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A Note on Tokamak Ignition Equilibria and Thermal Stability.*
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Tokamak ignition equilibria and their stability are examined in a radially dependent model

with empirical (Alcator) scaling for the energy confinement time. The empirical energy loss term

corresponds to a diffusion operator, whose stationary eigenfunctions are the ignition equilibria. The

dispersion relation for fluctuations around these equilibria is then derived, yielding the threshold for

thermal instability. The instability growth rate is nonlinearly enhanced by broadening of the

temperature profile, which broadening is itself caused by an increase in temperature. Saturation of

the instability occurs at a lower temperature than that indicated by zero-dimensional considerations.

The model system appears to have no built-in saturation mechanism, other than the D-T reaction

slow-down.
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I. INTRODUCTION

A well-known property of the zero-dimensional power balance for Tokamak reactors is

thermal instability [1] at the ignition equilibrium, making operation at that point impossible without

some form of control. In the present study we wish to expand on the present knowledge [2)

regarding the thermal instability in the presence of a temperature gradient. The goal is to see

whether any self-consistent saturation of the instability can arise as a result of enhanced diffusion

loss associated with steepening of the temperature profile. The result of our effort is a

phase-integral stability criterion whose form reveals that radial effects are global, rather than local,

as far as stability is concerned, and that self-consistent saturation of the thermal instability does not

occur. Rather, saturation occurs together with the D-T reaction slow-down, but at a lower average

temperature than is indicated by zero-dimensional considerations.

The model equations describing a self-sustained system are more or less standard [2-5), and

vary only with the type of heat transport deemed important. The concensus on this point seems to

be that ions suffer neo-classical heat loss, while electrons have an anomalous heat flow obeying either

the so-called "Alcator scaling" [6,7) or the "reconnecting mode" scaling [8,9). If the observed

anomalous electronic heat loss scales up to reactor conditions, it would represent by far the major loss

mechanism. Thus, in the absence of a reliable theory for heat transport the system equations were

studied by a number of authors (Refs. [2-4), for example) with various approximations for the

thermal conductivities, in one-, but usually only in zero-dimensions. In the present study we choose

to work with "Alcator" scaling, primarily because of its very simple form.

The usual, zero-dimensional, procedure is to examine the one-, or two-temperature rate

equations

dW 1

.t' APDT - PMF + +PEX (a

dWe (ib)
feEPDT + POHM -P IFF - BR
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obtained from the energy transport equations by line-averaging, i.e., integrating over the plasma

volume with some assumed temperature and density profiles, and dividing by the volume. Hence,

all terms in Eqs. (1) have the dimension of Watt/m3. More explicitly, adopting MKS units for all

quantities except the temperature, T, which is given in keV, and density n, which is given in units of

10 20 m- 3, we have

W, - 2.4 x 104 n.T,, a -e, (2)

Pr- 5.18 x 10' n? T,/ x -0T/
PD=.IX1~ ~j 211 exp (-20/T'/ 3 ) (3)

PZR = 5.35 x 103 Zgn2 T1 2  (4)

PS)IF - 2.4 x 10 nT 1i'ri (5)

PteIFF - 2.4 x 104 nT (6)

3 B2 Z gIn A
POHM = 4.2 x 10 R2 2T312

PEX - 2.4 x 104 n(T. - T)lr eq (8)

fe "exp,(-0.0 15 T,) , fi - I - f (9)

50 T 12 B2a2 3)2
ri - 2 fn(10)

Te a rEMp - 0.32 nq 1 2a2  (11)

Teq - 0.25 T 2 Zf n in A . (12)

Here, r, is represented by the empirical electron energy confinement time [6,7), rT is the neo-classical

confinement time [5,10), r, in the exchange term is the energy equilibration time [II), f, is the

fraction of a-particle energy imparted to the electrons [12), B is the toroidal magnetic field, q is the

safety factor, R is the major radius and a is the minor radius of the torus. The coulomb logarithm
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[I11 is In A = 18 in the range of interest (n = 1, T = 10). Our reference for the values of plasma

and reactor parameters entering into Eqs. (1) is the MIT High Field Compact Tokamak Reactor

[5]. Hence, B - 6, q = 3, R = 6, a = 1.2, Z e 1.2 and the density lies in the n = 1-3 range. The

ohmic heating term is unimportant for T > I keV, and so is the ion diffusion term in a global power

balance.

It is a straightforward exercise (Appendix A) to show that if the a-particle energy goes

preferentially to the electrons (which is actually the case for Te < 40 keV) [12], then the stability

conditions for the two-temperature ignition equilibria dWIdt - dW,/dt 0, are satisfied at lower

temperatures than those for a one-temperature model

dW
T PDT + POUM - PBR - PDIFF F(T) . (13)

The one-temperature equilibria F(T,n) -0 shown in Fig. I are stable or unstable depending on their

position with respect to the stability boundary dF/dT - 0; the state P(T,n) - 0 is stable if and only

if dFIdT < 0. In Figure 2 we show, for the sake of clarity, the major terms in F(T), and Fig. 3

illustrates the effect of POHM-

We are now interested in generalizing the above stability criterion to the case involving

radial temperature dependence. To start, we note, that the two-temperature model modifies neither

qualitatively, nor indeed even quantitatively the implications of the one-temperature model. This is

because the rate of energy exchange between the electrons and ions, mediated by the PEX term in

Eqs. (1) is the dominant rate term in the parameter range of interest (Appendix A). We will

therefore limit our attention to a one-temperature, radial description, and assume that the density is

constant.

II. RADIAL EQUILIBRIA

Experimentally observed energy confinement times are significantly lower than those

predicted by transport theories [5-9. Our one-temperature model equation is based on the

assumption that the empirical scaling is valid at reactor operating conditions. We thus neglect the
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neo-classical ion heat loss and write

PD1P - 2.4 x 104 nT/TrEMp (14)

with rEMP given by Eq. (I1). Hence,

PDlFF - 0.75 x 105 q-1 2 T/a2 , (15)

indicating a thermal conductivity independent of temperature. The corresponding radial operator is

T 62T I IT
-X + V AT,(16)

so that we can write

Sk A T + S(T) (17)

where S(T) - PDT -DR

S(T) 2 x 10' nf(T) - 0.2 nT 12

k2 - 0.3 q-' 2In

f(T) - T-2' exp (-20 T- 1 3)

with T subject to the boundary conditions

-T T(a) - 0 (18)
r r0

since T must be positive-definite for r < a, it follows that the fundamental equilibrium solution must

be a nonlinear "quarterwave" (see Fig. 4). We can therefore further simplify and write Ar _ )2/br2

instead of (16), without significantly altering the eigenfunctions and their associated eigenvalues.

That this can be done is substantiated by the boundary condition at r - 0 and the negative

definiteness in sign of 6T/cr for the fundamental solution. The resulting equilibria, described by

k2T" + S(T) - 0 (19)

T (0) - 0 , T(a) - 0

where (. .. ) - 6/6r, then have the following properties:
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i) The ideal ignition temperature Tid, defined by S(Tid) - 0, determines the point at which the

temperature profile changes from concave above Tid to convex below Tid (Fig. 4). All regions

outside the position at which T - Tid experience a net energy gain at the expense of regions above

Tid, in contrast, each point above Tid experiences a net energy loss.

ii) Given a, it is either the on-axis temperature, To, or the other free parameter in the system, the

density n, which is the eigenvalue of this particular two-point boundary value problem. How such

eigenfunctions and eigenvalues materialize in practice is demonstrated on a model nonlinear system

in Appendix B. In particular, we will show that as To increases, Tid shifts toward the edge r - a.

III. STABILITY OF EQUILIBRIA

There are no ready-made criteria for the stability in the large of nonlinear partial

differential systems, but the asymptotic stability of Eq. (17) can be discussed using standard WKB

techniques,to establish the spatial equilibria.

Let us now proceed with the calculation. Introducing the fluctuation

G(r,t) - T - TEQr) (20)

from an equilibrium TEQ Eq. (17) becomes

-k , + f (r)O, (21)

where

f(r) - - , (22)
dT Er)

and 0 satisfies the same boundary conditions as T does, i.e.,

Ir- -0 , 0(a) - 0 . (23)

Normal modes of the system (21) have the form

0 - R(r) exp(pt) ,( (24)
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and satisfy the equation

R + 42[0(r) - p) - 0 (25)

h - I/k , R (0) - 0 , R(a) - 0

If, for any positive P, there exists a nontrivial solution R, the equilibrium is asymptotically unstable.

Let us now derive the dispersion relation for p. First we have to establish the form of t(r). To

start with, we cut off the temperature profile at some reasonably low temperature, so as to avoid the

divergence of the bremsstrahlung term in dS/dT. The function dS/dT will then have the form as

shown in Fig. 5. The drop into negative values near 100 keV corresponds to the peaking of the

D-T reaction cross-section around that temperature (13). The corresponding function 4)(r) - p is

shown in Fig. 6, for four different values of To as specified on Fig. 5. We have to recognize two

cases. For on-axis temperatures To smaller than TOM , Eq. (25) possesses just one simple turning

point, say r, , lying in the low-temperature region near the edge. For To larger than Tom there can

be another turning point, ro , in the high-temperature region. The two turning points are connected

by an anti-Stokes line. Radiating outward from the turning points along the r-axis are Stokes lines;

on these we require that the solution be evanescent. For this case of two turning points, standard

WKB connection techniques (14) yield the condition

hf q lI2d dr (26)

for the growth rate p. At threshold, p approaches 0, r, approaches a, giving the stability condition

hf >2dr k 7r/2 (27)
ro

In the case of only one turning point r, (i.e. To < TOM ), the stability condition (27) becomes

h f 2dr 4 7r/2 . (28)
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Going now to Fig. 6, we see that once the threshold is exceeded, and To increases, the area

under 4(r) also increases, until TOM is reached. Thereafter, the growth rate decreases, with the

narrowing-down of the hatched regions in Fig. 6, until eventually a steady state is reached. This

result reflects, of course, the consequence of the slowing-down of the D-T reaction above TOM.

Simultaneously, the temperature profile broadening described in Appendix B tends to aggravate the

instability. Indeed, the hatched area between 4 (r) and the r-axis increases in consequence, which, in

turn, drives up the growth rate. Evidently, the thermal instability has the tendency to ignite all of

the plasma. The question naturally arises whether the system possesses any stabilizing mechanism

other than the reaction slow-down. The answer seems to be in the negative.

To conclude, we will discuss the difference between the line-averaged zero-dimensional

stability criterion, and a zero-dimensional stability condition implied by Eqs. (27) and (28). The

most significant feature of these threshold conditions is that the radial equilibria appear under an

integral sign, and hence only their main properties need to be known. Our model analysis of

Appendix B shows, in this respect, that an equilibrium is distinguished by a bell-shaped form,

whose peak temperature To always exceeds the ideal ignition temperature Tid. Let us first consider

the case To < TOM. The threshold criterion (28) indicates stability whenever

har04 1 (F) 71r/2 , (29)

where T is the position, between 0 and a, which satisfies the Integral Mean Value Theorem. Hence,

further from Eq. (22),

U) ____ (30)
dT -h2a2

where T - TFQ(F). On the other hand, we recall that the line-averaged one-temperature model

equation (13) yields the stability criterion dFIdT < 0, or

dS dPDiFF
< d U(31)

as follows from Eqs. (15) and the definitions of S and h. The line-averaged temperature T is, of

course, not identical to T, but the difference between the two is insignificant in view of the level of
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approximation. The two criteria (30) and (31) are therefore essentially equivalent. In the saturation

stage of the instability (To > TOM), the condition (27) implies

dS 7r 2
- ___ , (32)

dT 4hAa-ro)

indicating a lower saturation temperature than that given by (31). We thus conclude that the

zero-dimensional criterion (31) is only a sufficient condition.

The ignition equilibria we have discussed are accessible from the (low-temperature) ohmic

equilibrium only through some form of supplementary heating. We will discuss, in a forthcoming

article, how the supplementary heating source can be utilized to create stable operating conditions

near unstable ignition equilibria.
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APPENDIX A

We consider the stability of the equilibria TCEQ and TiEQ of the system (1). Introducing

01 - Ti - TiEQ - e T, - TeEQ , (A 1)

we obtain, for the fluctuations O ,

doe
Ee + -Ok(ce - de-b) + Oi(Pe+c ) (A2)

d91

E + ,C+ (p - cl - di) , (A S)

where the coefficients b, c, d, and p are evaluated at equilibrium, and Ej are some functions of the

equilibrium, inessential for the stability. Further, p, -fj p, and

p - 5.18 x 10 2 (10 _ 1)exP(-20/T'13) (A 4)
7'T.i 3 T1/3  T4/3

- 2.6 x 10 Z n2T- 2  (A5)eff e(A5

d a - 0.75 x 10 5  12a 2  (A6)

ap 0.25 x 10 nT 112 2 Ze R 32d 6 - B2a2  (A 7)

c - = 6.4 x 10 4 n2 Z T-3/2 In A (A8)T, eff

C e (3Tj1T, - 1)c.

The system (A2), (A 3) is stable if and only if both roots of the equation

+ rX + s - 0 , (A9)

r-cj +d1 -p +de+b+c .
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s - (ci + di - pi) (de + b + c,) - Ccic - Ctpe

are negative. This occurs just when r > 0 and

Cid, +.cib + did,+ dib + dc, - pide - pib - pc, - c,p, > 0 (A 10)

We see that stability improves if most of the a-particle energy goes to the electrons, p, ) P1, which

is the case for T, < 40 keV. If, in addition, the energy exchange rate were small, so that

T, > Tg, then ce would be negative, and the inequality (A 10) could be more easily satisfied.

However, the equilibration time proves to be very short, because ci is an order of magnitude larger

than the other differential coefficients in the range of interest (n ~ 1, T - 10), so that the two

temperatures must follow each other very closely. Hence, also, c, c a c, and (A 11) becomes

c(d.+ di + b - p,) + d.(de+ b) > 0 (A 11)

Since the stability condition for the one-temperature model is

d, + di + b - p > 0 , (A 12)

we see that the latter is less stable. By inspection of the coefficients p, d,, di and b in the parameter

range I < n < 5 , I < T < 100 , it follows that equilibrium and stability is established in competition

predominantly between PDT and P~jFF, and between p and di, respectively. This gives the

sufficient condition

T > 64 keV (A 1S)

for the stability of an equilibrium in the one-temperature model.
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APPENDIX B

In order to develop a feeling for how the equilibria of the system (19) are established, let us

consider a model nonlinear system, which obeys the basic two properties of S(T): S(T d) - 0, and

S(T) ? 0 when T t Tid. The simplest integrable nonlinear system which satisfies these conditions

is

k2 S(T) AT 3 - BT (B1)

T2 B/A . (B2)

The first integral of the corresponding equation,

+AT' - BT - 0 (B3)

with boundary conditions,

dr- ,T(a) - To (B4)

is

( ) 2  A (T2 -T 2)(T2 +T 2 - ) (B5)

Since we require T < To off-axis, it follows that for an equilibrium to exist, the inequality

T +T - 2BIA 0 (B6)

must hold for all values of T between 0 and To. Hence,

T > 2BIA - 2T2 (B7)

stating basically that the temperature on-axis must exceed the ideal ignition temperature. Equation

(B5) can be integrated in terms of Jacobian elliptic functions. Since dT/dr < 0, we have

du A, ( - ) ,(B)

(o+ u2)( 2 - u2)

so that [15]
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(a - r) = (a2 + p2)-12F(y,k) . (B9)

where

p2 - T , a2 - T' - 2B/ , (B10)

k2- , y - sin - , 1 (B 11)
a2 + p2 4F (a2 + T2 )2

and F(y,k) is the incomplete elliptic integral of the first kind. Inverting the function (B9) gives

immediately

T2  sn2[ (T - .T a - r),k. (B12)

This solution, which was made to satisfy the boundary condition T(a) - 0 automatically, still has to

satisfy the other condition, T (0) - 0. It can be easily shown that the latter condition implies

snlr-j - 0 , or [15)

cn( A(T - T d)), k).0. (B 13)

Hence,

A(To -T ~d)'.K(k) , (B14)

where K(k) is the complete elliptic integral of the first kind: the quarter-period of the Jacobian

elliptic sn and cn functions. The solutions of Eq. (B14) are the eigenvalues of the equilibria (B12).

The graphical solution is sketched in Fig. 8. Since the modulus k,.

k To , (B15)
2(TO - Td)

falls from I to l/V2 as T goes from its minimum value of 2T2d to co, the two curves always have

just one point of intersection which tends toward lower values of To as A (- density) increases.

As a final point of this calculation, we would like to see how the temperature profile changes

as the temperature on-axis increases. Going therefore back to (B 12) we obtain at T = Tid

4/Ti/TO - sn [FA(TT - T'd )(a - rid) , k) , (B16)
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where rid is the point on the profile where T - Tid. When To Tid, we obtain

Tid/To =/,17/T0 (a - rid) , (B 17)

or

rid = a - -'iT /idiTo (B18)

It follows that as To increases, rid shifts toward the edge, signifying that more of the plasma volume

will be ignited.
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FIGURE CAPTIONS

Fig. 1 The function dF/dT = 0, specified by Eq. (13), is the stability
boundary. Only those points of the ignition-equilibrium curve F(Tn) that
lie below the boundary are stable.

Fig. 2 The major power-density input and loss terms for the system (13) at
constant density n = 1020 cm~3.PBR is the bremsstrahlung loss,

Per is the D-T reaction source term, and PBR + PDgFF includes the
diffusion terms (4) and (5).

Fig. 3 The n = const equilibria of system (13). The one at TOUM is
established between POI1M and PBR and is always stable. The particular

ignition equilibrium at TiG, established between PDT and the losses, is

unstable.

Fig. 4 A typical self-consistent radial temperature profile. The point of
inflexion, Tid, is the ideal ignition temperature where PeD balances PBR.

Fig. 5 The rate of change in the power balance between Per and PDR as a

function of temperature.

Fig. 6 The driving potential 'F(r) for the fluctuations around equilibrium, as it
appears for the four values of on-axis temeprature To specified in Fig. 5.

Fig. 7 The eigenvalue condition (B 14) as a function of on-axis temperature To.
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