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Abstract

We solve the steady state coupling problem of lower hybrid waves excited by a waveguidce array. The

theory takes into account the pondermotive density modulation to all orders in the electric field amplitude

but assumes that the nonlinear Cifects are important only along the magnetic field lines. It is shown that the

important new feature is the appearance of a resonant term in the transverse refractive index, which is due to

the finite size of the excitation structure. A calculation for a two waveguide array, linear density profile and

constant temperature is presented, and we make a comparison with the experimental results.



The Success of heating and steady state current drive by lower hybrid (1 H) waves depends critically on the

coupling at the plasma edge. This determines the reflection coefficient and the power spectrum of the excited

wave. The waveguide array was recognized as the most efficient source, and the first experiments were in good

agreement with the linear coupling theory [1,21. Since the available area for the R F ports is small, significant

tokamak heating can be achieved only when the power density is large (> I kW/cm). At these power levels

significant deviations from linear coupling have been observed. The reflection coeflicient depends on the power

density and becomes less sensitive to the phasing of adjacent waveguides [3,41. In other experiments one has

observed a change in the power spectrunm, which is shifted to larger values of the longitudinal refractive index

(n.), [5]. The purpose of this paper is to present a theory which will explain, at least qualitatively, these results.

The problem is treated analytically, and the method may serve as a guide toward an accurate numerical scheme.

High frequency, spatially modulated waves can produce a ponderomotive effect, which is usually measured

by the density depression. This occurs when VTr/L >> 1, where V is the electron thermal velocity, r(L)

are the time (space) scales of modulation of the electric field amplitude [6,7]. The pondermotive force acts on

the electrons and the charge separation leads to an ambipolar potential. Its time variation is determined by the

ion-acoustic frequency: w, ~ V/LN/m/M, where M is the ion mass. The balance of the pondermotive and

ambipolar potential gives for the time rate of change of the electric field amplitude: r - u;-'. The spatial

scale L at the edge of the plasma is of the order of the waveguide width. It is clear that the requirement for a

ponderomotive effect is satisfied.

Since the coupling region is localized, the problem can be treated in a two dimensional geometry. The

waveguide excitation produces at low densities, electric field componentsE 2, E >> E,. To evaluate the non-

linear interaction we define the amplitudes of the oscillating velocities: V, = eIE2/mw, Voy = eIEx|/mQe

where u is the frequency of the source and Q, is the electron cyclotron frequency. For [H waves W << e

and at low density Vuz << V. Therefore the wave-particle interaction can be taken as linear in the direction

perpendicular to Br. For realistic values of IEj in high power experiments at the plasma edge Vo,/V Z 1.

We can apply the one dimensional theory of the Vlasov equation to find the distribution function to all orders

in the field amplitude [7]. Typically at the edge w/k, ~ 20V and V, = 2 /wVo/k2 1OVt, where k, is a

wavevector along B7' and V,1 is the half width of the island of trapped particles. It is clear that the interaction

involves only the particles from the bulk. In that case the exponential profile modification is accurate [6]. We

assume quasinentiality and the average density can be written as:

n N) exp -M 
(" 1)
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where T((Ti) are the electron (ion) temperature. Recently there have been measurements of the density depres-

sion at high powers [8] and the exponential profile modification was confirmed. Particle simulations for a lower

hybrid wave 19] also show the important role of pondermotive effects in the coupling.

The Maxwell equations for the steady state problem are:

X (X E)= K -E. (2)

One can assume that at the edge E ~ 0 and K is the dielectric tensor: KL = 1, K, = 0 and K11

- , /w2. ,, is the nonlinear trequency: 2 = 4re n/m and n is given by (1). From (2) one can write an

equation for E2, where we have introduced dimensionless space variables by normalizing to c/w.

This nonlinear Klein-Gordon equation was derived for the first time in Ref. 10 and has been the subject

of intensive analytical and numerical work [11-141. The work in [11-13] is essentially on a one-dimensional

problem. These authors do not take into account the modulation along B,, and their analysis is valid for a

very long excitation structure (narrow spectrum in k-). Besides the fact that this assumption is far from the

experimental situation, it misses completely the fundamental point about the pondermotive effect. It is the

modulation of the wave along BR, which leads to the density (1). A travelling plane wave in the z direction gives

no pondermotive effect. Another point of a more technical nature is that one should not expand the density (1)

in terms of Vo,,/Vr. As we mentioned earlier, this ratio can be larger than 1. In Ref. 14 the problem was treated

numerically, but no results on the reflection coefficient and power spectrum were presented.

We shall reduce Eq. (3) to a linear form by using the global properties of the electric field amplitude IEz|.
Note that the coupling is localized just in front of the waveguides. The modulational length along B, is then

simply the waveguide width (b). The linear theory [21 shows that the form of 1P',| is simple, except for narrow

spikes originating at the wall of adjacent waveguides. The coupling problem is not very sensitive to the density

gradient in the x direction (the reflection is a cubic root of the scale length). Therefore, any x dependence in

IEZI which modifies the scale length is not of great importance. It is reasonable to assume that the nonlinear

density change is x independent.

ILet us calculate the case of a two waveguide excitation. The scheme can be extended to many waveguides,
with the obvious technical complications. [he nonlinear density can be written as:
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n I rZ1,- exp - -Cos - jz < bn4 [ m(T>+Ti) m 2b '
n-0 (4)

n
--=1, jzI >b.
no

ForEo One can use the valuc of the waveguide field amplitude in the fundamental mode. The Flouricr transform

of (3) in z is:

2  
- Wnl'2%n

d x 2  - x, n - n)(n) dn= 0. (5)

w,,, is the linear plasma frequency. p(n) is the Fourier transform of the r.h.s. of (4):

V(n) = -)exp(-inz) dz + efb exp(-#6 -- inz - #cos -) dz (6)

wheref# = (e'F 2 TIhe integrals in (6) can easily be calculated and the result is:

I sin(nb) 1 00 sin(nb)
V(n) = 6(n) - + 1 sn ( b) ) (7)

~ b

where I, is the Bessel function of imaginary argument. For a certain class of functions EN, one can replace in the

integral of Eq. (5) the resonant functions of the form - with the irac 6-function. This does not mean

that we have gone to the limit b -* oo, when the replacement is correct for any function k2. If the electric field

near the cutoff x - x, is of the form: N[A,, sin(a,,n-) + B,,, cos(b..n)] and all a,,,, b, < b, then

one can show that this procedure is valid. The reader may verify the following identity for a < b:

dnsin[a(n4 - n)]S(n - 7) =dn sin[a(n, - sin(nb) . (8)00 b 7r f_0 n -

The same identity holds when one replaces sin a(n - n) by cos a(n - n). It was checked by a numerical

integration that the relationship (8) is reasonably well satisfied when one uses instead of sin a(nz - n) the linear

E field, excited by a two waveguide array [2]. On the basis of these considerations, one can approximate Eq. (5)

by substituting a new function F(n) for p(n),

F(n) = e- (-1)I(#)6(n - !). (9)
P=-00
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Now (5) becomes a nonlocal second order differential equation:

dE -(x, n.) (n.2 k-x .) w,)cf e-'
dx 2  - - ) fj ) - (- 1)[,(O)k (x, n, + 0. (10)Lb

The important role of the pondermotive effect is that it couples different harmonics of the wave spectrum

and is similar to a parametric process. Due to the modulation of the wave by the size of the waveguides

(b), the nonlinear coupling is an interaction between a wave and its sidebands. If the width of the spectrum

An < 27r/b, one may take into account only the nearest sideband. TIhus the infinite sum in (10) will be reduced

to three terms. In such a case we can find a local differential equation which corresponds to (10). I.et us define a

function n,(x, n.):

d2j,(x, n,) 2
dx2 = n(x, n,,)E(x, n,-). (1

For WK B1 soltions nx has the meaning of a refractive index. However, our method is valid in general and no

slow x dependence is required. With (11) substituted in (10) we can write three homogeneous equations for

E (x, n. + pir/b), p = 0, ±1. (Note that higher harmonics E(n, n- ± 21r/b) are neglected.) The system of

equations will have a nonvanishing solution only when nx(x, n;) satisfies a certain equation. It is important to

stress that n, is a function and the resulting equation is a functional equation. This procedure is similar to a

diagonalization of a 3 X 3 matrix. The corresponding determinant is zero when:

n2(x, n,) (n2 - 1) A + B 2 n b _[ =+' n(x,n+ ± ) - A [(n + T)2 -] (12)

A = -P-e-Io()3) - 1, B =

The solution of (12) is:

n (x, n-) =(n 2 - I)[A + V2 BI tan ). (13)

Eq. (10) for the nearest sidebands can be written in the local form:

d2E, + (nz2 - 1)[A + V2-B tan nb E= 0. (14)
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The nonlinear process brings a resonant term in the refractive index at n, o ir/b. This will result in a

change of the wave spectrum, which may lead to fillamentation: the original wave can be split into wavepackets

with central values of n- where the spectrum peaks. Furthermore, the power spectrum will be enhanced at

those values of n. This is consistent with the experimental observations on Alcator-A (5). One may proceed

as in linear theory [2] to determine the physically relevant quantities: R, the reflection coefficient and S1(n,),

the power spectrum. We solve the case of two waveguides and assume linear density gradient and homogenous

temperature at the plasma edge.

R is defined as the reflection coefficient of the electric field. By following Ref. 2 we can write the following

equation for R in the case of two waveguides with a phase difference of r.

I - R a2 _ d/3 K(n) K(n)-- =- ae--,"I(#) i n+ e-"-E dn- n) ) (15)1 + R alb ) (1 - n 2)2/ 3  I (,2 _ 1)2/3

where

(n - m sin nb)(cosnb- 1) Im(f) nb 3K(n) = b I + v/-210 tan 2
n[(A)2 - n2 Io()

a, = .355, a 2 = .259, and a is the density scale length at the cutoff, a = 1/w 2 - dw,,(x)/dx .

Up to a trivial normalization factor, the power spectrum can be written as:

2

sin~~b)+ vi102 tn., /-

S,(n-) 2b - tan . (16)
2 )nz2 _2( 2 - 1i)1/3 J[ Io(P) 2 (1

Note the peak which is introduced by the resonant term at nz = ir/b. Similar formulas can be written for

any phase difference by simply following the linear theory.

On Fig. I we compare the results from the Petula experiment with two different limiters and the theory

outlined above. The agreement is quite good for AV = 7r up to very high power levels. For AV = 0 only a

qualitative agreement can be claimed in the fact that JR|2 decreases with increasing power.

On Fig. 2 we have plotted the power spectrum, and a peak at n, = 7r/b appears. Experimentally it

was observed on the Alcator-A. We find the ponderomotive effects as the most natural explanation of this

experimental result.
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The present theory does not solve the basic equation (3). The lack of self-consistency is compensated by

a relatively simple scheme, which emphasizes the relevant physics, explains qualitatively the observations, and

can be generalized to the case of a more complicated array of waveguides. It is hoped that the many efforts

to solve Eq. (3) numerically will cast more light on the limits of validity of various approximations. At the

present time one can verify the assumptions a posteriori. The electric field which we obtain from (14) has a form

consistent with the assumption for the amplitude modulation and the reduction of the integral Fq. (5) to the

local form (14). We believe that the analytical theory, just described, may serve as a guide toward the fuller

understanding of the coupling process.

This work was supported by U.S. Department of Energy Contract No. DI&AC02-76-CI 103073.
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Figure Captions

Fig. 1. Reflection coefficient for PETULA parameters and comparison with some experimental data. We

have f = 1.25 GIlz, b = 1.8 cm (= 0.47 in normalized units). Two kinds of limiters (Alumina and

'Tungten) were used in the experiments.

Fig. 2. Linear and nonlinear power spectra for ALCA'TOR-A parameters. Units are arbitrary, the spectra arc

normalized to be the same area. We have b = 0.66 and for the nonlinear case V,/2 V2, = 10.
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