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Abstract

Three wave parametric excitation in inhomogeneous plasmas is examined in a

two-dimensional geometry relevant to supplementary rf-heating of tokamaks. The stabilization of

resonant parametric excitation due to a linear mismatch in wavenumbers and to the

Landau-damping rates of the decay waves is analyzed, assuming that the magnitude of the pump

field is constant in time and in the spatial region where the resonant interaction takes place. Both

types of temporally growing modes and spatially amplified instabilities are studied, using a WKB

analysis. It is shown that either by increasing the strength of the mismatch K or the width of the

pump L, the growth rate of the fastest growing normal mode will decrease. When the excited

waves are slightly damped, it is shown that there exists a finite value of the product K L, such

that, above it, no temporal normal modes are excited. The amount of spatial amplification is also

reduced by the mismatch in wavenumbers and by the damping rates of the excited waves. Because

of the finite spatial extent of the pump electric field, the amplification length is found to be smaller

than or equal to L, depending on the strength of the mismatch and damping rates.
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I. INTRODUCTION

At the high power levels required for supplementary rf-heating of plasmas, a variety of

nonlinear phenomena are likely to occurl, especially, in the very low density and temperature

region of the plasma edge. For lower-hybrid heating, the rf-fields are principally electrostatics;

they are launched into the plasma by phased waveguides array, and propagate inside the plasma

along well-defined resonance cones. Among possible nonlinear effects, parametric instability is one

of the most prominent. There are many different types of parametric processes that may take

place during lower-hybrid heating, most of which have been discussed by several authors . In

this paper, we consider the resonant three wave parametric instability, where the pump field is

assumed to decay into two others resonant waves, such as another lower-hybrid wave and a low

frequency mode. Recent experimental results indeed show the presence of such excitations 4 near

the plasma edge region, which partially motivates this work. Because the plasma density gradient

near the edge is always very large, it is very important to understand how this may affect the

decay process. The plasma density gradient originates a phase mismatch which may saturate the.

resonant excitation. The low frequency mode is very likely to be slightly damped either by

electrons or ions, which also contributes to the saturation of the instability.

These two aspects have not yet been sufficiently studied, and a correct treatment of this

problem is still needed. The difficulty arises from the selection of the right boundary conditions

that describe the saturation of the resonant excitation due to the wavenumber mismatch. The

mode coupled equations are to be analized in the complex plane, so to impose the right boundary

conditions for the excitation of either temporally growing or spatially amplified instabilities. These

boundary conditions are different from the ones found in a homogeneous plasma 5 due to the

presence of the phase mismatch. We present a thorough analysis of the stabilization of the

resonant three waves parametric excitation due to both mismatch in wavenumbers and linear

damping rates of the excited waves, using a WKB analysis. The correct boundary conditions are

found after examining the Stokes' structure of the mode amplitudes, taking into account the
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mismatch, the damping rates, and the finite spatial extent of the interaction region.

The frequency and wavevector of the three waves are assumed to be peaked around a

certain (o, ). The slowly varying pump amplitude is assumed constant in time and in space. The

geometry of the interaction is two-dimensional, and this interaction may also evolve in time. The

two-dimensional interaction has been shown 6,7 to be equivalent to a one-dimensional one, which

reduces the problem to two coupled differential equations in time and one spatial variable. We

shall consider a linear mismatch gradient, and a rectangular pump profile of finite width L.

One dimensional interaction in a pump of infinite spatial extent is fairly well understood 8,9

for the case of a linear mismatch profile. It has been shown 9 that no temporally growing modes

are possible in the linear mismatch profile, and that the amount of spatial amplification 8,9 is

always finite and may be greatly reduced by the damping rates of the excited waves 10. The one

dimensional interaction in a pump of finite spatial extent is the case that concerns us now, and has

been analyzed by a number of authors 1 . In spite of this work the situation is not very clear.

Specifically, some authors 1- agree that temporally growing modes will disappear, increasing

the length of the interaction (i.e., the spatial region where the pump extends). Others 15-17 claim

that temporal normal modes exist for any finite value of the length of the interaction, which does

not seem to be consistent with the results in Ref. 9. To our knowledge, no satisfactory resolution

of this controversy has yet been presented, and the thresholds for the excitation of normal modes,

as function of the pump width, are still unknown. The amount of spatial amplification may be

considerably reduced when simultaneous damping of the excited waves, mismatchl in wavenumbers,

and finite extent of the interaction region are considered; this has not been explored sufficiently.

In this paper, we attempt to answer these questions, and give a better insight into the nature of

the resonant three wave parametric instability.

The paper is organized as follows. In Sec. II, we formulate the problem and present the

basic equations describing the evolution of the three waves parametric instability. Section III is

divided in three subsections, in which we study the excitation of normal modes. We start by

presenting the WKB solutions for the second order equation that gives the evolution of the
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instability. The boundary conditions are formulated taking into account the Stokes' structure of

these solutions in the complex plane. Next, we derive the dispersion relation that gives the

eigenvalues of the possible normal modes. We show that the existance of these normal modes

depend critically on the strength of the mismatch K, widih of the pump L, and damping rates of

the excited waves. In fact, we find that either by increasing the length of the interaction L, or the

strength of the mismatch K', the growth rate of the fastest growing normal mode will decrease.

Furthermore, if the excited waves are slightly damped, there exists a finite value of the product

X L, such that above it no temporal normal modes are possible. The thresholds for the existence

of normal modes are presented in Sec. III C. In Sec. IV, we are concerned with spatially amplified

instability. We calculate the spatial amplification factor, and we study how it is affected by the

damping of the waves, the mismatch in wavenumbers, and the finite spatial extent of the pump

field. In Sec. V, we present a brief discussion of the techniques used in the paper and a summary

of our results. The Appendix containes a derivation of the coupled mode equations for the decay

of the lower-hybrid pump into a sideband and a low frequency mode.

It should be noted that the analysis we present is quite general and could be applied to

any three waves decay processes, even if the involved waves are not in the lower-hybrid

frequency range, without major changes. The geometry of the problem has to be two-dimensional,

and the pump field must have a finite spatial extent, for the application of this analysis.
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II. BASIC EQUATIONS

Let us consider a two-dimensional plasma slab where x is in the direction of the plasma

inhomogeneities (i.e., density, temperatures, and toroidal magnetic field inhomogeneities), and z is

in the direction of the toroidal magnetic field B0. An externally launched high frequency pump

wave in the lower-hybrid frequency range,

WO a~

(1 + we /n2 )1/2 '

is assumed to decay into two other resonant waves, such as another lower-hybrid wave W I and a

low frequency resonant mode W2 (e.g., ion cyclotron, ion Bernstein, and ion acoustic modes). The

three waves are described by amplitudes

x
A - ai(x, z, t) exp[i(- wit + kizz + kigy) + i ki(x) dx], (1)

where a1(x, z, t) are assumed to be slowly varying in space and in time. The pump wave vector To

is taken to be on the x-z plane (i.e., 10 - (kox,koz)j; thus, the pump amplitude is assumed uniform

in the y direction. The three waves satisfy the matching conditions: 00 - W + W2, koz - k lz +

k2 , and k 1 - - k2y The plasma inhomogeneities introduce a mismatch in the x component of the

wavenumbers Ak(X) - kOx - k x - k2x, to be determined from the local dispersion relation for

each of the waves in the inhomogeneous plasma: Ki(kgi, wL, kiL; x) - 0, where kg - (k? +

k27 )1/2 and where ki, and ki, are constants independent of the inhomogeneity coordinate x.

We assume that the amplitude ao is constant in time and in space. The complex wave

packet amplitudes of the excited high and low frequency waves satisfy the equations (see the

Appendix):

( ' x+ 6iu +vI-)aI -yo4 exp[i Ak(x )dxJ, (2)
X0
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+ expi Ak(x dx (3)72 + a+ v2-)a2 I

where y 1 and 72 are the damping rates of the excited waves, and vix, viz are their group velocity

components along the x and z directions, respectively.

The coupling coefficient yo is different from zero over the region where the pump

extends:

- S z- V(xdx s ,

where vor and vox are the group velocity components of the pump wave, and w is the width of the

pump resonance cone (see Fig. 1). We find (see the Appendix),

Ito E0 sin 4 k2 X(4W2), (4)20 BO o V0 M, )0( M2 112 X('2' E

where (6Kg/60W, is to be evaluated at the frequencies of the resonant waves, i - 1,2; sin< -

k lfk I,, and E0 is the pump electric field. The pump amplitude ao is related to E0 as ao - 2

[(6KoMw).o]l12 Eo; similar expressions hold for a, a2 and El, E2. The electron susceptibility

X. for the resonant low frequency wave is given approximately by

2  2 A, if
k2 "De k2-zvTe

2 k2

2 w2 rW2 2 k2zlvTe

depending on whether the excited low frequency mode is an ion acoustic or an ion cyclotron mode,

W2/(Ik 2 I VT,) < I, or whether it is an ion Bernstein mode, 02/I(Ik 2jI VT) O I. It should be noted

that the group velocity components v. and vX for the three waves, the damping rates If 1, 7 2, and

the coupling coefficient y0, depend on the inhomogeneity coordinate x. However, we assume that

the spatial inhomogeneities are weak enough to treat them as constants over the finite region

where the pump extends; we shall also find that the phase mismatch Ak(x) further localizes the
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region of resonant interaction in the inhomogeneity coordinate x.

The two-dimensional interaction described by Eqs. (2) and (3) can be reduced to an

equivalent one-dimensional one by means of the transformations that follows . Let us first rotate

our coordinate system to lie along and perpendicular to the pump resonance cone: 2 - (vo, z +

vx x)/v0 and 2 - (voz x - v00 z)(v0, where v0 - (voX + Vo ). Next, define a new coordinate

system as

S-t, 6 2, 0 - 2 - ag - ut, (5)

where a - (vII - V20)A(V1R - v2j) , u - vl - av1j (vii and vjR are the group velocity components

along and perpendicular to the pump cone), and 6 = (voz + a VOx)Ivo. Under these transformations

Eqs. (2) and (3) become

( -l .. ' Pox
T + V2 + y2a 2 y0a* exPEi Ah( + -zf) di, (6)

(~ t + + If2a2-I Oyal expif Ah + -o zf) dt 1. (7)

where it- vig, (i - 1,2), to - x0 - (voxvo) zp and ( - x - (vo2xvo) zp The independent variable

zf is a free parameter which defines where in the plasma the resonant interaction is taking place;

the interaction region in the pump cone extends along the line, 2 - g - zwhere Z is given as

an initial condition. The coupling coefficient yo, the damping rates 'y and 'Y2, and the group

velocity components vit, can now be defined at the values that they take for 2 - ZY and 2 - 0.

Thus, Eqs. (6) and (7) describe a one-dimensional resonant interaction in the spatial coordinate t,

and at a fixed given distance zf along the direction of propagation of the pump field (see Fig. 1).

From now on we shall, for simplicity, omit the subscript zf in all the equations, but we always

understand that the interaction is defined for a fixed given value of zf

We are looking for solutions to Eqs. (6) and (7) with a temporal dependence of the form
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exp(PT) where p - s + iq is, in general, a complex number. Let us define a new set of amplitudes

7-17.

a, P +71 P + 72 t
2 " n exp (- . (- + )+ pr - Ak(Q )dt . (9)2 (v 2 1) 12 V v2 (

Substituting these expressions into Eqs. (6) and (7) we obtain:

.[ ) + ],- sgn(v1t)X0a2, (10)

[ Q) + -Ja 2 - sgn(v2t) X 0 1, (11)

where 0(Q) Q + i(Ak(f) + qvit - qlv 2 1 , q - (s + Y()/v 1 - (s + 7 2)/v2t ' X0 - 70(1v 1 2

and sgn(vit) - vitl|vitl . We can now further eliminate d2 from Eq. (10), and di from Eq. (1 1), to

find

dIa 2q+ (-I1 dAk (2
-[sgn(v jtv2t) JXO2 + 12(0 + - -T I - 0, (12)

with i - 1, 2. In what follows we take 1X012 p IdAk/dt, allowing us to neglect dAk/dt in Eq. (12).

Then, the amplitudes a1 and a2 satisfy the same second order differential equation,

2d [sgn(a gv2t) 1XO1 + T2( )i - 0. (13)

The phase mismat h Ak(s) will. always be assumed to be a linear function of (. If the

pump extension in the t coordinate is

L vOzvCr + av(. OXtu (14)
VO

we may write
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tk() - Ak(O) + K', (15)

where K - [Wk(L/2) - Ak(-L12)]/L, Ak(± L12) are the phase mismatches at both extremes of the

pump cone (i.e., for ( - * L/2) as taken along the line of pulse response, I - aR - Zf, and where

hk(O) is the mismatch at the center of the pump cone. It should be noted that the trajectory of

the pulse response covers a distance along the inhomogeneity coordinate x, as it goes through the

pump cone, which is precisely equal to L (see Fig. 1).

To determine the phase shift q let us substitute the mismatch tk(t) in Eq. (15) into the

definition of 0(t) after Eq.(11). We find, 0(Q) = + i(K + + Q) where Q - Ak(O) + q/v 1 - q/v 2t.

Note that the zero-mismatch &k(Q) is independent of K and L. It comes from the fact that in a

homogeneous plasma (i.e., for K - 0), the k-vectors of the three waves are not necessarily

matched since they are independently obtained solving for their corresponding dispersion

relations . This zero-mismatch originates a frequency shift q which is given by setting Q - 0, as

Ak(0)
q - - . (16) -M

The complex function 0(t) becomes now only a function of K, and independent of the

zero-mismatch Ak(O):

(Q) -+ W t, (17)

where t is real and is defined after Eq.(11); from now on, we shall simply call mismatch to the

function K t.
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III. NORMAL MODES AND TEMPORAL GROWTH RATES

We wish to examine Eqs. (10) and (11) for temporally growing modes (i.e., for s > 0), using

a WKB analysis. Such time growing modes can only exist if v1 z2t < 0 7-17

A. WKB solutions and boundary conditions

Let us first start defining a new complex variable z as

Z - Zo +(18)

where z0 - i/2%I|, and t and X0 are defined after Eq. (11) (note that 1 depends on the eigenvalue

s of the possible normal mode). The pump boundary limits ( - * L/2, in the new variable z are c

and c* (the complex conjugate of c), where

C - 20 + i . (19)

In the WKB approximation, two independent solutions of Eq. (13) are

___ 2I6OI I
*(Z) 1 exp[* --- ;- (1 - z 2)112 dzJ], (20)

where r(z) - |X 0I(I - z2)112. The turning points are z - *1, and r(z) is real analytic in the cut

complex plane of Fig. 2. Any linear combination of the form C1O+(z) + C21p-(z), with C, different

from zero , is only defined in one semiplane of the complex plane (i.e., either for Im(z) greater or

smaller than zerol If z crosses the real axis intersecting the Stokes' line,

Im[f (1 - z 2 )1 2 dz] - 0, (21)

(Im denotes the imaginary part of the expression between brackets) lying along the real axis

between z - 1 and z - -1 (see Fig. 2), such linear combination should be modified according to the

connection formulae given, for instance, in Ref. 18.
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Let us denote by r and r* the points of intersection of the line Re(z) - zo with the

anti-Stokes' lines

Re[ (1 - z'2)1/2 dz] - 0. (22)

(Re denotes the real part of the expression between brackets). The rate of change of the

magnitudes of sb:(z) with respect to z, is given by

A*(z) - exp{* -K-- Ref (I - z 2)1 dz }
K J

A+(z) is exponentially large for Ilm(z) < Im(r), and becomes exponentially small for JIm(z)I > Im(r).

When z - zo, the mismatch K is zero, and then At(zo) are maximal and minimal, respectively.

Thus, the WKB solution, ik+(z), decays in magnitude away from the zero-matching point z - zo as

IIm(z) increases; the other WKB solution, ikjz), reaches its minimum value at the zero-matching

point, and grows continuously in magnitude as IIm(z) increases (i.e., as the mismatch K

increases).

The mode amplitude, di(z), (i -1,2), is given as two different linear combinations of Oi*(z),

each of them defined for each of the semiplanes, Im(z) > (<) 0. The complex variable z is now

restricted to constant Re(z) - zo and to Ilm(z)l s Im(c) . The right linear combinations that defines

dj(z) are dictated by the boundary conditions, which depend on the location of c and c* in the

complex plane. We distinguish between the two cases: (a) when c and c* are between the two

anti-Stokes' lines defined in Eq. (22) and (b) when c and c* are outside the region delimited by

these anti-Stokes' lines and the imaginary axis. In case (b) [i.e., for Im(c) > Im(r)], the magnitude of

aj(z) must decay exponentially as 1Im(z )I becomes larger than Im(r). This means that Si(z) must be

proportional to q+(z) for both Im(z) greater and smaller than zero. However, J',(z) cannot be

simultaneously defined as an approximate solution of Eq. (13), in both semiplanes of the complex

plane. This implies that the eigenvalue problem cannot be solved under the conditions of case (b).
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We shall discuss in Sec. III C the restrictions that this imposes on the eigenvalue s of the possible

normal mode.

In case (a), both solutions 4q(z) are physically acceptable, since even if IP_(z) grows as

IIm(z) increases, its contribution to ag(z) is always exponentially small; the dominant contribution is

given by the well-behaved solution '+(z). The mode amplitude a1(z) is given by two different

linear combinations of fP(z), for each of the semiplanes, Im(z) > (<) 0; these combinations are

connected along the real axis [i.e., along the Stokes' line defined in Eq. (21)1 Next, we present

these solutions and derive the dispersion relation that defines the eigenvalue j of the possible

normal mode.

B. The dispersion relation

Assuming always that Im(c) < Im(r), the appropiate boundary conditions for the excitation

of normal modes. are ai1(c*) a a2(c) - 0. These boundary conditions give

A ___ A212 z(_ '2)112a,(z) - A sin[-i K (1 - z dz], (23)

B(z) - sin[-i 2, f - 2)1 dz], (24)
a ( (z)]wil/ K'

where A and B are two integration constants which are related to each other in the way we shall

specify. The solutions in Eqs. (23) and (24) are defined for Im(z) < 0 and for Im(z) > 0,

respectively, and they have a common boundary along the real axis. The integration paths are now

straight lines parallel to the imaginary axis, and are displaced from it a distance z0, which

depends on the eigenvalue s. The system of equations (10) and (11) must be exactly satisfied at z

- zo, where the common boundary and the integration paths intersect:

a 4(O) + Fi a, (zo) - X0d 2(z0 ), (25)
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a WK - (26)- a2(z0) + - d2 (z0) N);(

a (z0 ) denotes differentiation with respect to z evaluated at z - z0. Equations (25) and (26)

together with Eqs. (23) and (24), yield a system of algebraic equations to be solved for A and B.

The compatibility of this system gives the following dispersion relation for the eigenvalue s of the

temporal growing mode,

tan [-i 2P0
2 f (I - z2)1/2 dz] - -( - )112. (27)

K

To solve for a real s, we have to require that t0 / 2 9/2. This implies that, for any given value of

K and L, the eigenvalue s is always smaller than or equal to so as given by,

S 2o I - y IN 1  + yIvq (28)
S1I/V - I/v2t

Equations (25) and (26) also give the following relation between the two integration

constants A and B:

B - n/2 sin ,* + (IXoI 2 _ )214)112 cos*(9
sin,(29)

where lp _ -i 2t) 0I2/K f (1 - z2)12 dz.

Let us now consider,

fCC(I - Z2)112dz - [c(, - c2)12 _ c*(I _ C*2)112] + arc sin (c(I - c*2)/2 - * - c2)U2

If K is assumed very small we can approximate (I - c2) 112 by (1 - (1/2RO) 2 )"2. Equation (27)

now becomes:

tan{ JIOL T ) + -, arcsinh [ L - )12 =I2.(;r)

The dispersion relation that gives the growth rates in a homogeneous plasma may now be

recovered by letting K -+ 0 in Eq. (30), and it is, as presented in Ref. 5,
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tan [IX0IL (1 - . 2..)2) -. 1/2

The minimum thresholds for the excitation of normal modes are given by setting s - 0 in

Eq.(27). If we assume that the damping rates are small, we find

0L [( + ( 21 /2 + arcsinh{ [1 + ( )21/2} - (n + )7r, (31)

where n is a positive integer, which clasifies the unstable modes. Equation (31) determines, for

given K' and L, the minimum value of I)oI which is needed for the excitation of the normal mode

of order n. Note that as K L increases these thresholds decrease, and eventually, as K L -,

there will be an infinite numerable of excited normal modes whose eigenvalues acumulate around

s - 0. Nevertheless, we remark that these thresholds are only necessary but not sufficient

conditions for the appearance of the unstable modes, since for K L - e no solutions with

non-zero s exist for any finite value of Rol . This will be easily understood in the discussion that

follows next. It should also be noted that by letting K 0 in Eq. (31), we recover the familiar

thresholds for the excitation of normal modes in a homogeneous plasma: IX0IL - (n + 1/2) w, as

calculated in Ref. 5.

C. Instability thresholds

The zero-matching point between the pump and excited waves (i.e., the point where the

coupling is as in a homogeneous plasma, see Eqs. (13) and (17)] is t - 0, or in the z variable, z -

zo. This means that the strongest coupling between the three waves occurs half way across the

pump cone along the trajectory 2 - aR - z for a given constant value of the free parameter zt

This interaction will get weaker as the excited waves move through the pump cone, away from the

zero-matching point, and the rate of decoupling is given by the product K L. By increasing K L

and keeping the eigenvalue s fixed, c and c* will go beyond the anti-Stokes' lines departing from z

- 1, and then that particular mode s or any one growing fastest cannot be excited. As explained in
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Sec. III A, this happens because the magnitude of a8(z) must decrease exponentially as Im(z) moves

away from the anti-Stokes' lines. Since no solution to Eq. (13) exists satisfying this requirement,

we conclude that normal modes can only be excited if c and c* are inside the region delimited by

these anti-Stokes' lines and the imaginary axis.

These considerations allow us to find the maximum value, sm, that the eigenvalue s can

take for given value P'01 and for fixed decoupling rate K L. If we define

I 5 m+ Y I sM+72 i
zm - - _2_ + 7 K (32)

the fastest growing mode has a growth rate smaller than or equal to s. as calculated from

ZM
Re(f (1 - z2)1/2 dz] - 0. (33)

The upper bound sm is always smaller than so, which is defined in Eq. (28), and as K L -+ 0, sm

so. By increasing the decoupling rate K L (i.e., by increasing either the length of the interaction

L or the strength of the mismatch K), sm will become smaller. If K L is greater than the inverse

of a certain critical length, Lc, no temporal normal modes are possible. This critical length LC

depends on the linear damping rates y I and 72, and is defined solving for

Re[ f (I - z2)1/2 dz] - 0, (34)

where

Y T 1  72 
(

z - ( -~- - -)(5

As (y IN It - 72/v2 ) goes to zero, the critical length Lc becomes smaller; when the damping rates

become larger, so does also L. By letting the length of the interaction L go to infinity, we find

that K'L is always larger than lLc, implying that, in a pump of infinite extent, no purely growing

modes are possible 9. The thresholds defined through Eqs. (32), (33) and (34), (35), are depicted in

Fig. 2.
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Let us now assume that K L is smaller than 11L, By increasing the damping rates y I and

y2, the upper bound sm, defined through Eqs. (32) and (33), becomes smaller. If the damping rates

are large enough so that ('Y I/i - 72- '2P) ? 2RI, that is, for

72(I 1)I2 + y ( I) 12 21jY0, (36)

we find that no- temporal growing modes are possible for any value of K L.

It should be noted that in the former discussions we have been assuming that the coupling

coefficient y0 is constant. However, for fixed values of K L, 'ylIvit and 721V2 , the growth rate

of the fastest growing mode increases with increasing 'y, and tends to s0, as defined in Eq. (28),

when -y| w. The critical length LC decreases with increasing yo , and as yO' , w, -+ 0.

I
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IV. SPATIAL AMPLIFICATION

For spatial amplification we require the eigenvalue p to be purely imaginary [i.e., p - iq,

with q as defined in Eq. (16)), so that the instability may only grow in space for a certain finite

plasma length smaller than or equal to the width of the pump L. These excitations grow from

initial thermal fluctuations, which develop at a certain point in the interaction region L. The

problem poses now as a boundary value problem with boundary conditions, which are defined at

the point where the thermal source interacts with the pump field. Spatial amplification can occur in

both cases vit v2 > 0, and vl V2 < 0. We first study the case vit v2t > 0, for which we know

that no temporal growing modes are possible.

A. Group velocities in the same direction

Let us consider the complex variable z as defined in Eq. (18), where now z0 - XD/2Ir0 and

ND - 'f 1INit -y2/V2 . The pump boundary limits ( - *L/2 in the variable z are c and c*, with c -

(XID + iK L/2)/2X 0o-

In the WKB approximation, two independent solutions of Eq. (13) are:

4 (z) - exp[*i -1A 2  (I + z' 2)1 2 dzJ. (37)
(t(z)]1  KJ*L I

The turning points are z - *i, and (z) - IN0(i + z2)112 is real analytic in the cut complex plane of

Fig. 3. Let us call r and r* the points where the line Re(z) - z0 intersect the anti-Stokes' lines,

Im[ (I + z' 2)1/ 2 dz I - 0. (38)

The mode amplitudes Ai(z) (i -1, 2) are given as linear combinations of 0,(z); these combinations

are dictated by the boundary conditions as follows. We distinguish between the two cases: (a)

when K'L is small enough so that c and c* lie in between the two anti-Stokes' lines; and (b) when.
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K L is such that c and c* are outside the region delimited by these anti-Stokes' lines and the

imaginary axis.

In case (a), the boundary conditions are a () - a2(c*) - 0 and (dAi(z)/dz)c* - b, where b is

the level of the thermal fluctuations. The amplification factor r, that gives the number of e foldings

of the mode amplitudes di, is found to be

r -i ( 12 z2)1 2 dz. (39)

The path of integration is a straight line parallel to the imaginary axis which is displaced from it a

distance zo, which depends on the damping rates of the excited waves. Let us next consider,

(f + -d .-{c(I + c2 )12 - c*(l + c*2) 12 + arcsinh [c(l + c*2 )112 - c*(1 21/2

Under the limit D 0 r becomes

X0IL K'L 2 112 K'L [I(K L M1 2 .
- - [1 - ( )2I 2 + arc sin [ - 4 ). (40)

If we now let K -+ 0, we recover the homogeneous limit

as calculated in Ref. 5. The amplification factor for the mode amplitudes a, and a2 [see Eqs. (8)

and (9)] should be calculated as r - (' y1 v 1 + 72IV2 ) L/2.

In case (b) (i.e., for 1Im(c) > Im(r)], the thermal source is located at, say, z - r*. The mode

amplitudes must decrease exponentially as 1Im(z) becomes larger than Im(r). This implies that ai(z)

must be proportional to %,+(z) for Im(z) > Im(r*). For Im(z) < Im(r*), a(z) is proportional to Of(z).

The solutions in the two different regions should be matched at z - r*. The modes ai(z) are

continuous functions of z, but their first derivatives at z - r* are not; the discontinuity in the

derivatives is due to the presence of the thermal fluctuations, and the amount of discontinuity is



Page 19

given by the level of the fluctuations. This discontinuity can be represented by introducing an

inhomogeneous term, proportional to the Dirac-delta function, on the right-hand side of Eq. (13).

Then, because of the presence of the thermal source, we can find solutions to the boundary value

problem, such that they are well-behaved for IIm(z)| > lm(r), and amplify in the region between

the anti-Stokes' lines.

The amplification factor r for the modes ag(z) is now 9

r Y0 2 (41)
K Ivlv2j

The amplification factor for the modes a, and a2, as given in Eqs. (8) and (9), is calculated as: r -

(If /lt + Oyv2) L efi2, where Leff is the amplification length which is given by

r (D + K Leff), (42)

L ef is the range for which the excited waves amplify inside the interaction region.

B. Group velocities in opposite directions

We next study the case vit v2t < 0. The WKB-solutions, e#(z), are defined in Eq. (20),

where z0 is now equal to XD/U2\0X; the modes a;(z) are given as certain linear combinations of

%t(z). The Stokes structure of the complex z-plane has also been discussed in Sec. III A, and it is

as presented in Fig. 2. We again have to distinguish between the two cases (a) and (b), depending

on whether c and c* are between the two anti-Stokes' lines in the semiplane Re z a 0, or whether

c and c* are beyond these anti-Stokes' lines, respectively. Case (a) has no interest here since if

the instability grows (i.e., if 1X01 is above the thresholds given in Eq. (31), it will build up in time

in the way explained in Sec. III B.

In case (b) the instability can never build up in time because K L is always greater than

the inverse of the critical length LC, as defined in Eq. (34) and (35). The thermal source is located

at, say, z - r*, and the first derivative of a;(z) is discontinuous at this point. The amplitudes of the
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modes must be such that they decrease in magnitude exponentially as JIm(z)l becomes larger than

Im(r). The amplification factor is found to be:

2X 2- [f ( -z 2)112 dz +f (I -z 2)112 dz . (43)

Equation (43) can also be rewritten in the more appropriate form,

4I|A0I2 (Ir %---) (1 -z 2)1/2 dz, (44)

within the limit XL -+ 0 (i.e., for zo - 0) we find that r is as given in Eq.(41). The spatial

amplification for a, and a2 is calculated as r - (oy 1Ivl + 'y2N2v) Lef1 2, where Lrg is the

amplification length, which has been defined in Eq. (42).
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V. SUMMARY AND CONCLUSION

Three wave parametric excitations have been analyzed in this paper, assuming a pump

electric field of finite spatial extent and of constant magnitude in space and in time. We have taken

into account the wavenumber mismatch due to the plasma inhomogeneities, and the

Landau-damping rates of the excited waves; the wavenumber mismatch has been assumed to obey-

a linear profile. The resonant excitation can either grow in time or in space, and both types of

temporal normal modes and spatially amplified solutions have been studied using a WKB-type of

analysis.

Temporal normal modes may be excited if the group velocities of the excited waves have

different directions across the pump propagation cone. We have derived an implicit trascendental

equation, Eq. (27), that gives the growth rates of the excited modes; the dispersion relation is

shown to allow transition to the homogeneous limit. The growth rate j of the fastest growing mode

is shown to be smaller than or equal to sm, as defined in Eqs. (32) and (33). This upper bound

decreases upon increasing either the strength of the mismatch K or the spatial width of the

pump L; if K L goes to infinity, s. goes to zero. Moreover, if one allows some small damping for

the excited waves, it is shown that there is a finite critical value, L- 1 , of the product K L, such

that above it no normal modes are possible; this critical value is given by Eqs. (34) and (35). By

increasing the damping rates of the excited waves, L 1 becomes smaller and so also do the

growth rates of the excited normal modes. If the damping rates are such that Eq. (36) is fully

satisfied, then no normal modes are possible for any value of. K L.

To obtain these results we have carried out a .detailed examination of the Stokes'

structure of the mode amplitudes in the complex plane. This allows us to select the correct

boundary conditions, which are different from the ones found in a homogeneous plasma due to the

existance of the wavenumber mismatch. The mismatch introduces complex turning points that, even
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if they do not lie on the real space, are positively affecting the rate of growth of the instability.

The spatial dependences of the mode amplitudes may change its direction of amplification at

certain points ("turning points") inside the interaction region if K or L becomes sufficiently

large. When this happens that eigenmode, or anyone growing fastest, cannot be excited. This is

because we cannot find solutions that are evanescent beyond the "turning points". In Refs. 15-17,

the boundary conditions that were assumed, for any K and L, are a1(-L/2) = a2 (L/2) - 0; these

are not always correct in inhomogeneous plasmas. The WKB approximation is an useful technique

to approximate the values of the "turning points" r and r*, as given by Eq. (22). This approximation

is restricted to small values of K as compared with IXCI2. To apply the WKB approximation, we

have to be careful in writing the solutions for the two mode amplitudes within this approximation.

In Ref. 15, this was not correctly done, since by requiring that the boundary conditions, at both

extremes of the pump cone, to be imposed only on one of the modes (e.g., a,) the fast and slow

spatial variations were not appropiately treated. This leads to an ambiguity in the dispersion

relation, as it becomes different upon imposing the boundary conditions on the other mode a2.

If the group velocities of the excited waves have the same direction across the pump

cone, or if they have different directions but K L is such that it is above L 1 , the instability can

only grow in space. The amplification factors have been obtained, taking into account the damping

rates of the excited modes and the mismatch in wavenumbers. We have distinguished between two

different cases: (a) when the strength of the mismatch and damping rates are small enough so that

the pulse response amplifies along all its trajectory in the pump cone; and (b) when they are large

enough so that, owing to the presence of complex turning points, the pulse response cannot

amplify along all its trajectory in the pump cone. In case (a), the amplification length is equal to

the pump width L; the amplification factor is given by Eq. (39). In case (b) the amplification length

is always smaller than L, and it is defined in Eq. (42); the amplification factor is given by Eqs. (41)

and (44), depending on the directions of the group velocities.
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APPENDIX

The weak coupled equations, Eqs. (2) and (3), have been derived in different physical

situations by a number of authors 6,1,19. The derivation we are presenting is slightly different

from what is usually found in the literature, and is particularized to the coupling of lower-hybrid

waves.

We start writing Poisson's equation for the high frequency lower-hybrid waves

V- [ ( (na) V 0th() 3 - 0, (Al)

where 1 (nag) is the dielectric tensor evaluated at the nonlinear density nag. We assume that

there are no free charges in the plasma, i.e., that all the charges are polarized and are contained

in the nonlinear density n~j. The dielectric tensor is an operator which operates on both

space and time variables; it has the form:

K7(nn) +i K.(nng) 0
J (ne) I -i K.(ng) K.(n) 0 (A2)

0 0 K,(n)

These components acting on a wave (w,k) give:

w (n~g
K,(nne) - I - pe , (A3a)

0 ( nt) - w (ntK1(nnt) - (2 (A3b)
e (2g)

Kx(nne) - (A3c)

We shall simply write K, K1, and K when they are evaluated at the unperturbed density of the

plasma no, which is assumed to be obtained from a Maxwellian distribution function.

For the decay of a lower-hybrid pump wave (0, ) into another lower-hybrid wave

(W ,fi) plus a low frequency mode (w2,12), we simply have:
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*th * oo + o , (A4a)

- exp[it,( ')] gO(x,z,t) + cc. , (i - 0,1), (A4b)

n7e - n0 + n0 (exP 4 2( fl] 's(x,z,t) + c.c.), (A4c)

where

i( z) - kzz + ky +f ki,(x)dx , (i - 0, 1, 2),

and where 45i and , are slowly varying complex amplitudes. Upon substituting Eqs. (A2) and (A4)

into Eq. (A1), we find, up to first order in the spatial derivatives of OO, and 45i:

Loos m Col 1 ,% exp[-i J k(x)dx ], (A5a)
fro

X

L 1, C' 0 o0s g exp[i foAk(x')dx'] (A5b)
ro

S-- k i() + 2i (Ki k + Kilkiz ), (A5)

Col - (K I - I)k 01 k I cos 0 + (K In - l)kork 1z+ iKoikki sin 0, (A5d)

where k(x) kOX - ki - k2x, and sino - k Ik)I AI. If we assume K1 = 1 and if K ix sin P x 1,

one can simplify Eqs. (A5a) and (A5b) by neglecting the first two terms in Eq. (A5d); these

approximations are called E x B approximation.

The operator Li (i -. 0,1) can be rewritten in a more convenient form by considering,

K,( 2-) + K.( )i( )( + ),(A6a)

K k a+ K,kz a I - (a +, V ) ( A6b)

where oK/&) - 2/w (1 + /f ) , (w) stands for either ( JPO) or (w A~f) , Y is the linear

damping rate and v., v. are the group velocity components. Combining Eqs. (A5) and (A6) and

using the E x B approximation, we find:
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6+) K lxk Isin 4
( + + + VOX + VOx 4 sO - - (- 0 Iv, exp[-t Ak(x ) dxJ],(A7a)

(bK xkO ) s exp [ x k(x ) d .(A 7b)

where oyp and y I are the pump and sideband linear damping rates, respectively.

The nonlinear density t) is due to the parallel ponderomotive force produced by 00 and 45

which acts-on the electrons along r. The ponderomotive potential is given by 4 p - -e/m, [(O *

V )v*r + ( V + c.c.J, where #0 and el are the fluid velocities of the pump and sideband

waves which are calculated from the fluid equation: 6Il: = a -e/me(ri + ! x ) i = 0, I. Hence,

we find

S kozklz i 
(S4. - + B_ koLk 1 sino) #e0. (A8)

the E x B approximation consists in neglecting the first term of the right-hand side of Eq. (AS).

The perturbed electron density can be found solving for

( + V f ._ L d - ( p + qsc), (A9)

where fM, stands for a Maxwellian distribution function, and q, 1 is the self-consistent potential to

be determined from Poisson's equation. From Eq. (A9) one gets,

-0 k2 X,#2. (AIO)

The electron susceptibility X, is an operator which acts on the low frequency electric potential

02, where 02 " =p + #,c For the ions the ponderomotive force is negligible and one finds: ng -

- (eo/eno)k2 Xscpr. Putting together Eq. (A10) and ng into Poisson equation we get

K2(V, t )42 = 11 + 44W 2 ) 4 p, (A1)

where K2 is the dispersion relation operator for the low frequency wave.

If the low frequency wave is nonresonant (i.e., KA(-2'" 2) 0 0, we may simply write 02
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[I + xj(l2,W2 )J/K 2 (k2-W2 ) 4f,; putting this together with Eqs. (A7), (A8), and (A10), we could

obtain the quasi-mode coupled equations as presented in Ref. 3. However, in our case, the low

frequency wave is resonant [i.e., K2(2.w 2) = 0; we may then write, in lowest order,

K2( 2s K2  (72 + + V2x + v2z )2, (A12)

where 72 is the linear damping rate, and v2x, V2z are the group velocity components for the low

frequency mode.

Let us next define the wave packet amplitudes a, as

bK.
aju [(j )01 12 k 0,; (A 13)

where i - 0,1,2, and Ej - 1/2 kj4i, is the magnitude of the electric field. By combining Eqs. (A7)

through (A13), we finally arrive at the coupled equations describing the resonant interaction.

between the three waves:

(7, + + ZPO - V)aO -C a I a2, (Al4a)

(D + + V)al - Ca 0a2  (AI4b)

+ + 2 V)a2 - Cao0 a*. (A14c)

We have taken wo w 1 i, where

C- IKI. Ki 2  ) (A15)

B~0 [~ O (J" I1 )Wd1( 2 ).1112

If the pump is assumed constant, and if yo - Ca 0, we obtain the system of coupled equations (2)

and (3).
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FIGURE CAPTIONS

FiE. 1. Pump propagation cone and trajectory of the pulse response. The coordinates (x,z) lie

along the direction of the plasma inhomogeneities and toroidal magnetic field, respectively. The

cordinates (R, 1 ) lie along and perpendicular to the pump propagation cone. The line of the pulse

response is I - ctR - zf, with zy a free parameter defining where in the plasma the resonant

interaction is taking place.

Fig. 2. The complex z-plane is cut at the turning points, z - *1. These cuts run from z - *1 to z -

*o. The anti-Stokes' lines are full lines departing from z - 1. The Stokes' line is the broken line

along the real axis. Normal modes may be excited for K L < L- . The interaction range extends

along the line that joins c and c*, where zo - [%D + s (Ilv - I1/v2t))2I 0 , s is the growth rate of

the possible normal mode, and c - zo + K L/4Ilo. The growth rate of the fastest growing mode is

smaller than or equal to Sm, as given by, zm = RXD + sm(Il/Vl - I/v 2t) + i1/2 K L2RA01-

Fig. 3. The complex z-plane is cut at the turning points z - :i. These cuts run from z - ±i to z -

*ico. The anti-Stokes' lines are full lines departing from z - ±i. The Stokes' line is the broken line

along the imaginary axis. We distinguish between two cases (a) and (b), depending on whether the

pump boundary limits c and c*, where c - (XD + i/2 K L/2oL lie between the two anti-Stokes'

lines or not. In case (a) the amplification length is equal to the pump width L. In case (b), it is L ff

defined through r - (X, + i/2 KLqj)2RO.



N

0

IN

id

O4



N -

E *E
N N

(9**
N N)01

0
-J
c\J

0

C'.j

r44



C)
*

U..

10 F

(3

H

C-)
p

+ I

N

*
(3

I


