
TEARING-MODE STABILITY PROPERTIES OF A

FIELD-REVERSED ION LAYER AT MARGINAL STABILITY

James Chen

and

Ronald C. Davidson

March, 1980

PFC/JA-80-9



TEARING-MODE STABILITY PROPERTIES OF A

FIELD-REVERSED ION LAYER AT MARGINAL STABILITY

James Chen
Plasma Fusion Center

Massachusetts Institute of Technology, Cambridge, Mass., 02139

Ronald C. Davidsont
Plasma Research Institute

Science Applications Inc., Boulder, Colorado 80302

Tearing-mode stability properties are investigated at marginal

stability (u=0) for a rotating, nonrelativistic cylindrically sym-

metric ion layer immersed in an axial magnetic field B0 (r)^ = [B +Bs(r)]^
z Lz 0 Z Jz

The analysis is carried out within the framework of a Vlasov-fluid

model in which the electrons are described as a macroscopic, cold fluid,

and the layer ions are described by the Vlasov equation. Tearing-mode

stability properties are calculated numerically for azimuthally sym-

metric perturbations about an ion layer equilbrium described by fi=const

x exp[-(Hk ePe)/T]. Here, H is the energy, Pe is the canonical angular

momentum, T-const is the temperature, -w=const is the angular velocity

of mean rotation, and the density profile is n(r)=nsech2 2 /22 -r /262)

4 2 2s2 2 2
where 6 =2c T/(m i W ) and w .=47n 0e 

2/m. The marginal stability

eigenvalue equation for the perturbation amplitude Ae(r) has the form of a

Schroedinger equation, with "energy" eigenvalue k 262 and effective potential
z

V(r)=6 2/r -2(r 26 2)sech2 (r 2/262 -r /262 ). This equation is solved numeri-

cally for A6(r) and the normalized axial wave number at marginal stability

(denoted by k 26 ) as a function of normalized layer radius r0/6 and

magnetic field depression a-1/2 [B -B 0 (r=O)]/BO, where a =87n T/B 2

For r /6 > 1, the numerical analysis shows that k 6 can be approximated0 0

by k0 5 =r20 16 to a high degree of accuracy.

t Permanent Address: Plasma Fusion Center, Massachusetts Institute of
Technology, Cambridge, Mass., 02139
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I. INTRODUCTION

There is considerable interest in the basic equilibrium, stability

and transport.properties of intense ion beams in a background plasma.

As a result of recent technological advances in the generation of in-

tense ion beams, such beams have a variety of possible applications,

including (a) the production of field-reversed configurations for mag-

netic fusion applications 1-9, (b) applications to light ion 1014 and

heavy ion 1 5 ,1 6 fusion, and (c) the development of novel techniques for

focussing intense ion beams.17 In this paper, we investigate the

tearing-mode stability properties at marginal stability (W=O) for a

rotating, nonrelativistic, cylindrically symmetric ion layer immersed

in an axial magnetic field B (r) = [B +Bs (r)]e . The analysis is
z 'Z 0 z fz

carried out within the framework of a hybrid (Vlasov-fluid) model1 8

in which the electrons are described as a macroscopic, cold fluid,

and the layer ions are described by the Vlasov equation. Unlike

previous detailed analyses9 of the tearing-mode instability, no a priori

assumption is made that the radial thickness (6) of the layer is small

in comparison with the mean radius (r0 ). Moreoever, the numerical analysis

is carried out with full cylindrical effects, and not within the con-

text of the slab approximation.

Tearing-mode stability properties are calculated for the specific

choice of ion beam distribution function [Eq. (21)] corresponding to

thermal equilibrium,

f (H+ePe) = 0 3 /2 x exp[-(H+ eP)/T1
is e e i(2sT/m c ) m

where H is the energy, P a is the canonical angular momentum, T=const
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is the temperature, n0=const is the maximum density, and -weconst

is the angular, velocity of mean rotation. The density profile cor-

responding to Eq. (21) is [Eq. (22)]

2 2
n(r)=n0 sech 

2  J
-26 2

where r2=const, 6 =2c T(m W 2W2 ) and W =47n e /2  . In the present

analysis, we assume that the net current carried by the background

electrons is equal to zero, so that the magnetic self field B (r) is
z

generated entirely by the mean rotational motion of the ions.

The stability analysis assumes azimuthally symmetric perturbations

(w/3e=0) of the form 6$Q,t)= t(r) exp(ikzz-iwt). For the choice of

equilibrium distribution function in Eq. (21), the marginal stability

(w=0) eigenvalue equation (28) has been solved numerically for a broad

range of equilibrium parameters. In particular, Equation (28) has the

form of a Schroedinger equation for the perturbation amplitude Ae (r),

with "energy" eigenvalue k2=k 2 62 and effective potential V(R)=R-2
z

-2R2 sech 2(R 2/2-R /2), where R=r/6 and R =r /6. In Sec. III, Eq. (28)0~ 0 0

is solved numerically for both the eigenfunction A8 (R) and the eigen-

2 2
value (denoted by k0 6 ) as a function of normalized layer radius r/

-1/2 0
and normalized magnetic field depression 1 [B0-B0(r=O)}/B0 , where

2
S=8Trn T/B0 . This procedure determines the critical axial wave-

number k0 corresponding to marginal stability (Imo=0). In particular,

purely growing (and purely damped) solutions exist for axial wavenumber

2 2 2 2
kz in the range 0 < kz < k0 On the other hand, Imw=0 for k > k

and Rew is generally non-zero. For r /6 > 1, the numerical analysis

2 2
shows that k 6 can be approximated by [Eq. (32)]

0
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2

k 62

to a high degree of accuracy..

The organization of this paper is the following. In Sec. II,

we obtain the eigenvalue equation (16) [or, equivalently, Eq. (20)]

valid at marginal stability for the general class of rigid-rotor

0
ion equilibria f (H+w Pe). In Sec. III, marginal stability proper-

ties are calculated in detail for the choice of thermal equilibrium

distribution in Eq. (21).
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II. THEORETICAL MODEL AND GENERAL STABILITY ANALYSIS

The present analysis is carried out for perturbation frequencies w

satisfying JW < o<ci where wcieB /m c is the ion cyclotron frequencynucci 0 i

associated with the externally applied field B0. In 'this regard,

charge neutrality is assumed to first order, and the displacement

current is neglected in the V x 6B Maxwell equation. It is also

assumed that the equilibrium radial electric field is equal to zero

(Er=0), which is consistent with local equilibrium charge neutrality,

n0 (r)=n 0r) n(r). To further simplify the analysis, we assume that
e 1

all of the equilibrium current is carried by the layer ions, and that

the mean equilibrium flow velocity of the electrons is equal to zero

0
(V =O). Moreover, under typical experimental conditions, the thermal

ion gyroradius can be comparable in size to the layer radius. Thus,

in the present analysis, the layer ions are described by the Vlasov

equation, and the electrons are described as a macroscopic cold fluid.

Such a hybrid mode 2 8 has proved useful in describing the equilibrium

and stability properties for a variety of field-reversed configurations9

and linear fusion systems.19

In the stability analysis, we consider azimuthally symmetric

perturbations characterized by ;/;8=0. Using the method of

characteristics, the linearized Vlasov equation for the ions can be

integrated to give

6f (x,v,t)=- efdt' 6E(g',t')+ f cx,'

(1)

where the particle trajectories (g',q') satisfy dk'/dt'=v' and dv'/dt'=

e'xB0 (r')&z Aic, with initial conditions '(t'=t)=g and

In Eq. (1), f0 (',Y')=f?(H+w P.) is a function of the single-particle
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constants of the motion (H,Pe) in the equilibrium field configuration.

Here, H=(m./2)(v 2 +v 2+v 2 ) is the kinetic energy, and P0M rv +(e/c)rA (r)
I. r 6 z eiery adPmre.re (r

is the canonical angular momentum. Moreover, +e is the ion charge,

m. is the ion mass, -ow=r~ (d3v vf )/(fd'v f')=const is the mean

angular velocity of the layer ions, and the equilibrium axial magnetic

field B (r) is related to the equilibrium vector potential A 0 (r) by

B (r)=r (a/ar)(rA ). The axial magnetic field B (r) is determined
z 8 z

self-consistently from aB /ar=(47re/c)obrn(r), where the equilibrium
Z b

0
ion density n (r)=n(r) is defined by

1

n(r)= d 3v f (H+w P) (2)

The linearized continuity and momentum transfer equations for the cold

fluid electrons can be expressed as

a 6n +V. (nV)=0 (3)

and

ad =-e 6 + e xBzz (4)
mUe at "e\ \'

where 6n (x,t) is the perturbed electron density and 6V (xt) is the

perturbed electron fluid velocity. Within the context of the assumptions

enamerated in the previous paragraph, the perturbed electric and

magnetic fields, 6E(x,t) and 6B(x,t), are determined self-consistently

from the Maxwell equations

Vx6E=- 6B , (5)
AU c at "V

VxSB= e d3v V 6f (x,v,t)- rn (xt) (6)

and

(7)6n (x, t)=6n, (x, t) ,
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where I-R=O, and 6n d(x,t) d3v 6f (x,v,t) is the perturbed ion

density. Consistent with first-order charge neutrality [Eq. (7)],

we choose a gauge in which the perturbed electric and magnetic fields

-1are expressed as 6E(x,t)=-c (a/3t)6A(x,t) and 6k( ,t)=Vx6A(x,t),

with V-6=0.

It is convenient to introduce the Lagrangian displacement vector

.(x,t) defined by

6V (x, t)= (x,) 0 (8)

Substituting Eq. (8) into Eq. (4) and integrating with respect to t,

we find

SA(x,t)= (mc + xo (9

0 0
where B =B0 (r . Moreover, integrating Eq. (3) with respect to t gives

, , z t 'z

6n ((10)

for the perturbed electron density.

In the subsequent analysis, it is assumed that all perturbed

quantities vary according to 6*( ,t)=(r)exp(ikzz-iwt), where w is the

.complex oscillation frequency, and kz is the (real) axial wavenumber

of the perturbation. Moreover, we examine the class of purely growing

modes with Reo-0, and consider the state corresponding to marginal

stability with Imw=O. Imposing the condition

=,(11)

and assuming azimuthally symmetric perturbations (a/a =0), then

v.A=0 and A= xB [Eq. (9)] can be combined to give
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A (r)=i (r)-Or z

(r)=0 ,(12)

(r)=-A (r)/B z(r)

at marginal stability. Moreoirer, making use of 6B=VxSA and Eq. (12),

we find

B r(r)=-ikzA (r)

Be (r)=O , (13).

S(r)= [rA (r)]

In addition, the perturbed electric field is 6S=i(w/c)6=O for w=Q.

In order to evaluate the perturbed ion distribution function 6f.

[Eq. (1)], we note from Eq. (13) that vx - (/av)f 0(H+w P )=(miree )(3f / H)
0i eeinn 6f ( v

vxBe =-m c (3f /3H)[ik v rA +vr(D/Dr)(rA Defining 6f (xV,t)='\10% .e i zZ ze r ei "v '%'

f (r,v)exp(ikzz-iwt), Eq. (1) then gives

0
ew .2 t

f (rv)= dt'exp[ik(z'-z)

(14)

x ikz v''(r')+v' [r'A (r')],~zz 8 rl

at marginal stability (w-0). The integrand in Eq. (14) can also be

expressed as (d/dt'){r'A (r')exp[ik (z'-z)]}=v'-V'{r'A (r')exp[ik (z'-z)]}
e z ".j " 1 e

for w=O. Integrating with respect to t', Eq. (14) gives

0
em 3f.

f (r~lv)= rA(r) ,(15)SI c e 311

where use has been made of x'(t'=t)=x. Introducing the perturbed flux

function p(r)=rA (r) and making use of Eq. (15), the perturbed Maxwell

equation (6) can be expressed as
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2 f0

r-k2 4 3rewr y 3=0 , (16)r .r ar Z) -k 2Pa au
C.

with boundary conditions (r=0)=0 and lim [r1 (3/3r)*(r)1=Q. Moreover,

from Eqs. (7), (10), and (15), the quasineutrality condition n (r)=n (r)

can be expressed as

ik n - 1 [n( /B )]=-ew;( fd 3v(3f /3H)] (17)Zz_ r ar z 8 J i

3 0 0where n(r)= d v f is the equilibrium density profile and B (r) is the

equilibrium axial magnetic field.

The eigenvalue equations (16) and (17) are valid at marginal

stability (w=0) for the general class of rigid rotor ion equilibria

f (H+w P ). Moreover, as a procedural point, Eq. (16) can be used to

determine the eigenfunction s(r). Equation (17) can then be used to

determine the corresponding axial displacement z (r) self-consistently.

Before examining Eq. (16) for a specific choice of ion distribution

0
function f , it is useful to derive some equilibrium identities

valid for general f (H+w P First, noting that H+w P =(m /2)x

2 2 2 2 2 0
[vr+(ve+Wer) +vI]-(m /2)w 6 r +(e/c)(w r)A 6 , it follows that

af 0

d3v .-W rf dv . (18)

Second, making use of n(r)= d3v f (H+w P8) and B 0(r)=r (/r)(rA ,0

it is straightforward to show that

0 0eB (r) af
n(r)=-m w r - d v. (19)ar mCif 6

Substituting Eqs. (18) and (19) into Eq. (16), the marginal stability

eigenvalue equation for the perturbed flux function *(r)=rA (r) can

be expressed in the equivalent form
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3 1 ̂ 2 4t2 w ran(r)/ar
r -k 2+ 41re 2wr3p=0 , (20)
Dr r ar / z 2 0Qrr mC w8o-eB (r)/mic

0
which is valid for the general class of rigid-rotor ion equilibria f (H+W 'i
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III. STABILITY PROPERTIES FOR GIBBS ION EQUILIBRIUM

0
In this section, we specialize to the case where f. corresponds

to the Gibbs equilibrium

0 n0r1
f = n exp- (H+w Pe) , (21)

(27T/mi )3/

where n0 =const, and T=const is the (uniform) ion temperature. From

n(r)= d3vf and aB /3r=(4re/c)w rn(r), the equilibrium density and

6-8
magnetic field profiles are given by the well-known expressions

[r2 2r

2 r-0
n(r)=n0sech 2 , (22)

26

and 2 2 2
0 cT mi we 2 r-r 0B (r) = + tanh (23)z ew~~ T 2 t2 5 2 j

6 2 26

where6 =2c 2T/(m w2 ) p 2=4n e 2/mi, and r =const. Note from Eq. (22)

that n0 corresponds to the maximum ion density, which occurs at r=r0 '

We denote the externally applied magnetic field by B 0=B (r+-) and

assume B0 > 0 without loss of generality. It follows from Eq. (23)

that the equilibrium exists only for we > 0. Moreover, B0 is related

to other equilibrium parameters by

eB0  2 2 2

mic =we+vi/d , (24)-

where v =(2T/m )1 /2 is the ion thermal speed, and v2/62=(v /c)wwp .

Evaluating Eq. (23) at r=0 gives

eB0(0) v 2 2
z 2 1 r

mic we=W- 2 tanh 2 . (25)

Subtracting Eq. (25) from Eq. (24), the fractional magnetic field

8
depression can be expressed as

B -B (0)

B B = a [l+tanh(r /262 , (26)
B0 0
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where a =8Tn T/B is the ratio of ion pressure (nOT) at r=r to magneticl. 0TB is 0 0n rr

pressure (B 2 /8w) as r- . Equation (26) is a useful identity relating0

the normalized layer radius (r0/6) to a. and [B0-Bz (O)]/B0'

To analyze the marginal eigenvalue equation (16), it is convenient

to introduce the dimensionless quantities

R=r/6 , R =r0 /6 , k 2=k 6 . (27)

Substituting Eqs. (18), (21), and (22) into Eq. (16), the eigenvalue

equation for rA can be expressed in the form of a Schroedinger

equation for A i.e.,

R A +±~ - 2  +2R 2sech2 (2 R] ]=0 (28)
R

with boundary conditions [RA I RO=0  and lim[R (/3R)(Ri )]=0. From

2
Eq. (28), -k =E plays the role of the energy eigenvalue, and the

effective potential in cylindrical coordinates is

V(R)= -2R2sech2 R2 -R0 (29)
R-

Near the origin (R2 << k 2), the solution to Eq. (28) can be

approximated by

RA6=ARI [(k
2R2)1/2  , (30)

where A is a constant coefficient, and 1 (x) is the modified

Bessel function of the first kind of order unity. On the other

hand, for R >> R0, the asymptotic solution to Eq. (28) is given by

RA e=BV//2(R2/k2)l/4expt-(k2R2 1/2 (31)

where B is a constant.
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The effective potential V(R) (Eq. (29)] is illustrated in Fig. 1

for Ro=ro/6= 3 . Note that the eigenvalue equation (28) not only

determines the eigenfunction A (R) at marginal stability but also

determines the discrete (quantized) value of normaliz.ed axial wavenumber-

squared (denote by kk 262) corresponding to Imw=O0.

The eigenvalue equation (28) has been solved numerically for R2
2 2

in the range 0 < R < 10. For each value of R2, it is found that there00

is only one allowed value of k 6 2, corresponding to a single bound

energy eigenstate. The numerical results are summarized in Fig. 2,

where the eigenvalue k 06 is plotted as a function of R . The same

information is presented in Fig. 3, where Eq. (26) and the information

in Fig.2 are used to plot k2 62 versus the normalized magnetic field

-1/2 0
depression $ [BO-Bz(0)]/B . The universal curves in Figs. 2 and 3

determine the critical wavenumber k 62 corresponding to marginal

stability (Imw=O). In particular, purely growing (and purely damped)

solutions exist for axial wavenumber k in the range 0 < k < k .
z z 0"

2 2
On the other hand, Imw=0 for kz > k, and Rew is generally non-zero.

Figures 4 and 5 illustrate the equilibrium profiles n(r) (Eq. (22)]

and B 0 (r) (Eq. (23)] and the eigenfunction rA (r) at marginal stabilityza

[Eq. (28)] for the two cases r0/6= 1 [Fig. 4] and r0/6= 3 (Fig. 5],

and for a. = 1 (maximum field depression). We note from Figs. 4 and 5

that the eigenfunction rA (r) does not become localized about r r

for r0 /6 >> 1, although V(R) is strongly peaked for r0 /6 >> 1 [Fig. 1].

We also note from Figure 2, that k 62 can be approximated by0
2
0

k 62 -

to a high degree of accuracy, for r2 162 > 1.
0
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IV. CONCLUSIONS

In this paper, we have investigated the tearing-mode stability

properties at marginal stability (W=0) for a rotating, nonrelativis-

tic, cylindrically symmetric ion layer immersed in an axial magnetic

0
field B (r)e . In Sec. II, we derived the eigenvalue equation (16)

z %.

[or, equivalently, Eq. (20)] valid at marginal stability for azimuthally

symmetric (3/96=0) perturbations about the general class of rigid-rotor

0
ion equilibria f (H+wePe). In Sec. III, marginal stability properties

were calculated in detail for the choice of thermal equilibrium dis-

tribution in Eq. (21).

For the choice of thermal equilibrium distribution function in

Eq. (21), the marginal stability (w-0) eigenvalue equation (28) has

been solved numerically for a broad range of equilibrium parameters.

In particular, Eq. (28) has the form of a Schroedinger equation for

the perturbation amplitude A (R), with "energy" eigenvalue k2=k 6

and effective potential V(R)=R -2-2R sech (R /2-R /2), where R=r/6

and R0=r0/6. In Sec. III, Eq. (28) was solved numerically for both

2 2
the eigenfunction A0 (R) and the eigenvalue (denoted by k0 6) as a

function of normalized layer radius r 0 /6 [Fig. 2] and normalized

magnetic field depression 11 2 [B -B[ r=)]/B [Fig. 3] where

i 0 0
=87rn 0T/BO 0

This procedure determines the critical axial wavenumber k0

corresponding to marginal stability (ImwO-0). In particular, purely

growing (and purely damped) solutions exist for axial wavenumber kz



15

in the range 0 < k < k . On the other hand, Imu=0 for k > k2
z 0 z - 0

and Rew is generally non-zero. For r /62 > 1, the numerical analysis

shows that k 62 can be approximated by [Eq. (32)]
0

2

.k 62-
0 2

6

to a high degree of accuracy.
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FIGURE CAPTIONS

Fig. 1 Plot of effective potential V(R) versus R=r/6, for

r0 /6=1 and r0/6=3

Fig. 2 Normalized critical wavenumber k 62 [Eq. (28)] plotted

2 2
versus r

Fig. 3 Normalized critical wavenumber k 26 [Eq. (28)] plotted
0

versus [B -B (0)]/B0 '

0
Fig. 4 Plot of (a) n(r)/n 0 [Eq. (22)], (b) Bz(r)/B 0 [Eq. (23)],

and (c) rAe(r) [Eq. (28)] versus r/6 for r 01=1.0,

2 2
i =1.0 and k0 6=0.68

Fig. 5 Plot of (a) n(r)/n 0 [Eq. (22)], (b) B0 (r)/B [Eq. (23)],

and (c) rAe(r) [Eq. (28)] versus r/6 for r /6=3.0,

22
a =1.0 and k 6 =8.95

i.0
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