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Abstract

We solve the steady state coupling problem of lower hybrid wavces excited by a waveguide array. The
theory takes into account the pondermotive density modulation to all orders in the clectric ficld amplitude
but assumes that the nondincar cffects are important only along the magnetic field lines. 1t is shown that the
important new feature is the appcearance of a resonant term in the transverse refractive index, which is due to
the finite size of the excitation structure. A calculation for a two waveguide array, lincar density profile and

constant temperature is presented, and we make a comparison with the experimental results.




The success of heating and steady state current drive by lower hybrid (1.H) waves depends critically on the
coupling at the plasma edge. 'This determines the reflection cocfficient and the power spectrum of the excited
wave. The waveguide array was recognized as the most efficient source, and the first experiments were in good
agreement with the lincar coupling theory [1,2]. Since the available arca for the RF ports is small, significant
tokamak heating can be achicved only when the power density is large (> | kW /em). At these power levels
significant deviations from lincar coupling have been observed. The reflection coefficient depends on the power
density and becomes less sensitive to the phasing of adjacent waveguides [3,4]. In other experiments one has
observed a change in the power spectrum, which is shifted to larger values of the longitudinal refractive index
(n.), [5]. The purposc of this paper is to present a theory which will explain, at least qualitatively, these results.

The problem is treated analytically, and the method may serve as a guide toward an accurate numerical scheme.

High frequency, spatially modulated waves can produce a ponderomotive cffect, which is usually measured
by the density depression. This occurs when Vi7/L >>> 1, where Vj is the electron thermal velocity, (L)
are the time (space) scales of modulation of the clectric ficld amplitude [6,7]. 'The pondermotive force acts on
the clectrons and the charge separation leads to an ambipolar potential. Its time variation is determined by the
ion-acoustic frequency: w, ~ V, /L\/;nT/\Z , where M is the ion mass. 'The balance of the pondermotive and
ambipolar potential gives for the time rate of change of the clectric ficld zur;plitudc: T R~ w;‘l". The spatial
scale L at the edge of the plasma is of the order of the waveguide width. It is clear that the requirement for a

pondcromotive effect is satisfied.

Since the coupling region is localized, the problem can be treated in a two dimensional gcometry. The
waveguide excitation produces at low densities, clectric ficld components IZ;, E, >>> E,,. To evaluate the non-
lincar interaction we define the amplitudes of the oscillating velocitics: Vp, = e|E,|/mw, Vo, = €|E,|/mQ,
where w is the frequency of the source and €2, is the electron cyclotron frequency. For LLH waves w << 2,
and at low density Vg, <<<C Vj,,. Therefore the wave-particle interaction can be taken as lincar in the direction
perpendicular to Br. For realistic values of |E%| in high power experiments at the plasma cdge Vo./Vi =~ 1.
We can apply the one dimensional theory of the Vlasov cquation to find the distribution function to all orders
in the field amplitude [7). Typically at the edge w/k, = 20V, and Vyy; = 23/wVp./k, =~ 10V,, where k, is a
wavevector along By and Vipy, is the half width of the island of trapped particles. It is clear that the interaction
involves only the particles from the bulk. In that case the exponential profile modification is accurate [6]. We

assume quasinentiality and the average density can be written as:
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where T,(T;) arc the clectron (ion) temperature. Recently there have been measurements of the density depres-
sion at high powers [8] and the exponential profile modification was confirmed. Particle simulations for a lower

hybrid wavce [9] also show the important role of pondermotive effects in the coupling.

‘The Maxwell equations for the steady state problem are:

— _— — w2: —
Vx(VxE)zc—zK-E. (2)

One can assume that at the edge E;, ~ 0 and K is the diclectric tensor: K| = 1, K, = 0 and K| =

~9

1 — w},c/wz. Wy, is the nonlinear frequency: G)f", = 47r62n/m and n is given by (1). From (2) onc can write an

equation for E;, where we have introduced dimensionless space variables by normalizing to c/w.
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This nonlincar Kicin-Gordon cquation was derived for the first time in Ref. 10 and has been the subject
of intensive analytical and numerical work [11-14). The work in [11-13] is essentially on a onc-dimensional
problem. "Thesc authors do not take into account the modulation along By, and their analysis is valid for a
very long excitation structure (narrow spectrum in k). Besides the fact that this assumption is far from the
experimental situation, it misses completely the fundamental point about the pondermotive ceffect. It is the
modulation of the wave along By which leads to the density (1). A travelling plane wave in the z dircction gives
no pondermotive effect. Another point of a more technical nature is that one should not expand the density (1)
in terms of Vo,/ V. As we mentioned carlier, this ratio can be larger than 1. In Ref. 14 the problem was treated

numerically, but no results on the reflection coefficient and power spectrum were presénted.

We shall reduce Eq. (3) to a lincar formn by using the global properties of the clectric field amplitude |E,|.
Note that the coupling is localized just in front of the waveguides. ‘The modulational length along By is then
simply the waveguide width (b). ‘The lincar theory [2] shows that the form of |E,] is simple, cxcept for narrow
spikes originating at the wall of adjacent waveguides. The coupling problem is not very sensitive to the density
gradient in the z direction (the refiection is a cubic root of the scale length). ‘Therefore, any z dependence in
|Z;| which modifics the scale length is not of great importance. It is reasonable to assume that the nonlincar

density change is z independent.

Let us calculate the case of a two waveguide excitation. The scheme can be extended to many wavcguides,

with the obvious technical complications. The nonlincar density can be written as:
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FFor By one can usc the value of the waveguide ficld amplitude in the fundamental mode. The Fourier transform

of 3)in z is:
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w,c is the lincar plasma frequency. p(n) is the Fourier transform of the r.h.s. of (4):

—b b
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where 8 = Sm(l.,+7 )(eL(,/w) The integrals in (6) can casily be calculated and the result is:
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where 1, is the Bessel function of imaginary argumient. For a certain class of functions E,, one can replace in the
integral of Eq. (5) the resonant functions of the form l;f#i) with the Dirac §-function. This does not mean
that we have gone to the limit b — oo, when the replacement is correct for any function . If the electric field
near the cutoff £ ~ z. is of the form: [, ~~ Yo nlAm sin(a,,n.) + B, cos(by,n.)] and all a,,, b, << b, then

one can show that this procedure is valid. The reader may verify the following identity for a << b:

= n (=1 e sin{n
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The same identity holds when one replaces sin a(n, — n) by cos a(n, — n). It was checked by a numerical
intcgration that the relationship (8) is reasonably well satisfied when one uses instcad of sin a{n, — n) the lincar
sz ficld, excited by a two waveguide array [2]. On the basis of these considerations, one can approximate Eg. (5)

by substituting a new function F(n) for (n),

F) = 3 (~175(9) (n—’;—”). 9)
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Now (5) becomes a nonlocal second order differential equation:
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The important role of the pondermotive cffect is that it couples different harmonics of the wave spectrum
and is similar to a paramctric process. Due to the modulation of the wave by the size of the waveguides
(b), the nonlincar coupling is an interaction between a wave and its sidebands. If the width of the spectrum
An < 27/b, one may take into account only the nearest sideband. Thus the infinite sum in (10) will be reduced
to three terms. [n such a case we can find a local differential equation which corresponds to (10). 1.et us define a

function n,(z, n,):
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For WKB soltions n, has the meaning of a refractive index. However, our method is valid in general and no
slow z dependence is required. With (11) substituted in (10) we can write three homogencous equations for
E(z,n, + pr/b), p = 0, -+1. (Note that higher harmonics E(n, n. 4 27/b) are neglected.) The system of
cquations will have a nonvanishing solution only when n,(x, n,) satisfies a certain cquation. It is important to
stress that n, is a function and the resulting equation is a functional equation. This procedure is similar to a

diagonalization of a3 X 3 matrix. The corresponding determinant is zero when:

n 2
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The solution of (12) is:

n(z,n.) = (n,2 — 1)[/1 + V2B

n,b
t ~== . 13
( 2 )” -
Eq. (10) for the ncarest sidebands can be written in the tocal form:

n,b
tan (T)
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dz?

]Ez =0. (14)
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The nonlincar process brings a resonant term in the i'cfractivc index at n, ~ x/b. This will résult in a
change of the wave spectrum, which may lead to fillamentation: the original wave can be split into wavepackets
with central valucs of n, where the spectrum peaks. Furthermore, the power spectrum will be enhanced at
those values of n;. This is consistent with the experimental observations on Alcator-A (5). One may proceed
as in lincar theory [2] to determine the physically relevant quantities: R, the refiection coefficient and Si(n.),
the power spectrum. We solve the case of two waveguides and assume linear density gradient and homogenous

temperature at the plasma cdge.

R is defined as the reflection coefficient of the electric field. By following Ref. 2 we can write the following

cquation for It in the case of two waveguides with a phase difference of .

1—R _ a0 N[ [ K(n) Y b | K(n)
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where

K(n) = (n—i[s(l;r)tf)(_co::jb )[ 4 f{;gl (nb)
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a) = .355, ay = .259, and a is the density scale length at the cutoff, a == 1/w? - dw,,((:c)/dz

C

Up to a trivial normalization factor, the power spectrum can be written as:

2
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Note the peak which is introduced by the resonant term at n, = = /b. Similar formulas can be written for

]1/3. (16)

any phase diffcrence by simply following the lincar theory.

On Fig. 1 we compare the results from the Petula experiment with two different limiters and the theory
outlined above. The agreement is quite good for Ap = = up to very high power levels. For Ap = 0 only a

qualitative agreement can be claimed in the fact that IRI2 decreases with increasing power.

On Fig. 2 we have plotted the power spectrum, and a peak at n, = 7/b appcars. Expcrimentally it
was observed on the Alcator-A. We find the ponderomotive cffects as the most natural explanation of this

cxperimental result.




The present theory does not solve the basic equation (3). The lack of sclf-consistency is compensated by
a relatively simple scheme, which emphasizes the relevant physics, explains qualitatively the observations, and
can be generalized to the case of a more complicated array of waveguides. It is hoped that the many cfforts
to solve Eq. (3) numerically will cast morc light on the limits of validity of various approximations. At the
present time onc can verify the assumptions a posteriori. 'The clectric field which we obtain from (14) has a form
consistent with the assumption for the amplitude modulation and the reduction of the integral Eq. (5) to the
local form (14). We belicve that the analytical theory, just described, may serve as a guide toward the fuller

understanding of the coupling process.

This work was supported by U.S. Department of Energy Contract No. DE-AC02-76-CHO3073.
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Figure Captions

Fig. 1. Reflection coefficient for PETULA parameters and comparison with some experimental data. We
have f = 1.25 GIlz, b = 1.8 em (= 0.47 in normalized units). Two kinds of limiters (Alumina and

Tungten) were used in the experiments,

Fig.2.  Lincar and nonlincar power spectra for ALCATOR-A parameters. Units are arbitrary, the spectra are

normalized to be the same arca. We have b = 0.66 and for the nonlincar case V3, /2V3, = 10.
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