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Stability properties are investigated for purely growing (Rew = 0)

tearing modes at marginal stability (Imw = 0) for a rotating, non-

relativistic cylindrically symmetric ion layer immersed in an axial

magnetic field B (r)f = [B0 + Bs(r)]d . The analysis is carried out
2 %uZ nz

within the framework of a Vlasov-fluid model in which the electrons

are described as a macroscopic, cold fluid, and the layer ions are

described by the Vlasov equation. Tearing-mode stability properties

are calculated numerically for azimuthally symmetric perturbations about

0
an anisotropic ion layer equilibrium described by f = const x

exp[-(I 1 + P6 )/T± - H 1/T ]. Here, 11. is the perpendicular

energy, H1 is the parallel energy, P6 is the canonical angular momentum,

Ti = const. and T 11 = const. are the temperatures, -w. = const is the

angular velocity of mean rotation, and the density profile is n(r) =

2 2 2 2 2 4 2 2 2 2 2
n0sech (r /26 - r0/26 ), where 6 = 2c T1 /(w w .2) and 2 = 4irn0e 2/m.

The marginal stability eigenvalue equation for the perturbation amplitude

A (r) has the form of a Schroedlinger equation, with "energy'" eigenvalue

22
k 6 and effective potential V(r). This equation is solved numerically
z

for A (r) and the normalized axial wavenumber at marginal stability

0
(denoted by k0 2) as a function of temperature anisotropy T11,/T1 ,

-1/2normalized layer radius r0/6, and magnetic field depression -/
01

[B0 - B (r = 0)]/BO, where B. = 87rn 0T,/B . It is found that the range

of unstable wavenumbers decreases as T 1 1 /T, is increased, and numerical

estimates are made of the anisotropy required for complete stabilization.
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I. INTRODUCTION

There is considerable interest in the basic equilibrium, stability

and transport properties of intense ion beams in a background plasma.

As a result of recent technological advances in the generation of

intense ion beams, such beams have a variety of possible applications,

including (a) the production of field-reversed configurations for magnetic

1-0 10-14
fusion applications, ~ (b) applications to light ion and

heavy ion 15,16 fusion, and (c) the development of novel techniques for

focussing intense ion beams. 7 In this paper, we investigate stability

properties for purely growing (Rew = 0) tearing modes at marginal

stability (Imw = 0) in a rotating, nonrelativistic, cylindrically

symmetric ion layer immersed in an axial magnetic field B 0(r)e =
z fmz

[B0 + B (r)]Q. The analysis is carried out within the framework

18.
of a hybrid (Vlasov-fluid) model in which the electrons are described

as a macroscopic, cold fluid, and the layer ions are described by the

Vlasov equation (Sec. II). Unlike previous detailed analyses9 of the

tearing-mode instability, no a priori assumption is made that the radial

thickness (6) of the layer is small in comparison with the mean radius

(r0 ). Moreover, the numerical analysis is carried out with full cylindrical

effects, and not within the context of the slab approximation.7

Tearing-mode stability properties are calculated in Sec. III

for the specific choice of ion distribution function [Eq. (28)]

corresponding to the anisotropic equilibrium

0 n0  1f (H + W P ' T, ) =Tn0 1
i 1 6' 6 1 (27T,/m.i 2 1/ ) 1/2

x exp[-(H1 + W P )/T 1 - R II/T I] ,
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2 2 2
where H1 = (m i/2)(vr + v ) is the perpendicular energy, H = (mi /2)vz

is the parallel energy, P is the canonical angular momentum, T1 = const.

is the perpendicular temperature, T,, = const. is the parallel temperature,

no = const. is the maximum density, and -w. = const. is the angular

velocity of mean rotation. The density profile corresponding to Eq. (28)

is [Eq. (29)]

(r2 
-r22 r 0

n(r) = n0sech 2  )

2 4 2 2 2 2 2
where r0 = const., 6 = 2c T±/(m W ) and w = 4wn 0e /m . In the

present analysis, we assume that the net current carried by the back-

ground electrons is equal to zero, so that the magnetic self field

Bs(r) is generated entirely by the mean rotational motion of the ions.

The stability analysis in Secs. II and III assumes azimuthally

symmetric perturbations (D/36 = 0) of the form 6$( ,t) = (r)exp(ikzz - iwt),

and the exact w = 0 eigenvalue equation (18) is derived for the

0
general class of anisotropic rigid-rotor ion equilibr;ia f (H1 + W P6, H ).

For the specific choice of equilibrium ion distribution function in

Eq. (28), the eigenvalue equation (18) is investigated numerically

in Sec. III for two cases: (a) isotropic equilibrium with T. = T

and af0 /3H = af 0/ai, and (b) anisotropic equilibrium with T > Ti

and 3f /aH±#a f 0/H .i 1

In the isotropic case (Secs. II.B and III.B), the general

eigenvalue equation (18) reduces exactly to Eq. (35) for the choice of

equilibrium distribution function in Eq. (28). Moreover, Eq. (35) has

the form of a Schroedinger equation for the perturbation amplitude A (r),

with "energy" eigenvalue k = k 62 and effective potential [Eq. (36)]
z

V(R) = - 2R2sech2(R 2  R

R2
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where R = r/6 and RO = r0 /6. In Sec. III.B, Eq. (35) is solved

numerically for both the eigenfunction A0 (R) and the eigenvalue

(denoted by k 62 ) as a function of normalized layer radius r0/6 and

normalized magnetic field depression 8-1/2 [B0 - B 0 (r = 0)]/B 0, where

= 8rn0T ,/B2. This procedure determines the critical axial wavenumber

k0 corresponding to marginal stability (Imw = 0). In particular,

purely growing (and purely damped) solutions exist for axial wavenumber

2 2 9 2 2kz in the range 0 < k < k . On the other hand, Imw = 0 for k > k ,

and Rew is generally non-zero. For r 2/6 > 1, the numerical analysis

shows that k 62 can be approximated by [Eq. (39)],

k 262 = r 2
0 0

to a high degree of accuracy.

In the anisotropic case (Secs. II.C and III.C), the eigenvalue

equation (18) can be approximated by Eq. (40) in circumstances where

the ion layer is thin (r0/6 >> 1) and the equilibrium distribution

function is specified by Eq. (28). As in the isotropic case, Eq. (40)

has the form of a Schroedinger equation with effective potential

[Eq. (42)]

V(R) = 1 -2R R2sech 2( + - _
R (1 1

2 2

1 ~ ~ 22 R
X(R =_ 2 2R sech + 2

2 2
x ~+ 2 R2)sech2(R 2 R)

c

From Eq. (42), it is evident that temperature anisotropy with T1 1 > Ti

has the effect of reducing the depth of the potential well, and thereby

reducing the value of k 62 corresponding to marginal stability.

Equation (40) is solved numerically in Sec. III.C for a broad range of

system parameters and marginal stability properties are investigated

in detail as a function of w0/w., T /T, and r2/62.ci, 11 0
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TI. THEORETICAL MODEL

A. General Eigenvalue Equation at Marginal Stability

The present analysis is carried out for perturbation frequencies w

satisfying jIW <Wci, where w C = eB0/m c is the ion cyclotron frequency

associated with the externally applied field B0 . In this regard,

charge neutrality is assumed to first order, and the displacement

current is neglected in the V x 6B Maxwell equation. It is also

assumed that the equilibrium radial electric field is equal to zero

0
(Er = 0), which is consistent with local equilibrium charge neutrality,

0 0
ne (r) = n (r) = n(r). To further simplify the analysis, we assume

that all of the equilibrium current is carried by the layer ions, and

that the mean equilibrium flow velocity of the electrons is equal to

0
zero (V = 0). Moreover, under typical experimental conditions, the

thermal ion gyroradius can be comparable in size to the layer radius.

Thus, in the present analysis, the layer ions are described by the

Vlasov equation, and the electrons are described as a macroscopic

18
cold fluid. Such a hybrid model has proved useful in describing

the equilibrium and stability properties for a variety of field-reversed

configurations 9 and linear fusion systems. 1 9

In the stability analysis, we consider azimuthally symmetric

perturbations characterized by D/36 = 0. Using the method of charac-

teristics, the linearized Vlasov equation for the ions can be integrated

to give

t v' x 6B(x',t')
6f (x,v,t) = - dt' 6E(x,t') + k-I- f?(x' ,v')

(1)
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where the particle trajectories (g',q') satisfy d '/dt' = v' and dv'/dt' =

ev' x B0 (r')& /m c, with initial conditions x'(t' = t) = and v'(t' = t) =v.
IV '. 16

In Eq. (1),

f (HI + w0P , H ) = F(H + W P )G(H )

is a function of the single-particle constants of the motion (H1 ,P0 ,H )

in the equilibrium field configuration. Here, H1 = (m /2)(v + v )
1 r 0

2is the perpendicular kinetic energy, H1, = (m /2)v is the parallel

kinetic energy, P0 = m rv0 + (e/c)rA0(r) is the canonical angular

momentum, and G(Hz) is normalized according to dv zG(H) 1,

without loss of generality. Moreover, +e is the ion charge, m. is

the ion mass, -wo = r_1 (fd 3v v f )/(fd3v f = const. is the mean

angular velocity of the layer ions, and the equilibrium axial magnetic

field B (r) is related to the equilibrium vector potential A9 (r) byz 6
0 -l 0 0B (r) = r (3/ar)(rA ). The axial magnetic field B (r) is determinedz 0 z

self-consistently from aB0 /ar = (47re/c)worn(r), where the equilibrium
z

ion density n (r) = n(r) is defined by

n(r) = d 3v f (H, + w0 P, H ) (2)

The linearized continuity and momentum transfer equations for the cold

fluid electrons can be expressed as

6n + V - (n6V )= 0 , (3)

and0

and~ 6V x B0 A
m 6V = -e 6E + (4e ZZ

e at ve c j

where 6n (x,t) is the perturbed electron density and 6V (x,t) is the

perturbed electron fluid velocity. Within the context of the assump-

tions enumerated in the previous paragraph, the perturbed electric
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and magnetic fields, 6E(x,t) and 6B(x,t), are determined self-consistently

from the Maxwell equations

V x 6E = - 6B , (5)

V x 6B + e 3v V 6f (x,vt) -re n6(t (6)

and

6n (g,t) = dn (xt) , (7)

where V - 6B = 0, and 6n (x,t) = fd 3V 6f (x,v,t) is the perturbed ion
1X% 1 "Unr

density. Consistent with first-order charge neutrality [Eq. (7)],

we choose a gauge in which the perturbed electric and magnetic fields

are expressed as 6E(x,t) = -c 1 (at)6A(x,t) and 6B(x,t) = V x 6A(x,t),

with V - 6A = 0.
IV

It is convenient to introduce the Lagrangian displacement vector

(x,t) defined by

6V (xt) = k(x,t) . (8)e at

Substituting Eq. (8) into Eq. (4) and integrating with respect to t,

we find

6A(x,t) = (m c/e)(3/3t) + x B 0 , (9)

0 0
where B = B (r)6z. Moreover, integrating Eq. (3) with respect to t'\j z %Z

gives

6n (x,t) = -V - [n(r)k(x,t)] , (10)

for the perturbed electron density.
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In the subsequent analysis, it is assumed that all perturbed

quantities vary according to 6ip( ,t) = p(r)exp(ik z - iwt), where w is

the complex oscillation frequency, and kz is the (real) axial wave-

number of the perturbation. Moreover, we examine the class of purely

growing modes with Rew = 0, and consider the state corresponding to

marginal stability with Imw = 0. Imposing the condition

wO , (11)

and assuming azimuthally symmetric perturbations (3/36 = 0), then

V - A = 0 and A= x B [Eq. (9)] can be combined to give

A (r) = A(r) =0,

%(r) = 0 , (12)

0
t(r) = -A (r)/Bz(r)

at marginal stability. Moreover, making use of 6B= V x 6 and Eq. (12),

we find

B r) = -ikzAe (r)

B(r) = 0 , (13)

1
B (r) - r r [rA,(r)]

In addition, the perturbed electric field is 6= i(w/c)6A = 0 for

= 0. In order to evaluate the perturbed ion distribution function

0
6f. [Eq. (1)], we note from Eq. (13) that v x i - (3/av)f (H± + W8P0 ,H ) =

0  0 0
m re -v x B /aH) + m v - v X (f /3 H  a f /DH) =

-m /DH,)[ikv rA0 + vr(a /ar)(rA0 )] + m v 0 f0 /aH - f /9 H) x

ikzz . Defining 6f (xv't) = fi(r,v)exp(ikzz - iwt), Eq. (1) then gives



en af1  t

f (r,v) dt'exp[ik z' - z)]

x {ik v'r'A (r') + v' [r' A(r')]}

af 0 af. t
- -H 1 dt'exp[ik (z' - z)]c~~~u / alilD 00L

(14)

x ik z'v i(r') ,

for w = 0. The first integrand on the right-hand side of Eq. (14) can

also be expressed as (d/dt'){r'A (r')exp[ik (z' - z)]1 = v' - VT xe z "

{rA (r')exp[ikz(z' - z)Jlfor w = 0. Integrating with respect to t',

Eq. (14) gives

ew a ~ f
f.(r,v) rA (r) 1
1I~ c r a~ au1

faf0  af? t

- H auH )- dt'exp[ikz(z' - z)]ik v'v'i (r')

where use has been made of x'(t' = t) = x. Making use of ik v'exp x

[ikz(z' - z)]v A (r') = (d/dt' - v'a/ar') x exp[ik (z' - z)]v A (r')

for 3/at' = 0 and 3/aO' = 0, Eq. (15) can also be expressed as

ew0  af0

f1(r,v) = rA (r) 1

0 0 (:
af. af

-( DH - [v A (r) + Sr6]

where the orbit integral S (k ,vr) is defined byre z I

15)

16)

dt'exp[ik (z' - z)Jv' a vIA (r') .7
z rar' e0e

9

,

(17)
t

S re -



10

Introducing the perturbed flux function *(r) = rA (r) and making use of

Eq. (16), the perturbed Maxwell equation (6) can be expressed as

42 0
2 1 - 2^ l e 06 r 3 v af.r - ( r kz* + 2 d v j H

2 / 2 f)
. 24 0 a (18)

-4 d 3v v6( 
0  + rS 0C 2 f aH I a H±) r

with boundary conditions p(r = 0) = 0 and lim [r~1 (0/Dr)p(r)] = 0.
r4

Moreover, from Eqs. (7), (10), and (16), the quasineutrality condition

ne (r) = (r) can be expressed as

ik ni - I2 [n(*/B0 )]

ew 0 3

= - . [fd 3v(f 0/3 H)] 
(19)C 2

3f0 (0.'
+ d3v i V i + Sc f H 3Hi a r r6)

where n(r) = d3v f0 is the equilibrium density profile and B 0 (r)

is the equilibrium axial magnetic field.

The eigenvalue equations (18) and (19) are valid for purely growing

modes at marginal stability (Rew = 0 = Imw) for the general class of

rigid rotor ion equilibria f (H± + w P., H1 1 ). Moreover, as a

procedural point, Eq. (18) can be used to determine the eigenfunction

i(r). Equation (19) can then be used to determine the corresponding

axial displacement z (r) self-consistently.

B. Eigenvalue Equation for Isotropic Ions

Equation (18) simplifies considerably in circumstances where the

ion equilibrium f (H1 + W P6, H ) is isotropic with
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f = f 0(H + H +w8 P0 ) - (20)

0 0
In this case, af /aH = af /3H,, and Eq. (18) reduces exactly to

1 2 ^ 2 r 3
r.~L kiJ* + die~~ r 0 (1
r r r ) 2 1 . 0 (21)

Before examining Eq. (21) for a specific choice of ion distribution

0
function f , it is useful to derive some equilibrium identities

valid for general f 0 (HI + H + W P8 ). First, noting that H1 + H +

22 2 2 0
W0P = (m/2) x [v + (v8 + e r)2 + v ] - (m /2)w r + (e/c)(w r)A0,

it follows that

a 0 af0

d3v v -w r d3v 1 (22)

Second, making use of n(r) = d 3v f (H + H + W P8 ) and B (r) =r1

0
(3/3r)(rA0 ), it is straightforward to show that

0 0
eB "(r) 3 f9

n(r) = -m i Wr - m C) Jd3v a.. (23)

Substituting Eqs. (22) and (23) into Eq. (22), the marginal stability

eigenvalue equation for the perturbed flux function 0(r) = rA (r) can

be expressed in the equivalent form

a 1 a - 2- 47e2 w ran(r)/ar
r ( )0 P = 0 ,(24)

m c - eB z ic

which is valid for the general class of isotropic rigid-rotor ion

0
equilibria f (H1 + H, , + W P ).

C. Approximate Eigenvalue Equation for Anisotropic Ions

Because of the complexity of the orbit integral S in Eq. (18),

the general eigenvalue equation for anisotropic ions is difficult to

solve except in special limiting cases. We consider one such case
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here that is of considerable practical interest. In particular,

it is straightforward to show that the S contribution in Eqs. (16)

and (18) can be neglected in comparison with v A0 (r) whenever

Ikz vz 6 IVr a /arl. Estimating vz r v , where v. is the

characteristic ion thermal speed, and estimating |3YnA8 /Dr~l J 1 d,

where d is the characteristic radial scale length of the eigenfunction,

we conclude that SrO can be neglected in comparison with rA0 when the

inequality

IkzdI >> 1 (25)

is satisfied. In circumstances where Eq. (25) is satisfied and the orbit

integral S r can be neglected in Eq. (16), the eigenvalue equation (18) can

be approximated by
2 0

3 1 3 ^ 2^ 4Tr 2W r 3 f

ar (r r - z c2 (dv v j.

- 0 0 (26)
4re 2  d 3 2 1f f
2 d vv 6  jj i =0

c T11

for general anisotropic ion equilibrium f (H1 + W0 P, H11 ). Equation (26)

00of course reduces to Eq. (21) for the case of isotropic ions with f. =

f 0 (H + H + W P

As found numerically in Sec. III [Eq. (39) and Fig. 2], for a thin

ion layer with mean radius r0 much larger than the layer thickness 6,

the characteristic k can be estimated by k -v k ~ r /62 and thez z Aj 0 0' n h

eigenfunction scale length by d 6. Therefore,

k dI k0 6 = r 0 /6 >> 1 , (27)

and the inequality is readily satisfied for a thin layer with r0 > 6.

We note from Eqs. (15) - (18) that Eq. (26) is equivalent to a model
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eigenvalue equation in which the radial orbits are in effect assumed

to be circular with r' ~ r and v' = dr'/dt' ~ 0.
r
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III. STABILITY PROPERTIES FOR GIBBS ION EQUILIBRIUM

A. Equilibrium Properties

To examine detailed stability properties, we specialize to the

case where f. corresponds to the two-temperature Gibbs equilibrium

_____ 12exp[-i (H~ + W 3P)- (28)
i (27T1/m ) (2 7rT 1 /m )1/2 exp - H

where n0 = const., and T. = const. and T = const. are the (uniform)

perpendicular and parallel ion temperatures. From n(r) = fd 3vf and
1

B 0 /Dr = (4we/c)w rn(r), the equilibrium density and magnetic field
z

profiles are given by the well-known expressions6-8

2 r- ro
n(r) = n0sech 2 , (29)

and 2

cT, mi, , 2 (30)
B()=_- _ L - tanh ,(30)z (r) ew6 62 262

where 6 4= 2c2T/(m w ), w = 4n 0 2/m, and r = const. Note from

Eq. (29) that n0 corresponds to the maximum ion density, which occurs

at r = r0. We denote the externally applied magnetic field by

B = B (r + co) and assume B > 0 without loss of generality. It follows
O z 0

from Eq. (30) that the equilibrium exists only for w > 0. Moreover,

B0 is related to other equilibrium parameters by

eB 0  2~ v/ 2  
(31

m.c + V /6 1(31)

1

where v = (2T/m ) 1/2 is the ion thermal speed, and v /62 = (v /c) Opi.

Evaluating Eq. (30) at r = 0 gives

eB0(0) v2 2

m c O = 2 - tanh . (32)
1 6 26
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Subtracting Eq. (32) from Eq. (31), the fractional magnetic field

depression can be expressed as8

B0 - B (0) 1/2 2
S0 ./2[1 + tanh(r /262 ,33)

2
where S = 8rn 0T1/B0 is the ratio of perpendicular ion pressure (n0 T,) at

;. = r0 to magnetic pressure (B2/8r) as r + 0. Equation (33) is a useful

identity relating the normalized layer radius (r0/6) to . and

[B 0- B z(O/B0
0B ^ z0)]/B0 '

B. Stability Behavior for Isotropic Ions

In this section, we make use of the eigenvalue equation (21)

to investigate stability properties for the case of an isotropic

ion equilibrium with T1 = T11 and af /aH, = f 0/3H in Eq. (28).Ii - 1 1J

To analyze the marginal eigenvalue equation (21), it is convenient

to introduce the dimensionless quantities

R = r/6 , R = r0/6 k k 2. (34)

Substituting Eqs. (22), (28), and (29) into Eq. (21), the eigenvalue
equation for p = rA can be expressed in the form of a Schroedinger

equation for A 6

equation for A0e, i.e.,

1 A + -k - + 2R sech2  - I 0R 3R DR0 R 2  0

(35)

with boundary conditions [rA6 ]R= = 0 and lim[R 1 (a/R)(RA 0.
2R = R-*oo

From Eq. (35), -k2 = E plays the role of the energy eigenvalue,

and the effective potential in cylindrical coordinates is

1 2 2 'R2 - R
V(R) = - 2R sech 2  

. (36)
R
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Near the origin (R << k 2), the solution to Eq. (35) can be approximated by

RA0 = ARI 1 [(k R )1 2 (37)

where A is a constant coefficient, and 1 1 (x) is the modified Bessel

function of the' first kind of order unity. On the other hand, for

R >> R0 , the asymptotic solution to Eq. (35) is given by

=2 2 1/4 2 21/2
RA~ B/tr/2(R /k 2/exp[-(k2R )/] , (38)

where B is a constant.

The effective potential V(R) [Eq. (36)] is illustrated in Fig. 1

for RO = r0/6 = 3. Note that the eigenvalue equation (35) not only

determines the eigenfunction A0 (R) at marginal stability but also

determines the discrete (quantized) value of normalized axial

2 2 2
wavenumber-squared (denote by k 2 k0 6 ) corresponding to Imw = 0.

The eigenvalue equation (35) has been solved numerically for

2 2 2
R in the range 0 < R < 10. For each value of RO, it is found that

2 2
there is only one allowed value of k0 6 , corresponding to a single

bound energy eigenstate. The numerical results are summarized in Fig. 2,

2 2 2
where the eigenvalue k06 is plotted as a function of R0. The same

information is presented in Fig. 3, where Eq. (33) and the information

in Fig. 2 are used to plot k2 62 versus the normalized magnetic field

depression 1/2 [B0 - B 0()]/B. The universal curves in Figs. 2 and 3

determine the critical wavenumber k 62 corresponding to marginal0

stability (Imw = 0). In particular, purely growing (and purely

2 2 9
damped) solutions exist for axial wavenumber k in the range 0 < k < k29

z z 0*

Onteohrhnd m o 2  2 9On the other hand, Im = 0 for kz > k0 , and Rew is generally non-zero.
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Figures 4 and 5 illustrate the equilibrium profiles n(r) [Eq. (29)]

and B (r) [Eq. (30)] and the eigenfunction rA (r) at marginal stability

[Eq. (35)] for the two cases r0 /6 = 1 [Fig. 4] and r0/6 = 3 [Fig. 5],

and for a. =.1 (maximum field depression). We note from Figs. 4 and 5

that the eigenfunction rAe(r) is strongly peaked about r r0 for r >

and that V(R) is strongly peaked for r0 /6 >> 1 [Fig. 1]. We also note

from Figure 2, that k 62 can be approximated by
0

2 2 =2 2
k 6 , (39)

0r
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C. Stability Behavior for Anisotropic Ions

In this section, we make use of the approximate eigenvalue

equation (26) to investigate stability properties for the case

of an anisotropic ion equilibrium with T1  > T1 in Eq. (28)-. As

discussed in Sec. II.C, the approximate eigenvalue equation (26)

is expected to be a good approximation to the exact eigenvalue equation

(18) in circumstances where the ion layer is thin (r0 >> 6) and the

orbits are nearly circular. Introducing the dimensionless quantities

defined in Eq. (34), and substituting Eqs. (22), (28), and (29) into

Eq. (26), the eigenvalue equation for A can be expressed as

R R AR + -k2 - + 2Psech 2

- ( w..( - + 2R sech2R - R ] 0

with boundary conditions [RA ]R=O = 0 and lim [R (a/DR)(RA0 )] = 0.
"22,R 2 -

In Eq. (40), the dimensionless quantity w '.6 /c can also be expressed as
p)

Wi0 6 ci w ew= c 0 (41)

c 0

4 2 2 2
where wci = eB0/m c, and use has been made of 6 = 2c T1/(m W W)

and Eq. (31).

Analogous to Eq. (35) for an isotropic ion equilibrium, the eigen-

value equation (40) has the form of a Schroedinger equation with -k2

playing the role of the energy eigenvalue and effective potential V(R)

defined by

12 2 2' 
+ 2 R T2)c ~V(R) - - 2 sech + (1 + 2R)

R 2 ) (2

2 ) 
(42)

x sech 2 R
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The effective potential V(R) is illustrated in Fig. 6 for r0/6 = 3,

W /W . = 0.01, and T,/T 11 = 0.9. As a general remark, Eq. (42)e ci

shows that temperature anisotropy with T > TI has the effect of

reducing the depth of the effective potential. For fixed r0/6,

2 2
this in turn reduces the critical value of k 6 for marginal stability.

Near the origin (R << k 6 2), the solution to Eq. (40) is
z

RA6 C1RI [(j2R2 ]RI 1 (43)

where C1 is a constant, I is the modified Bessel function of the first

kind of order unity, and k2 is defined by

2 k 62 + 2 ( - ) sech2

For R >> R0 , the solution to Eq. (40) is

S(R 2/2 1/4 2R2 1/2
RAe 2 ( k A expli-(k R ) I,(44)

where C2 is a constant.

The full solution to the marginal stability eigenvalue equation

(40) requires numerical analysis. Equation (40) has been solved

2 2 2
numerically for (r016) in the range 0 < r0/6 < 16. As in the case

of an isotropic ion equilibrium, for each value of r0/6 it is found

that there is one eigenvalue k 62 for which a solution exists to Eq. (40)
0

satisfying the appropriate boundary conditions. Consistent with the

fact that the effective potential well depth decreases for T i/T± > 1,

for a fixed value of r 0/6 it is found that the temperature anisotropy

reduces the value of critical wavenumber k0 6 for marginal stability.

Numerical results are summarized in Figs. 7 and 8 where the eigen-

value k 62 is plotted versus r 162 for w ./w = 50, 100, and several
0 0 c 

values of TI1T11W Figures 7 and 8 show that the stabilizing influence
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of temperature anisotropy increases as TIf /T increases. Physically,

the perturbation described by Eq. (15) corresponds to a density

and current modulation. By examining 6J , &Ar, and 6A in detail,

we find that the perturbation produces a J I x 6B force which
00 r

increases the amplitudes of the current modulation. Of course, this

force is in the axial direction. For Ti >> TL, however, the greater

axial pressure P1 1 tends to inhibit the growth of the perturbation.

The numerical analysis also shows that the stabilizing influence

of T1 1 > T, tends to decrease as w /w . decreases. This effect is

illustrated in Fig. 9 where (T,/T ) is plotted versus r2 2 for
if cr 0

several values of wci .W Here, (Ti/T1 Ocr is the critical value of

(T/T ) for which the eigenvalue k2 6 = 0, thereby reducing the range

of unstable k -values to zero. The following point is also noteworthy.
z

For fixed r0/6, the degree of field-reversal increases as W, /Wci

decreases [Eqs. (31) and (33)]. Therefore, a higher degree of field-

reversal requires less temperature anisotropy for stabilization.

This is confirmed by the numerical results. Shown in Fig. 10 is a plot

of (TL/T,)cr versus Bz( 0)/B0 in the range -l < Bz(0)/B0 -< 0, for

2 2
various values of r 0/6 . Figure 10 relates the critical value of

T,/T1  required for stabilization to the magnetic field depression on

axis.

Finally, it is important to note from Figs. 7 and 8 that large

2 2
eigenvalues k 6 correspond to large values of r0/6. Therefore,

0

the results in this section are consistent with the thin-layer

approximation. On the other hand, an examination of the exact eigen-

value equation (15) shows that the orbit integral contribution vanishes

identically in the limit of small k 6. Thus, the approximations used
z
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to obtain the eigenvalue equation (26) break down in the limit k -* 0.
z

Therefore, the values of (T./T )cr calculated in this section should

only be viewed in an approximate sense.
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IV. CONCLUSIONS

In this paper we have investigated tearing-mode stability

properties at marginal stability for the specific choice of ion distri-

bution function f (H + w Po, H ) corresponding to the anisotropic

equilibrium in Eq. (28). In the isotropic case with T, = T11 [Secs.

II.B and III.B]., the general eigenvalue equation (18) reduced exactly

to Eq. (35) for the choice of equilibrium distribution function in Eq.

(28). In Sec. III.B, Eq. (35) was solved numerically for both

the eigenfunction A(R) and the eigenvalue (denoted by k 22) a

function of various equilibrium parameters. This procedure determined

the critical axial wavenumber k0 corresponding to marginal stability

(Imo = 0). For T1 = T and r0/6 > 1, the analysis showed that

k 6 can be approximated by k 02 = r /6 [Eq.' (39)] to a high degree of

accuracy. In the anisotropic case with T, generally not equal to T

[Secs. II.C and III.C], the general eigenvalue equation (18) can be

approximated by Eq. (40) in circumstances where the ion layer is thin

(r0 /6 >> 1) and the equilibrium distribution function is specified by

Eq. (28). From the expression for the effective potential V(R) in

Eq. (42), it is evident that temperature anisotropy with T1 1 > Ti

has the effect of reducing the depth of the potential well,

and thereby reducing the value of k 62 corresponding to marginal stability.
0

Equation (40) was solved numerically in Sec. III.C for a broad range of

system parameters. Marginal stability properties were investigated

2 2
in detail as a function of w ei' i T /T/. and r /6 , and estimates

were made of the critical value of T 1 1/T, required for complete stabilization

(reduction of k to zero).
0

f
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Finally, it is important to note that the present analysis can

readily be extended to treat the electrons (as well as the ions) in a

fully kinetic manner. This has the important effect of removing

singular behavior in Z (r) [Eq. (19)] and r(r) [Eq. (12)] as B (r)

passes through zero, as well as incorporating the full physics influence

of kinetic electrons. To illustrate this simple extension, we consider

the case of an isotropic electron equilibrium specified by

fe m 3/2 exp[-(H1 + H + W P )/Te] , (45)
e (2-nT e/m e) 3- f O

2 2 2
where Te and w are constants, H1 + H = (m /2)[vr + v + v 2 e% (r)]

0
is the electron energy, P. = m rv - (e/c)rA (r) is the canonical

e 0

angular momentum, and -e and me are the electron charge and rest mass,

respectively. From Eq. (45), for finite m and Te, we note that it is

generally necessary to allow for nonzero radial electric field Err

-D 0 /Dr. For present purposes, we also assume that the ions are isotropic

0
with f specified by

= n0  ep[-H H
f = 3 /2 exp[-(H + H + W 0 P )/T.] , (46)

1 1i ~ (2r Mi32 2 e
where H, + H =(m /2)(v2 + v + v2) + e (r) is the ion energy, and

0
P mirv - (e/c)rA 0 is the canonical angular momentum. For the

e 6
choices of f. and f in Eqs. (45) and (46) it is straightforward to

i e

show that the generalization of Eq. (21) to include kinetic electrons

is given by 2 2
a 1 2- 4ie2 Oi w~ 2r ,_$ - k2 - 41Tey+ - r n(r)p = 0, (47)
r r r r k c2  T. Tc 1 e

where n(r) - n.(r) n (r). Making use of the definitions n (r) =

3 0 e3 0
Id v f. and ne (r) = ]dv f , and imposing equilibrium charge neutrality

n (r) = ne (r) at each radial point, we find that A (r) and 00(r) are

related by
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2 2- e rA0 (r) (r)
T- 2 Oi c Qi -w r-- r e40 r

(48)

1 e2 er + e W rA (r) + e (r)J

or equivalently,

e* 0 (r) = + --i) 2T. 2 r - - rA
e I e I e

(49)

Note that Eq. (48) in effect determines the equilibrium electrostatic

potential $0 (r) in terms of A 0 (r), w Wl,, etc. The equilibrium
0 a0i

axial magnetic field B (r) is calculated from 3B (r)/r = (4ire/c) x
z z

(W - W )rn(r), where n(r) = d v f can be expressed as
Oi 6e 1

22 0
n(r) = n 0exp[(mW2 r 2/2 - e rA0 /c -eo )

2 2 (50)

= nex, i ei + e ) r e ei ~ Oe rA(
n0 x T e + T.j 2 c( Te + T rA(r)

In obtaining Eq. (50) use has been made of Eq. (49) to eliminate

$O(r). Solving B /Dr = (47e/c)(w - W )rn(r), we find that0z ei Ge

2r 2- r 2
n(r) = n0sech (5l)

and - 2 22 2
0 c(T + T.) m W 2 + m Wta2 rr

B 0(r) = i e6 +-- tanh,z e(w - W e) Te + T 6 2262

(52)

are the appropriate generalizations of Eqs. (29) and (30).

2 4 = 2 2 2
Here r0 = const., and 6 is defined by 6 (2c /4wn0e )(T, + T )/(W - W )2.

It is clear from Eqs. (46), (51), and (52) that the resulting eigenvalue

equation and marginal stability analysis including electron kinetic effects

exactly parallel the work in Sec. III.B with appropriate redefinition

of constant coefficients and scaling parameters.
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FIGURE CAPTIONS

Fig. 1 Plot of effective potential V(R) versus R = r/6 for r0/6 = 1

and r 0/6 = 3 [Eq. (36)].

00Fig. 2 Normalized critical wavenumber k 2[q 3) lte

2 2
versus r /6

Fig. 3 Normalized critical wavenumber k 62 [Eq. (35)] plotted versus

a- 1/2[B - B (0)]/B0.

Fig. 4 Plot of (a) n(r)/n 0 [Eq. (29)], (b) B (r)/B 0 [Eq. (30)],

and (c) rA0 (r) [Eq. (35)] versus r/6 for r 0/6 = 1.0, 8. = 1.0,

and k 62 = 0.68.
0

Fig. 5 Plot of (a) n(r)/n 0 [Eq. (29)], (b) B (r)/B 0 [Eq. (30)],

and (c) rA0 (r) [Eq. (35)] versus r/6 for r 0/6 = 3.0, 8. 1.0,

and k 62 = 8.95.
0

Fig. 6 Plot of V(R) [Eq. (42)] versus R for r 0/6 = 3, wci W 100,

and (a) T,/T = 0.9, and (b) T1 /T = 1.

2 2 2 2
Fig. 7 Plot of k 6 versus r /6 for wci w = 50 and several values

of T1 /T, 1 [Eq. (40)].

2 2 2 2
Fig. 8 Plot of k0 6 versus r6/6 for wci W 6 100 and several values

of T1 /T,, [Eq. (40)].

Fig. 9 Plot of (Ti/T ) versus r /62 for w / = 100, 50, 10, 1.1
1icr 0 ci e

Fig. 10 Plot of (T±/T ) versus B (0)/B for r 2/62 = 4, 10, 20.
1 rz 0 0

Fig. 11 Plot of eigenfunction rA versus r/6 [Eq. (40)] for wci /w 100

and (a) T1 /T1 1 = 1 and (b) T1 /T = 0.9.
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