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Abstract

The parametric excitation of ion-cyclotron waves by lower-hybrid pump field is studied

assuming that the magnitude of the pump is constant. The spatial amplification factor is calculated

including the wavenumber mismatch as produced by the plasma density gradient, and the linear

damping rates of the excited ion-cyclotron and sideband waves. The analysis is applied to plasma

edge parameters relevant to the JFT2 heating experiment. It is found that ion-cyclotron harmonic

modes are excited depending on pump frequency and plasma density. These modes are shown to

have finite damping rates. The parallel refractive indices nIr of the excited sideband fields are

found to be always larger than that of the driven pump field. Transition to quasi-mode decay is

observed for the largest possible excited nl,, either by decreasing the pump frequency or by

increasing the applied Rf-power.
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I. INTRODUCTION

Lower-hybrid heating is one of the most attractive techniques for supplementary heating of

tokamak plasmas because of its engineering feasibility. But it requires a high degree of physical

understanding on how the driven Rf-fields coupled with the plasma. This is because at the

Rf-power levels which are needed for significant plasma heating, parametric instabilities, driven by

the applied lower-hybrid fields, will inevitably occur [1]. One of the most important problems in

lower-hybrid heating is the energy penetration in the plasma. Parametric excitations can change the

wavenumber spectra of the fields entering the plasma [2], which may lead to an unwanted surface

heating and pump depletion near the plasma edge. They may also deposit a certain amount of

energy near the edge by exciting low frequency waves (such as ion-cyclotron harmonic waves) with

finite linear damping rates.

There are a variety of parametric excitations that may occur during lower-hybrid heating.

Among them, the decay into electrostatic ion-cyclotron harmonic and lower-hybrid sideband waves

(1,3,4] is one of'the most important in this range of frequency. In fact, decay spectra was recently

observed in the JFT2 heating experiment [5]. It was discussed that the existance of this decay

spectra is responsible for the blockade of a certain amount of the input power near the plasma edge.

Several others heating experiments [6] have also observed the presence of such excitations. It is of

interest to understand how they physically act to prevent power penetration in the plasma and also, to

know the plasma configuration and the characteristics of the driven fields which more likely lead to

the development of the instability. To our knowledge, these questions have not yet received a

satisfactory answer. It is this deficiency that this paper attempts to remedy.

Near the edge of a tokamak the plasma density gradient is usually very strong. This has

been shown [7,8] to be important to reduce the level of growth of the instability by detumnng the

resonant nature of the parametric decay. In addition, the excited ion-cyclotron waves may be

damped either by electrons or ions, which also partially depress the resonant excitation. In a previous

V
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work [9), we studied how these two effects act together to prevent the development of the resonant

decay, assuming a constant pump electric field and a linear profile for the wavenumber mismatch as

produced by the plasma density gradient; the thresholds and growth rates were calculated within the

WKB approximation. It is this study that we apply in this paper to the particular decay into

ion-cyclotron and lower-hybrid waves. Numerical calculations are carried out for plasma edge

parameters relevant to the JFT2 experiment. These calculations show that the wavenumber

mismatch and the linear damping rates of the excited waves play a decisive role to decide whether

the resonant decay takes place or not. In fact, their values are usually as large as the instability

rarely grow in the entire pump region, but rather saturates before reaching the extremes of the pump

propagation cone. Because of this, we shall not consider the excitation of temporally growing normal

modes, since they are very unlikely to develop under such unfavorable circumstances. We only

consider the excitation of spatially amplified solutions.

The organization of the paper Is as follows. In Sec. I we present the dispersion relations for

the two lower-hybrid and the excited ion-cyclotron harmonic waves. The linear damping rates are

obtained as functions of the wavenumbers and frequencies of the excited waves. We take

w2/(1k 2xIvT), where the subscript 2 stands for the ion-cyclotron wave, as a free parameter which has

to be much smaller than -one for the wave not to be strongly dampeOI by electrons. The frequency

and perpendicular wavenumber of the low frequency mode are chosen, for each excited harmonic,

such that they satisfy the dispersion relation and minimize ion damping. Others free parameters (i.e.,

frequency and wavenumber of the excited sideband field) follow from the lower-hybrid dispersion

relation and from the resonant matching conditions. In Sec. III, we present the equations that

describe the parametric decay assuming that the pump field is constant over the region of resonant

interaction. The amplification factor is found within the WKB approximation as function of the

wavenumber mismatch and linear damping rates, and it is maximized with respect to angular

dependences. In Sec. IV, we present the numerical examples. We show that given a certain value of

the plasma density and density gradient, ion-cyclotron waves can be excited for a limited range in

pump frequency. The higher excited harmonics are found to suffer the strongest damping due to
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both electrons and ions. The mismatch is the strongest for the lowest excited harmonics. The parallel

refractive index n Ir for the excited sideband field is shown to be very large, because the

amplification factor r is the largest for the highest possible excited njr The scaling of r with

respect to plasma density and applied input power is also discussed in this section.

Finally, it should be noted that because we do not carry out nonlinear calculations that take

into account pump depletion; we cannot give an estimation on the amount of energy that has been

transferred to the excited waves. Our calculations show that these parametric excitations can really

be very relevant in lower-hybrid heating and that, if they occur, it is inevitable that appreciable

amount of the applied power is deposited on the particles at the edge. One of the main purposes of

this paper is to study how amplification scales with respect to plasma density, pump frequency, and

applied Rf-power, since we believe that this is essential to understand and, subsequently, to control

the ocurrence of this resonant decay.
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II. BASIC EQUATIONS

We consider a plasma slab; the x-coordinate lies along the direction of variation of the

plasma density and the z-coordinate lies along the direction of propagation of the constant magnetic

field ~ro. A lower-hybrid pump electric field (w, r), is assumed to parametrically decay into a

sideband lower-hybrid field (w , i), and an ion-cyclotron harmonic mode (2' 1). The three

waves are described by their amplitudes,

A1 - ai(x, z, t) exp[i(- wit + kirz + k.) + if k1,(x) dx. (I)

We assume that k 0 and that ao is constant in time. The waves satisfy the matching conditions:

koz - k i + k2r k2y - -k1 ,, and wo0 - w - w2 - 0. The perpendicular wavenumbers ki - (k2y +

k? )112 are determined from the local dispersion relation for each of the waves in the inhomogeneous

plasma as we shall specify next. Due to the plasma density gradient, the mismatch between the

x-components of the wavenumbers Ak - kOx - k I, - k2x, depends on the inhomogeneity coordinate

x. This phase mismatch is increasingly detuning the resonant interaction between the three waves, as

it deviates from its corresponding constant value in a homogeneous plasma.

For spatially amplified solutions, we require that the dependence of the amplitudes aj (I -

1,2) on time be given by exp(i Aw t), where Aw will be defined in Sec. III.

A. Ion-cyclotron harmonic waves

Let us denote by p the number of the excited cyclotron harmonic (p - 1,2,3,...). The low

frequency mode approximately satisfy a dispersion relation of the form D(w2' C) . 0. Quite

generally this dispersion relation is,

Mw 2 7tkziIZTw ZR( W2

(2' 2 De v11k2zivTe v 11k2z1VTe

t
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+ C k W~2xi~ k(k W2 ) r|2|"'i'W . n 2 F) Z( )2(j -2'i-) (2)
sn-p-t

where we assume that k2 , 1, and where pi - vr7111l; T,, are the electron (ion) plasma

temperatures, A. - exp(- k2 p ) I,4(k p ), and ZR denotes the real part of the plasma

dispersion function. The summation contains those harmonics, close to the excited harmonic n - p,

that give an appreciable contribution to the dispersion relation; (in specific calculations as the ones

presented in Sec. IV, we find that f is equal to 2 or 3)

We take the ratio W2/(k2 zIVT,) as a free parameter which has to be always smaller than

one so that the low frequency mode is not strongly Landau damped by electrons. The frequency w2

and the perpendicular wavenumber k21 are to be determined from the dispersion relation D(0 2, It)

0 as proceeds. First we fix a value of w2 close to pfli and such that satisfy

;TIk2rvTL W2 I

with n - p, p*I (the exact range of variation of 02 will be specified later in Eq. (4)). The

perpendicular wavenumber is obtained as function of w2 and w2/Ik2,I solving for

A (kL p2-- Ti I + TEiT + ( 2 (V1Ik 2xvTe) ZR [* 21(' Vk 2zvT]
2 1 Te w2/(1k2z1VTd ZR w21(V( 2 2IzvTdL (I - P "l/ 1 2 (3

The left-hand side of Eq. (3) is always positive. The right-hand side is, for T, = Ti, either positive

or negative depending on whether w2 is either greater or smaller than pflj. Furthermore, the Bessel

function is bounded to a maximum value that becomes smaller as the order of the excited harmonic

p increases. Let us call Pm the value of kZpA for which the Bessel function is maximal. We have

that 9, becomes larger with increasing p; for instance, for p - I we find that P. - 1.54 and

A 1(m) - 0.22, for p - 3 On - 9.53 and A 3(0,) - 0.08, for p - 5 Om - 25.51 and A 5(0m) - 0.05.

Thus, as the order of the harmonic increases the argument of the Z-function in the denominator of

Eq. (3) has to be closer to one so that the right-hand side does not exceed the maximum value that

the Bessel function can reach at k21 9p - Om. All this imposes restrictions on w2 as it has to be

always greater than p 1j, in order to be able to solve Eq. (3) for a real k21. In addition, if a. is the
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frequency that solves Eq. (3) for k21 1 -j a, we need also to require for W2 to be smaller than or

equal to a

We call w. the minimum value between a, and

(O AZk2zVTL(p + l1)l +2(~zT * '

The frequency w2 is to be chosen within the range

Pn 21(AhzvTd (4)
p wAi(VIk 2,1vTd, - I 2 in(

It should be noted that in Eq. (3) we have neglected the contribution of all other harmonics different

from the excited harmonic n - p. This, we find, can always be done for W2 inside the interval in

Eq. (4), because the contribution to the dispersion relation of equidistant harmonics such as p - 1

and p + 1, have always opposite signs. Thus, when they are added together the result is very small,

and the dispersion relation in Eq. (2) is always approximately satisfied. To find the exact value of

W2 within the interval in Eq. (4), we require minimum damping for the low frequency mode, i.e., we

want the following expression to be minimal with respect to 02 for k21 as given in Eq. (3),

A ~ki± pi ) ex p(-( A2 i P~)2] + A+ 1(k2 p ) exp[-( 2 +71

t2A 2 VT 22)ZPTL )

In the numerical calculations we find that this expression is minimal for k21 1  , which

corresponds to a frequency of the order of (p + 0.5)[11.

The low frequency mode may be slightly damped either by electrons or ions. The linear

damping rate is found to be,

'72  -Ik 2JvTi w2 I T VT W2
i2 4T 62 0e xpTE- W*2A S Tf VTe 2k24 Vf

+ A (k2 2 w p - + Ap+(k 2  p2 ) ex p-( 2 )- ( (5)
0 ,P ep A2ZvTi +2-L Pj ex(- ~2YYTL

where

T
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S- n An(h p W Z n((

and where ZR denotes the derivative of the real part of the plasma dispersion function with respect

to its argument.

The perpendicular component of the group velocity is given by

v2 1 / Ik2zIvTi 2 2 R
VT- -- 2 k21Pi (2 ( (6)

where

n-p+f 
n'22 w2

A (k P ) Z (
?l.p-t

and where An denotes the derivative of An with respect to its argument. Since w2/I(Ik 2 zrTe) * I,

and W(2 - nnlV(Ik2rIvTi) 1, we may expand the Z-functions in Eq. (2), for small and large

argument, respectively. The result is that D(W2, 2) is approximately independent of k2r which

implies that the group velocity component along the z-direction is approximately equal to zero. As

Eq. (2) does not depend on the plasma density, the perpendicular wavenumber k21 and group

velocity v21 are constants independent of x.

B. Lower-hybrid waves

For the two lower-hybrid waves, we have (i - 0, 1)

ki Ki,,(x) + k Ki (x) - 0 (7)

where K,1 - I - e, (x)/W2, and Ki 1 - I + w2 (x)/n 2  - WN(x)/2i. The lower-hybrid pump

field is assumed to have a finite spatial extent w along the z-coordinate, it propagates in the plasma

with group velocities,

Or " K (8a)V or +. 2} /A,
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Vo _ - ( ) 12 (8b)
, + , -

as taken along and perpendicular to B' (note that as Y- 0, we have vo. - vox); where c denotes

the velocity of light, and no, - ckor/w 0 is assumed to be always positive. The slowly varying pump

amplitude a0(x, z) is taken constant over the region where the pump extends:

T voX(x')

and zero outside this region, where r is the slab half-width. As the pump field is propagating

toward the plasma center (i.e., from x - r toward x - 0), we have that voX < 0.

The sideband lower-hybrid electric field exists initially in the plasma at the level of thermal

fluctuations; it propagates with group velocities which are given by substituting the subscript 0 by 1,

in Eqs. (8). The thermal source may interact with the pump at a certain point inside the pump

region, and then the three waves parametric instability may develop. The sideband field may be

slightly damped by electrons. The linear damping rate is

7 0T lpiv i, 2 k~vT e

where wth - "pI( + W ,A2 WP 12

By imposing the matching conditions, the parallel refractive index n1 z - ch wj of the

excited sideband field is given by

I w2 w2/wO 
(10)

k I rVe k2zvTe 2/k 2zvTe -2/

wg/kOOvTe w

For W2/k 2, > 0, "I, can be either positive or negative depending on whether 0 2I(k2 VTr) is either

greater or smaller than d - (w2N0 ) 0o(k0rvT,), respectively. As o2/I 2ZvT,) becomes closer -to d,

n I tends to zero. For W2/k2 < 0, n I, is always positive and will never be smaller than no. Given a

fixed value of w2/k 2.I and of W2/W0, we find that the corresponding n1 , is larger in magnitude if

.2/k 21 is negative than if it is positive.
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It should be noted that the group velocity components of the pump and sideband waves, and

the pump amplitude, depend on the inhomogeneity coordinate x. Nevertheless, the most significant

effect of the plasma density gradient is to produce a mismatch between the x component of the

wavenumbers, which may significantly reduce the level of growth of the instability. All other

quantities that do not contribute to the phase mismatch will be assumed constant over the region of

resonant interaction.
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III. THE MAXIMUM AMPLIFICATION FACTOR

The spatial evolution of the instability is given by the following set of coupled equations [10]

(iA, + + + v I . )a - 74 exPri fAk(x ) dx', (I la)

+ 72 + v2x + v~x-)a2 "7fJ

Within the E x B approximation the coupling coefficient is 1111_U

TO Ec wt Ik2rvT .i T 112 1 +2 ZR( W2 12a)
Iw 2 0 c3 o w2 sin(T) S 1 + /A ZI(Tr /ik2lvTE

where E0 is the constant pump electric field which is related to ao as, Eo - ao,2 wehlhpi A017; C,

is the sound speed, and sin(4) - k 1Ik I. The pump electric field is given as a function of the power

density Pd (i. e., the total power divided by the waveguide widths w) as follows,

Eo - ( 2 P noz I2. (12b)

2d +0 2f)112
Let us call I - (voz z + vox x)lvo and 2 - (vor x - vov z)lvo (where vo - (v& + vo )I2),

the coordinates that lie respectively along and perpendicular to the pump propagation cone. We

define a new coordinate system as,

S- p 2

(I 3)
zf - i - aR

where a - (v jj - v2j)I(v I - v2R), and p - (vor + a vox)lv0. It has been shown [ I] that in terms of

this system of coordinates, the two-dimensional resonant interaction in the coordinates (x, z) becomes

a one-dimensional one in the coordinate t:



Page 12

(v It +'yj + idw) a I(, z) - yo a;(, zexp[i Ak( + z?) dO] (14a)
f V0

(v25 * +2 + iAc) a2(Q, zj) - yo a* (Q, z)exp[if Ak( + oz 1) d . (14b)

This interaction is defined along lines of constant z, as shown in Fig. 1. The pump extension in t is

L - lp v0x/vol w; where L is the distance that the pulse response (i.e., the line of constant z1) covers

in the inhomogeneity coordinate x, as it crosses the pump cone. The plasma density is assumed to

obey the profile,

n() - no + jVnj t (15a)

where IVnI is the plasma density gradient (typically, JVnj n 1012 - 10 3 cm 4 ); no is the plasma

density at R - 0, and I - zf (or in the t coordinate at ( a 0). The phase mismatch is assumed to be a

linear function of t:

Ak(t) - K + Ak(0), (15b)

where K - [Ak(L/2) - Ak(-L/2)]/L, and Ak(0) - [Ak(L/2) + Ak(-L[2)/2. The mismatches at both

extremes of the pump cone are to be evaluated at the local densities n(*L/2) as given by Eq. (15a).

All others quantities that do not contribute to the phase mismatch Ak(Q), are defined at the constant

values that they take for ( - 0 (i.e., at the central density no). Note that at ( - 0 the mismatch is

independent of K , so that the coupling between the waves is as in the corresponding homogeneous

plasma which is defined by allowing K go to zero.

We next define a new set of amplitudes ai, and a2 as

A i (ide +y i ie +a2 '

a 1p [ - xp[- t + ) + f Ak( )d ] (16a)
A~vig\ v+ J
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A t-
a 7 exp[- ( + L2'+- Ak( ')d'. I (16b)

Substituting these expressions into Eqs. (14), we obtain

I 0(t) + (]aN - sgn(vIt) ho a2  (17a)

[- ( + ]a2usgn(v2 ))A0 a1  (17b)

where O(Q) XD + Kt ,D - 'YI - y2  t25, and X0 - y 1-vjv 2 #I. The frequency mismatch

A - - Ak(O)
AW /Vit-l/V2t'

has been chosen so that the evolution of the instability, as given by Eqs. (17), becomes independent

of any mismatch, either in frequency or phase, which is not strictly produced by the plasma

inhomogeneities. The system of equations (17) have been studied for the case of a pump of infinite

spatial extent in Ref. 7 . In Ref. 9 the coupled mode equations were studied assuming a constant

pump of finite extent, which is the case that interests us now. The amplification factor was obtained

using the WKB approximation and the procedure is briefly outlined in the Appendix.

Assuming that sgn(v 1tv2t) > 0, the amplification factor for the amplitudes a1 is found to be

r - -i (I + Z2/2dz.- 'Y L I- 721 L18a)

where c - (XD + iK L/2)/2rA0I; and the integral is defined along the line Re(z) - Re(c). By letting

PkDI - K L, Eq. (18a) becomes

r - rOLI K L2]112 + arc sin K L ( K L2 ]112
(I K

-11L 1-721 L

within the limit K , Y -+ 0 we find that r tends to ROL as presented in Ref. 12.

I
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Equation (18a) is to be applied if the integration path does not intersect the anti-Stokes' lines

departing from z - ti, which are defined in the Appendix. If this happens then the amplification

factor is given by,

'r -7--y| |-7'--- l. (18b)
K 111t

When sgn(vjv 2t) < 0 the instability may grow in time. Nevertheless, in our computer

calculations, we find that either the excited low or high frequency modes have always finite

damping rates. In addition, the plasma density gradient near the edge is very large and so is the

mismatch between the waves, which make very difficult the excitation of temporally growing modes

[7-9]. It should also be noted that the damping rates will, in this case, depress more the instability

than they do when sgn(v1qv2t) > 0. This is because they add up their contributions which yields

larger values of XDI if XD ' 2R0 , the instability cannot grow either in time or in space. Hence, we

shall not consider this case any further.

The angle # is to be chosen such that the amplification factor is maximal with respect to

cos(O) - vI,1v i. The level of growth of the instability is basically governed by ROL; the mismatch

and damping rates reduce this level, but their strength are most dependent on the plasma density

gradient and on the parallel refractive indices of the excited waves, respectively . Hence, we require

that loLI to be maximized with respect to cos(O). By using the definitions of L and RAol we find,

R0Il - - lyoVj vlrv1 2xj v0 jv01v w. The dependences on # are given by Iy'l which goes like sin(O)

(see Eq. (12a)), by vir which is

vi - -ViZ [- cos() 5 + ],

and by v2x which is proportional to (1 - 2t Ik sin2(O))1/2. The angle that maximizes PXOLL

satisfy the equation

2 cos(O) [- - + V cos(#)] + . sin() [ - -I.- 0 (19a)



Page 15

For the low frequency mode to propagate in the plasma, we require that h2 /k2 sin2(O) to be

much smaller than one, allowing us to neglect this term in the Eq. (19a). Solving for the maximum

4, we find

cos(,mb)" 1 ' [ -Iv l12. (19b)
V uVo 0 VijOX

Note that as cos(O.) > 0 we have that sgn(vlvl,) < 0 and, then, that sgn(vl,v 2,) < 0. In the

calculations, we shall only consider the angle 0m

Putting together Eqs. (6), (8), (12a), and (I9b), we find

E0  ThV 'I1z Ik2 jVTe , VT i f )112
2/7 Bo c, vT, v 2 |vi, R k2xI T, w 2TL

VOL V2 V
x - - ( - V 1 "2 "112 + ( 4. 2I V, ZR( 2zIVT)J. (20)

VoX V0X V,1 Rz ~ V 4r ~

We remark that because ;koj is proportional to 11/ 2 , the amplification factor will be the largest for

the largest possibles nir Also, IXOLI increases linearly with increasing central density no, and

decreases linearly with increasing pump frequency wo. This, we shall see, will have important'

consequences to decide whether the resonant parametric decay will occur or will not.

Substituting Eq. (19b) into the definition of p after Eq. (13), we get

I -[U ( O V! 1 )2 112

P ( - V ( (Ix . (21a)
V 0 (- -v2xl/v N) ( -(VX 11z MRA 2il

V11 V0 1L

In the computer.calculations we find that v2, is always much smaller than v11, which allows us to

approximate p by I - [U - (V01 V,11V1vv) 2]1 2 . The distance L is now approximately given by,

L -p xI w [ vo 1 - ( )21/ - I) W. (21b)
VNt Vthat VyVt n s

Note that L increases linearly with pump frequency and so does K L.
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In terms of the sideband and pump group velocities at each of the extremes of the pump

cone - *L12, we find

K'L vo,(LI2) voz(-LI2) vi,(L/2) v1,(-L/2) nsO (22
kO -- vo0 (L12) + v 1O(-L12) - ~ v11(L/2) + v 1(-L12) n 0 cos(4m) (22)

where the components of the group velocities are evaluated at the local densities, n(*L12) - no * Vini

L12. We shall always assume that n(-L/2) 2 lol cm~A; if L is large enough so that n(Q) becomes

smaller than 10 cm~ 3 at a certain t, we shall assume that the density profile flattens for t < to at

the minimum density 10 cm- .
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IV. RESULTS AND CONCLUSIONS

We shall proceed in our calculations by assuming plasma edge parameters consistent with

measurements on the JFT2 heating experiment. We consider a hydrogen plasma and take the

plasma temperatures and toroidal magnetic field to be spatially homogeneous; their values are, T, -

20 ev, T1 - 8 ev, Bo - 15 kG. The plasma density will be assumed to obey the profile given in Eq.

(15a), where no will be either 5 x 1011 cm~ 3 or 1012 cm~3; the corresponding density gradients are

17ni - 5 x 1012 cm4 and 101cm~4. The half-width of the plasma slab is equal to the tokamak

minor radius, i.e., r - 25 cm. The applied Rf-power is Po - 150 kW, driven at the plasma wall

through a four-waveguides array, each of width w14 - 1.4 cm, and height A - 29 cm. The pump

frequency will vary between 715 to 1000 Mhz. We restrict ourselves to the propagation cone kox > 0.

The parallel refractive index of the pump field no, is taken according to the linear theory [13] and

depends on the pump frequency; it ranges between 5.35 to 3.85. The accessible R, is 1.9, and we

assume that all the input Rf-power is accessible in the plasma.

In the figures we present next we plot the amplification factor ', as given by Eqs. (18),

versus the parallel refractive index ni, of the excited high frequency wave, for given values of p

and pump frequency. We notice that ni, as given in Eq. (10), is a function of w2wo, noz and of the

free parameter w2/(k2xIvT,); this is ranging between 4 vTLIvr7 and, say, 0.75. The frequency w2 is

chosen as indicated in Sec. IIA, i.e., it satifies the dispersion relation Eq. (3) and minimizes the

damping rate of the low frequency mode. In Figs. 2 and 3, we consider two different cases

depending on wether the high frequency excited wave is moving toward the center of the plasma,

i.e., v < 0, (case A), or toward the edge, i.e., vj, > 0 (case B). The low frequency mode moves in

opposite direction to the high frequency one, i.e., we always have that sgn(v v2,) < 0.

In Fig. 2, we assume that no - 5 x 101 cm~3, VnI - 5 x 1012 cm4, and wo - 715 Mhz

(wo ~ 45 flj). We consider the excitation of the first fifth cyclotron harmonics; the numbers on the

different curves indicate the order of the excited cyclotron waves. Let us first study Fig. 2A.
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Comparing the curves that correspond to. the excitation of the different modes, we observe that

from p - I through p - 3 the amplification factor increases with increasing p. At p - 3, it saturates

and starts decreasing with increasing P; cyclotron harmonic waves with p greater than 5 are not

excited. This can be explained in terms of Eq. (10), that we rewrite here assuming that W2Z, < 0

and keeping only the relevant contributions,

k~Ve W 2/(azlvTe)J
k(a~ o2|ik 2 oVTe*k IrT, 2I~krI E 2M

(*oJkozvTe

The largest values of n Ir are always reached for small values of (4 2 .I. For fixed w2/Ik 2 L n i

increases with increasing w2; this is because the denominator increases with increasing p. As we

have already commented in Sec. III, the larger ni, the larger I OL. On the other hand if ni,

becomes greater than 40 or 50, the excited high frequency wave will be strongly damped by

electrons, which will prevent the resonant decay. As (O 2 . increases, the Landau damping rate of

the low mode due to electrons will increase too. In addition, for small W2/Ik2,I the argument of the

Z-function in the denominator of the dispersion relation Eq. (3) has to be close to one in order to

solve it for a real k21 which will, in turn, increase the rate of ion-cyclotron harmonic damping; this

effect becomes more appreciable for the largest p. The most favorable combination of all these

constraints selects which are the dominant harmonics to be excited and, for given harmonic, which

are the values of n 1. that are excited. -

For p = I and for small values of w2ik 2rl so that the ion-cyclotron wave is not damped by

electrons, the corresponding n ,, can be large enough to generate moderate values of IXOLI. Increasing.

w2/l 2,,L "j, decreases and so does ROLI. For p - 5 and small values of o2/Ik 2rI, electron Landau

damping for the high frequency wave and ion-cyclotron damping for the low mode can be very

large. Thus, there are optimum values of p, such as p- 2,3, for which the combination of these

effects compromise so that to allow for the strongest resonant excitation to occur.

In Fig. 2B, we represent r for the same plasma parameters as in Fig. 2A, but now W2 k2, >

0, and nj, < 0. For fixed w2/|k2rI, the excited ni. as given by Eq. (10), are always smaller in

magnitude than those excited in case of Fig. 2A, which may explain why r is now slightly smaller.

r
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It is also important to notice that, in general, L is always quite large (greater than or of the order of

2 cm) and it is the largest for the smallest p. Thus, when p - I or 2, the instability saturates before

it can reach the extremes of the pump cone. As p becomes greater than or equal to 3, L becomes

smaller and the instability may amplify in the entire pump interval L. In Table 1, we present, for

the case of Fig. 2, the characteristics of the excited modes which maximize amplification, in terms of

parameters which determine their Landau damping rates. We observe that the damping rates of the

excited waves increase by increasing the order of the excited harmonics for both electron and Ion

damping.

In Fig. 3, we assume that (o - 900 Mhz; other plasma parameters are as in Fig. 2. Because

rAoLl is proportional to the pump electric field E0 which is given in Eq. (12b), and this decreases

linearly with increasing pump frequency, the amplification factor also decreases as wo increases.

Also, notice that for fixed ( 2/|k 2 l, 7Z, decreases linearly with increasing (o. As wo becomes larger

than I Ghz, r goes to zero for any value of p. Table II contains the main characteristics of the

excited modes which maximize amplification.

In Fig. 4, we take no - 1012 cm-, jAnl - 1013 cm 4, and wo - I Ghz. We present only the

case n > 0 which, as we already know, always gives the largest values of r. We want to illustrate

that the excitation of the cyclotron harm.onic waves are also dependent on central plasma density no;

this is because E0 increases linearly with increasing no. The pump frequency range for which the

cyclotron harmonic waves are now excited is different from the case in Figs. 2 and 3. The reason

why for p - I the curve is suddenly cut at n 35 is because h2 /k2 sin2(m) than or
I1  2. O, is largerthno

equal to one (i.e., k2x = 0), and the corresponding ion-cyclotron wave cannot propagate in the

plasma. When wo is larger than 1.2 Ghz we find that r is zero for any p. The characteristics of the

strongest excited cyclotron waves are very similar to the ones presented in Tables I and II, and the

general scaling of the damping rates with respect to the excited p is the same.

In Fig. 5, wo is 900 Mhz for case A, and 825 Mhz for case B; other plasma parameters are

as in Fig. 4. We observe that there are a maximum of six ion-cyclotron harmonics excited.
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Comparing cases A and B we also observe that higher nir are excited decreasing the pump

frequency. The most remarkable feature of this figure is the behavior of r for the first excited

cyclotron harmonic p - I with respect to nir. We see that for nir z 25 the amplification factor

becomes very large, larger than for any other excited harmonics. This is because k2, = 0, which

leads to singular values of j)OLI as given by Eq. (20); note also that this effect becomes even more

noticeable as wodecreases. If wo s 715 Mhz other excited modes such as p - 2, can also experience

the same singular behaviour.

We have already commented that for fixed no, decreasing the pump frequency leads to

higher excited n r. A s n Ir increases kh /~ sin2(m) gets closer to one or, what is equivalent, k2,

gets closer to zero; (we can always make sin 2(0) smaller so that k2. becomes larger, but then yo and

the amplification factor will go to zero.) Also, k21 as given in Eq. (3) increases with increasing P

which implies that higher ni, are required (i.e., smaller values of wo) to make k2, = 0 as the

number of the excited harmonic p increases. If nj, and p are such that k2 s 0 then these modesIr 2x

cannot be resonantly excited. This is responsible for the suddenly cut of the curves p - I in Fig. 5,

for n 2 40. Our formulation is not valid when this happens and such large values of r are not

reliable. In fact, since the resonant matching conditions for the perpendicular components of the

wavenumbers are responsible for the negative or small values of h2 , when this happens, we should

formulate the parametric decay assuming that the low frequency mode is non-resonant (i.e., it is a

quasi-mode) (2]. This means that the wavenumber of the low frequency quasi-mode is to be chosen

at any point in the plasma such that it matches the wavenumbers of the lower-hybrid waves. This

figure illustrates that the non-resonant decay can also be very important. Because higher n i may be

excited via quasi-mode decay, it can be expected that a larger amount of the input power may be

deposited near the plasma edge. We remark that this effect can also be observed decreasing wo

below 715 Mhz, in the cases of Figs. 2 and 3.

Let us now make some final remarks on the scaling of r with respect to the input power

density, for fixed values of no and w. By increasing the amount of power, E0 increases and so does

IRoLI. This will mean that the amplification factor r will also become larger. However, it can also be
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expected that because of this, higher n Ia will be excited via non-resonant decay in a similar way as

it was explained in the case of Fig. 5. (The highest is nI, the closet is k to become negative,

which will eventually make impossible the resonant decay.) These high ni, will deposit a certain

amount of the power directly on the electrons via linear Landau damping. This, in turn, means that

the power which is left and which may parametrically decay via resonant ion-cyclotron excitations,

will not be as much as the input power at the plasma wall. Thus, the amplification factor and,

subsequently, the amplitude of the resonantly excited modes, is expected eventually to saturate as the

input Rf-power is increased. But this does not necessarily imply that the Rf-power is getting in the

plasma center since it might have been deposited near the edge through the excitation of high nit

via quasi-mode decay.

In summary, we have presented calculations for the parametric excitation of ion-cyclotron

harmonic waves driven by lower-hybrid pump electric field near the plasma edge. It is shown that

the excitation of these modes is critically dependent on pump frequency and on plasma density. The

ion-cyclotron waves are shown to have a finite damping rate. The parallel refractive index of the

excited sideband field is found to be much larger than that of the driven pump field. Transition to

quasi-mode excitations may occur for small values of wo or large values of PO. All this suggests

that appreciable amount of the input Rf-power is deposited near the plasma edge.
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APPENDIX

Let us assume that RP -v IdUk1d4 and take sgn(v1qv2t) > 0. By eliminating i2 from Eq.

(17a) we obtain

- lxoI2 + ( (A.1)

The Dirac delta function in the right-hand side, has been introduced to take into account the

presence of the thermal fluctuations which initiates the parametric decay; b is the level of the thermal

source (b 4 ao).

We next define a new complex variable,

AD+ . (A.2)

Within the WKB approximation two independent solutions to the homogeneous equation (A.1) are,

iq(z) - I exp[*i 2 I (I + z' 2 )112 dz'] (A.3)
K *

where r(z) - AOK I + z2)112; the pump boundary limits (Q - *L/2) in the complex variable z are c

and c*. Let us call r and r*, the points where the line Re(z) - XD/2 R0I intersects the anti-Stokes

lines,

lm[ (I + z' 2)'2dz] - 0. (A.4)

The amplitudes of the solutions %, are exponentially large for Ilm(z)< Im(r). As Im(z) becomes

larger than Im(r), vO. becomes exponentially small. As Im(z) becomes smaller than Im(r*) then it is

b_ the one that is exponentially small.

The solution to the inhomogeneous equation (A.1) has to be such that it decreases in

magnitude as JIm(z)I becomes larger than Im(r). Thus, it must be proportional to J+, for Im(z).
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greater than zero, and proportional to ik_ for Im(z) smaller than zero. These two functions must

match smoothly at ( - 0, but their first derivatives need not. The discontinuity in the derivative is

given by the level of the thermal source. The solution to Eq. (A.1) that satisfy these boundary

conditions is found to be

a(z) - , b ( ((z - z ) *-(zo) 0+(z) + t9(zo - z) *+(zo) *_(z)) (A.5)
4,+ (ZO)O_(z) - *+(ZO)j'_ (r)

where zO - ND/21N0I, Re(z) - zo, '' (z0 ) denotes differentiation with respect to z evaluated at z - zo,

and (z - zo) is the unit step function which is zero for < 0. The amplification factor can be

obtained from Eq. (A.5) and it is as presented in Eqs. (18).
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FIGURE CAPTIONS

Figure 1. Pump propagation cone and trajectory of the pulse response. The coordinates (x, z) lie

along the direction of the plasma inhomogeneities and toroidal magnetic field, respectively. The

cordinates (2, 2 ) lie along and perpendicular to the pump propagation cone. The line of the pulse

response is 2 - aR - zf, with zf a free parameter defining where in the plasma the resonant

interaction is taking place.

Figure 2. Amplification factor versus sideband parallel refractive index. The numbers on the

different curves indicate the order of the excited cyclotron harmonic. We assume no - 5 x 1011

cm-, IVnJ - 5 x 1012 cm , Wo - 715 Mhz, no, - 5.35, Po - 150 kW. A) v1, < 0, v2, > 0, B) vi,

> 0, v2x < 0.

Figure 3. Amplification factor versus sideband parallel refractive index. The numbers on the

different curves indicate the order of the excited cyclotron harmonic. We assume no - 5 x 1011

cm-3, IVnI - 5 x 1012 cm-4, (0 - 900 Mhz, noz - 4.25, Po - 150 kW. A) vix < 0, v2- > 0, B) vi,

> 0, v2, < 0.

Figure 4. Amplification factor versus sideband parallel refractive index. The numbers on the

different curves indicate the order of the excited cyclotron harmonic. We assume no - 1012 cm-3,

IVni - 1013 cm~4, wo - I Ghz, not - 3.85, Po - 150 kW.

Figure 4. Amplification factor versus sideband parallel refractive index. The numbers on the

different curves indicate the order of the excited cyclotron harmonic. We assume no - 1012 cm~3,

JVnJ - 1013 cm- 4, Po - 150 kW. A) wo - 900 Mhz, nor - 4.25; B) wo - 825 Mhz, no, - 4.65.
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