H, +

i1
wepe = (mi/Z) x [vr + (ve + wer) + vz] - (mi/Z)wgr2 + (e/c)(wer)Ag,

it follows that

5 afo 3 afg
fd v Ve 5ﬁ: = merfd v gﬁ: . (22)
. 3 0 1
Second, making use of n(r) = [d7v fi(Hl + Hll + Wy P ) and B (r) =
(a/ar)(rAg), it is straightforward to show that
eBg(r) 3 3fg
——-n(r) miwer[we - ~;;E_—J fd v 5§: . (23)

Substituting Egs. (22) and (23) into Eq. (22), the marginal stability
eigenvalue equation for the perturbed flux function y(r) = rAe(r) can
be expressed in the equivalent form

R R 2 w,rdn(r)/sr R
er)-k2w+4"e d v=0,(024
or z c2 - eBo(r)/m c
e z i

which is valid for the general class of isotropic rigid-rotor ion

equilibria fg(HL +H, K6 +ow Pe)

I

C. Approximate Eigenvalue Equation for Anisotropic Ions

Because of the complexity of the orbit integral Sre in Eq. (18),
the general eigenvalue equation for anisotropic ions is difficult to

solve except in special limiting cases. We consider one such case
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here that is of considerable practical interest. In particular,

it is straightforward to show that the Sr contribution in Eqs. (16)

6

and (18) can be neglected in comparison with v Ae(r) whenever

6
|kzvae| >> |vr3Ae/8rl. Estimating v, X V. % vy, where vy ;s the
characteristic ion thermal speed, and estimating ]aznAe/arl'l Nod,
where d is the characteristic radial scale length of the eigenfunction,
we conclude that Sre can be neglected in comparison with rA_ when the

6

inequality
gal > 1 (25)

is satisfied. In circumstances where Eq. (25) is satisfied and the orbit

integral Sre can be neglected in Eq. (16), the eigenvalue equation (18) can

be approximated by

2 0
N . 4dme"w 1 of .
r§—(%§—w) —k2w+———9——(fd3vv -—1)\#

0 0
TS N Y S | R
2 6\ 3H,, ~ 3H, ’

(26)

for general anisotropic ion equilibrium fg(HL + wePe,

of course reduces to Eq. (21) for the case of isotropic ions with f

Hll)° Equation (26)

O=
i

fg(Hl +H , +wP.).

1 66
As found numerically in Sec. III [Eq. (39) and Fig. 2], for a thin
ion layer with mean radius rg much larger than the layer thickness 6,

the characteristic kz can be estimated by kz » ko = ro/é2 and the

eigenfunction scale length by d »~ 8. Therefore,
[k, d| » k8 = x,/6 >> 1, (27)

and the inequality is readily satisfied for a thin layer with r, >> §.

0
We note from Eqs. (15) - (18) that Eq. (26) is equivalent to a model




eigenvalue

13

equation in which the radial orbits are in effect assumed

to be circular with r' = r and v; = dr'/dt' = 0.
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III. STABILITY PROPERTIES FOR GIBBS ION EQUILIBRIUM

A. Equilibrium Properties

To examine detailed stability properties, we specialize to the

case where fg corresponds to the two-temperature Gibbs equilibrium

O 0 1
* (ZFTl/mi) (2"Tll/mi)

exp[—-l~ (4, + w P ) - Ell} (28)
1/2 T, T e’ TT )

where n, = const., and T, = const. and Tll = const. are the (uniform)

perpendicular and parallel ion temperatures. From n(r) = fd3vfg and

asg/ar = (4ne/c)mern(r), the equilibrium density and magnetic field

profiles are given by the well-known expressions

r2 - r2
n(r) = n sech2 ——") , (29)
0 2
26
and

0 oy miwg 2 r? - rg |
B (r) = — ~—,1-,—-—+—-§-tanh —Z R (30)

Z ewe 6 26

4,2 22 2 2 2 _

where 6 = 2¢ TL/(miwewpi)’ wpi = 4nn0e /mi, and T, .const. Note from

Eq. (29) that n, corresponds to the maximum ion density, which occurs
at r = Iy We denote the externally applied magnetic field by
B0 = Bg(r + «) and assume B0 > 0 without loss of generality. It follows

from Eq. (30) that the equilibrium exists only for w, > 0. Moreover,

)
BO is related to other equilibrium parameters by
eB
2 2,.2
mc wg = Wy + vi/G s (31)

where v, = (ZT“L/xni)l/2 is the ion thermal speed, and vi/é2 = (vi/c)wew

Evaluating Eq. (30) at r = 0 gives

eBO(O) v2 r2

z 2 i 0
T Wy = wg - —= tanh —7 - (32)

oy s 26

pi’
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Subtracting Eq. (32) from Eq. (31), the fractional magnetic field

depression can be expressed as

B0 - BZ(O)
- B

1/2

= Bi

[1+ tanh(r(2)/262)] , (33)
0

where Bi = 8"ndT1/BS is the ratio of perpendicular ion pressure (nGTl) at

T =x, to magnetic pressure (Bé/Sﬂ) as r + ©, Equation (33) is a useful

identity relating the normalized layer radius (r0/6) to g, and

[B0 - Bz(o)]/BO'

B. Stability Behavior for Isotropic Ioms

In this section, we make use of the eigenvalue equation (21)
to investigate stability properties for the case of an isotropic

ion equilibrium with T, = T , and afg/aHl = Z)fg/aH’I in Eq. (28).

i1
To analyze the marginal eigenvalue equation (21), it is convenient

to introduce the dimensionless quantities
R=1/8§, Ry = rO/G », kT =KkT& . (34)

Substituting Eqs. (22), (28), and (29) into Eq. (21), the eigenvalue

equation for @ = rﬁe can be expressed in the form of a Schroedinger

~

equation for A , i.e.,

6
2 2
R - R
13 L3 21 2 2003 |+ o
R 3R R "R Ae + |-k R2 + 2R"sech ( 5 ) Ae 0,
| (35)
with boundary conditions [rAe]R=O = 0 and lim[R—l(a/aR)(Rﬁe)] = 0.

R
From Eq. (35), —k2 = E plays the role of the energy eigenvalue,

and the effective potential in cylindrical coordinates is

V(R) = 15'— 2R2sech2 ) . (36)
R
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Near the origin (R2 << k2), the solution to Eq. (35) can be approximated by

RA, = ARIl[(kZRZ)l/Z

6 1, 37

where A is a constant coefficient, and Il(x) is the modified Bessel
function of the first kind of order unity. On the other haﬁd, for

R >> RO, the asymptotic solution to Eq. (35) is given by

1/2

RA, = B/a7ZR2 A fexpl- 2D (38)

where B is a constant.

The effective potential V(R) [Eq. (36)] is illustrated in Fig. 1
for Ry = ro/é = 3. Note that the eigenvalue equation (35) not only
determines the eigenfunction AB(R) at marginal stability but also

determines the discrete (quantized) value of normalized axial

362) corresponding to Imw = O.

wavenumber-squared (denote by k2 = k
The eigenvalue equation (35) has been solved numerically for

Rg in the range 0 < RS < 10. For each value of Ré, it is found that

there is only one allowed value of k2

062, corresponding to a single

bound energy eigenstate. The numerical results are summarized in Fig. 2,

2

where the eigenvalue kgdz is plotted as a function of Ro. The same

information is presented in Fig. 3, where Eq. (33) and the information
in Fig. 2 are used to plot kgéz versus the normalized magnetic field
depression BEI/Z[BO - BS(O)]/BO. The universal curves in Figs. 2 and 3

2 . .
determine the critical wavenumber kodz corresponding to marginal

stability (Imw = 0). In particular, purely growing (and purely

damped) solutions exist for axial wavenumber kz in the range 0 < ki < kg.g

On the other hand, Imy = 0 for ki > kg, and Rew is generally non-zero.
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Figures 4 and 5 illustrate the equilibrium profiles n(r) [Eq. (29)]

and Bg(r) [Eq. (30)] and the eigenfunction rAe(r) at marginal stability

[Eq. (35)] for the two cases r0/6 = 1 [Fig. 4] and ro/d = 3 [Fig. 5],

and for By =1 (maximum field depression). We note from Figs. 4 and 5

that the eigenfunction rze(r) is strongly peaked about r iO for rO/G >> 1,

and that V(R) is strongly peaked for rO/G >> 1 [Fig. 1]. We also note

from Figure 2, that kgéz can be approximated by
2.2 2,.2
kys® = ro/d R (39)

to a high degree of accuracy, for ré/ﬁ2 > 1.
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C. Stability Behavior for Anisotropic Ioms

In this section, we make use of the approximate eigenvalue
equation (26) to investigate stability properties for the case
of an anisotropic ion equilibrium with T1, > T, in Eq. (28). As
discussed in Sec. II.C, the approximate eigenvalue equation (26)
is expected to be a good approximation to the exact eigenvalue equation

(18) in circumstances where the ion layer is thin (r, >> §) and the

0
orbits are nearly circular., Introducing the dimensionless quantities
defined in Egq. (34), and substituting Eqs. (22), (28), and (29) into

Eq. (26), the eigenvalue equation for-i\e can be expressed as

R2 - P2
19 g2 3 4 a2 - Ly 2p2cech? o
R 3R R 3R Ae + k R2 + 2R " sech 2 >
2 2 2 2 (40)
1 wpié‘- 2 ZR —RO ~
-1 - 3 + 2R | sech™ | ——5—— A =0,
i1 c 2 o

with boundary conditions [RA = 0 and lim [R—l(a/aR)(RAe)] = 0,

R

6]R=0
" .
In Eq. (40), the dimensionless quantity w;idz/cz can also be expressed as

- o , (41)

- 4,2 22
where Wy = eBO/mic, and use has been made of § = 2c TL/(miwewpi)
and Eq. (31).

Analogous to Eq. (35) for an isotropic ion equilibrium, the eigen-
value equation (40) has the form of a Schroedinger equation with —k2

playing the role of the energy eigenvalue and effective potential V¢R)

defined by

V(R) =‘l5 - Zstech2 — | +{1 -
R

R2 ) Rz (42)
2( 0
x gech ———
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The effective potential V(R) is illustrated in Fig. 6 for r0/5 = 3,

we/wCi = 0,01, and TL/T', = 0.9. As a general remark, Eq. (42)

shows that temperature anisotropy with T > T, has the effect of

reducing the depth of the effective potential. For fixed rO/G,

this in turn reduces the critical value of kidz for marginai stability.

Near the origin (R2 << k262), the solution to Eq. (40) is

RA. = C er[(k 2p2y1/2

] 1, (43)

where C1 is a constant, Il is the modified Bessel function of the first

kind of order unity, and ﬂZ is defined by

2 .2 2
- w .6 T, R
k2= k6% + 2| RL - ) sech?| 2} .
z c2 Tll 2

For R >> RO’ the solution to Eq. (40) is

/46 p2y1/2

Rh, = C, (R /&N fexpl-a28H %), (44)

8

where C2 is a constant.

The full solution to the marginal stability eigenvalue equation
(40) requires numerical analysis. Equation (40) has been solved
numerically for (rO/G)2 in the range 0 < rcz)/cS2 < 16. As in the case
of an isotropic ion equilibrium, for each value of ro/d it is found
that there is one eigenvalue kgdz for which a solution exists to Eq. (40)

satisfying the appropriate boundary conditions. Consistent with the

fact that the effective potential well depth decreases for T /T, > 1,

I
for a fixed value of ro/é it is found that the temperature anisotropy
reduces the value of critical wavenumber k06 for marginal stability.
Numerical results are summarized in Figs. 7 and 8 where the eigen-

value kgéz is plotted versus rcz)/é2 for W, /w = 50, 100, and several

values of Tl/TII. Figures 7 and 8 show that the stabilizing influence
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of temperature anisotropy increases as T”/TL increases. Physically,

the perturbation described by Eq. (15) corresponds to a density

i

and current modulation. By examining dJe,

6Ar, and SA_ in detail,

6
i

60

increases the amplitudes of the current modulation. Of course, this

we find that the pérturbation produces a J x éBr force which
force is in the axial direction. For T, >> Ty, however, the greater
axial pressure Pll tends to inhibit the growth of the perturbation.
The numerical analysis also shows that the stabilizing influence
of Tll > T, tends to decrease as we /wci decreases. This effect is
illustrated in Fig. 9 where (T_L/TH)Cr is plotted versus r(z)/d2 for
several values of wci/we. Here, (T_,_/T“)Cr is the critical value of
(Tl/T||) for which the eigenvalue kgdz = 0, thereby reducing the range
of unstable kz—values to zero. The following point is also noteworthy.
For fixed ro/d, the degree of field-reversal increases as Wy /wci
decreases [Eqs. (31) and (33)]. Therefore, a higher degree of field-
reversal requires less temperature anisotropy for stabilization.
This is confirmed by the numerical results. Shown in Fig. 10 is a plot
of (T_L/T”)cr versus Bz(o)/BO in the range -1 < BZ(O)/B0 <0, for
various values of rg/éz. Figure 10 relates the critical value of
TL/le required for stabilization to the magnetic field depression on
axis.
Finally, it is important to note from Figs. 7 and 8 that large
eigenvalues k%ézcorrespond to large values of rO/G. Therefore,
the results in this section are consistent with the thin-layer
approximation. On the other hand, an examination of the exact eigen-

value equation (15) shows that the orbit integral contribution vanishes

identically in the limit of small kzﬁ. Thus, the approximations used
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to obtain the eigenvalue equation (26) break down in the limit kz +> 0.

Therefore, the values of (T_,_/T”)cr calculated in this section should

only be viewed in an approximate sense.
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IV. CONCLUSIONS

In this paper we have investigated tearing-mode stability
properties at marginal stability for the specific choice of ion distri-
bution function fg(HL + wePe, H") corresponding to the anisotropic

equilibrium in Eq. (28). 1In the isotropic case with T; = T [Secs.

1l
II.B and III.B]., the general eigenvalue equation (18) reduced exactly
to Eq. (35)'for the choice of equilibrium distribution function in Eq.
(28). 1In Sec. III.B, Eq. (35) was solved numerically for both

the eigenfunction AG(R) and the eigenvalue (denoted by kgdz) as a

function of various equilibrium parameters. This procedure determined

the critical axial wavenumber k_  corresponding to marginal stability

0
(Imw = 0). For T, = Tll and ré/d2 > 1, the analysis showed that
2.2 . 2.2 2,.2 . .
k06 can be approximated by ko = r0/6 [Eq.” (39)] to a high degree of

accuracy. In the anisotropic case with T, generally not equal to T‘|
[Secs. II.C and III.C], the general eigenvalue equation (18) can be
approximated by Eq. (40) in circumstances where the ion layer is thin

(ro/d >> 1) and the equilibrium distribution function is specified by

Eq. (28). From the expression for the effective potential V(R) in

Eq. (42), it is evident that temperature anisotropy with Tll > T,

has the effect of reducing the depth of the potential well,

and thereby reducing the value of kgéz corresponding to marginal stability.
Equation (40) was solved numerically in Sec. III.C for a broad range of
system parameters. Marginal stability properties were investigated

in detail as a function of we/wci, Tl|/T1 and ré/dz, and estimates

were made of the critical value of T”/Tl required for complete stabilization

(reduction of k2 to zero).

0
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Finally, it is important to note that the present analysis can
readily be extended to treat the electrons (as well as the ions) in a
fully kinetic manner. This has the important effect of removing
singular behavior in £ _(r) [Eq. (19)] and ér(r) [Eq. (12)] as B, (r)
passes through zero, as well as incorporating the full physics influence
of kinetic electrons. To illustrate this simple extension, we consider
the case of an isotropic electron equilibrium specified by
0 _ "o

£ =
e (2nTe/me)

373 exp[-(H, + Hll + weePe)/Te] s (45)

2 2 2
where T, and w, are constants, H, + H = (me/2)[vr + Ve t v, - e¢0(r)]

fe !

=m rv, - (e/c)rAg(r) is the canonical

is the electron energy, P6 eV

angular momentum, and -e and m, are the electron charge and rest mass,

respectively. From Eq. (45), for finite R and To, we note that it is
. - . 0

generally necessary to allow for nonzero radial electric field Er =

—3¢0/3r. For present purposes, we also assume that the ions are isotropic

with fg specified by

n
fg = 0 372 exp[-(H; + H
(2wTi/mi)

ot ug P /T (46)

where H, + H (mi/2)(vi + vg + vi) + e¢0(r) is the ion energy, and

Pe = mirve - (e/c)rAg(r) is the canonical angular momentum. For the
choices of fg and fg in Egs. (45) and (46) it is straightforward to
show that the generalization of Eq. (21) to include kinetic electrons

is given by 2 2

) 2 [, w -

) B Tt S PLYE (47)
c i e

where n(r) = ni(r) = ne(r). Making use of the definitions ni(r) =

0

fd3v fi and ne(r) = fd3v fg, and imposing equilibrium charge neutrality

ni(r) = ne(r) at each radial point, we find that Ag(r) and ¢O(r) are

related by
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1 (M 2 2 e 0, , _
T, 2 woiT T ¢ WoiTAg(T) °¢0(r)J
(48)
m
1 e 2 2 e 0
= T; {2 Woel + " weerAe(r) + e¢0(r)] s
or equivalenﬁly,
-1 m wz m mz
co (o) =| -+ L 161 _ “efe) 2 ef’0i_Zee) 0
0 Te Ti 2Ti 2Te c Ti Te 0
' (49)

Note that Eq. (48) in effect determines the equilibrium electrostatic

potential ¢0(r) in terms of Ag(r), Woi> Yoeo etc. The equilibrium

fe

axial magnetic field Bg(r) is calculated from aBg(r)/ar = (4mefc) x

_ 3 0
(wei wee)rn(r), wvhere n(r) = fd v fi can be expressed as

n(r) = noexp[(miwgirz/Z - ew irAg/c - e¢0)/Ti]

3]
(50)
2 2
1 ') —
o] Pites t Metee) 2 e “oi T ) A0 )]
nyexp T + T. 2 T T T w1, AT J
e i e i
In obtaining Eq. (50) use has been made of Eq. (49) to eliminate
. 0 _ _ .
¢0(r). Solving aBz/ar = (lme/c)(wei wee)rn(r), we find that
r2 - r2
n(r) = n sech2 — s (51)
0 2
28
and
c(T +T.) m.wz, +m mz r2 - r2
0 e i i 6i e fe 2 0
BT = e T T v+ 1, T 2t )b
€lugi ~ Yoe e T i 8 26
(52)

are the appropriate generalizations of Egs. (29) and (30).

Here rg = const., and § is defined by 64 = (2c2/41m0e2)(Te + Ti)/(wei - w

It is clear from Eqs. (46), (51), and (52) that the resulting eigenvalue

equation and marginal stability analysis including electron kinetic effects

exactly parallel the work in Sec. III.B with appropriate redefinition

of constant coefficients and scaling parameters.
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FIGURE CAPTIONS

Plot of effective potential V(R) versus R = r/§ for rO/G =1

and r0/6 = 3 [Eq. (36)].

Normalized critical wavenumber kgdz

versus rg/éz.

[Eq. (35)] plotted

Normalized critical wavenumber kg&z [Eq. (35)] plotted versus

-1/2 0
8,1/ % 8y - B2(0)1/B,.
Plot of (a) n(x)/ny [Eq. (29)], () BO(r)/B, [Eq. (30)],

and (c¢) rAe(r) [Eq. (35)]} versus r/6 for r0/6 = 1.0, Bi = 1.0,
2.2
and k06 = 0.68.

Plot of (a) n(r)/ny [Eq. (29)], (b) Bo(r)/B; [Eq. (30)1,

and (c¢) rge(r) [Eq. (35)] versus r/§ for ro/é = 3.0, Bi = 1.0,

and k2 2 = 8.95.
0
Plot of V(R) [Eq. (42)] versus R for r0/6 = 3, wci/we = 100,
and (a) T_,_/T|I = 0.9, and (b) 'I’_,_/TII = 1.
2.2 2,.2 :
Plot of k.8° versus r /8 for w ./w = 50 and several values
0 0 ci’ ™8
of TL/T" [Eq. (40)].
2.2 2,2
Plot of kod versus roﬁ for wci/we = 100 and several values

of T,/T,, [Eq. (40)].
2,.2
Plot of (TllTll)cr versus ro/d for wci/we = 100, 56, 10, 1.
2.2
Plot of (T_,_/TH)Cr versus BZ(O)/B0 for r0/6 = 4, 10, 20.

Plot of eigenfunétion rA, versus r/§ [Eq. (40)] for wci/we = 100

0
and (a) T_,_/TH =1 and (b) 'I‘,_/TH = 0.9.
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