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Making use of the Ideal MHD description in a plasma slab model, we

study the transient amplification of shear Alfven waves and their con-

comitant development into gravitational (ballooning) instabilities as

the plasma pressure is increased. When applied to tokamak geometry,

for 1 < 0c/2, it is found that the ballooning mode has a negligibly small

influence on the evolution of the shear Alfven waves. (Here, 1 is

the ratio of plasma pressure to magnetic pressure, lc = Rr n /L 2 is the

critical beta, R is the major radius, rn is the plasma density length

scale, and L the magnetic shear length scale.) The ballooning effect

becomes dominant, however, for l (3/4) c, and the instability exhibits

very strong growth whenever l l.IlC'
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1. INTRODUCTION

Magnetic fluctuations are believed to play an important role in the

1-7transport of energy in a magnetically confined plasma . Much of the

recent research in this area involves an eigenmode analysis of microtearing

instabilities where various kinetic and nonlinear effects are taken into

account3'4'7 These effects enter most significantly in the thin region

(critical layer) where magnetic reconnection takes place. While these

analyses may be regarded as promising when compared with experiment, it

is possible that these eigenmode solutions may be modified quantitatively

when other realistic effects (e.g. curvature, equilibrium flow, impurities,

etc.) are included. An example of the sensitivity of the eigenmode

solution to the precise treatment for a thin critical layer is the recent

demonstration that unstable eigenmode solutions do not exist for the

universal instability.8- 10

On the other hand, the equivalent treatment by means of an initial-

value problem, i.e., the analysis of the evolution of a wavepacket, has a

tendency to deemphasize such sensitivity. Because of the mathematical

complexity, the study of the evolution of a wavepacket is usually restricted

to slab geometry and to highly simplified equilibrium profiles6'''. However,

it yields valuable information on the transient amplification (if any) of a

wavelet if the medium does not admit unstable eigenmode solutions. It also

illustrates how such an initial disturbance develops into an unstable

eigenmode solution if such a solution exists.

Lau has recently shown that shear Alfven wave magnetic fluctuations

6can amplify to large amplitudes transiently before they decay . This
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result was obtained by treating an initial-value problem within the frame-

work of the ideal MHD equations. The interpretation of this transient

growth is that magnetic ripples on different field lines propagate at their

respective local Alfven speeds. As one magnetic ripple approaches another

on a neighboring field line, the current filaments associated with these

ripples are aligned in phase, thus leading to a temporary amplification of

the magnetic fluctuations before they decay due to shear effects at

large times. This asymptotic decay has often been attributed to phase

12-15mixing of the shear Alfven continuum2 . It should be noted that such

transient amplification of shearing wavelets is entirely analogous to

that encountered in classical sheared hydrodynamic flow. 1

There has also been considerable recent interest in ballooning

16-18
instabilities in tokamaks . These instabilities are driven by

unfavorable magnetic field curvature. Ballooning instabilities can be

excited only if the plasma pressure lies in a certain range 7 ,'8 . Moreover,

because shear Alfven waves are coupled to the ballooning modes as the

plasma pressure is increased, it is natural to investigate how the shear

Alfven waves described in the previous paragraph develop into ballooning

instabilities. In addition, it is also of considerable interest to

examine the influence of curvature effects on the transient amplification

of shear Alfven waves.6 The purpose of the present article is to examine

these issues.

For simplicity, we make use of the ideal MHD description in a plasma

slab model. An effective gravity field is used to simulate the magnetic

field curvature. This effective gravity field is proportional to 1, the

ratio of plasma pressure to magnetic pressure. Within the context of
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local theory, the onset of the ballooning instability occurs when S

exceeds a critical value c'

The main results of our numerical study of the evolution of an initial

wavepacket can be summarized as follows. In the limit 1 -+ 0, the

transient amplification of shear Alfven waves confirms the previous results.6

For 1 < c/2, this transient amplification is not significantly altered.

For 1 Z 0.75 5c, however, ballooning effects dominate the evolution

of the shear Alfven waves, and substantial amplification is observed.

Indeed, for l 1 1 c, the initial shear Alfven waves develop into a

highly unstable, localized, ballooning mode.

The governing equations for the evolution of the wavepacket are

formulated in Section I1, and numerical solutions are discussed in

Section Ill.

II. THEORETICAL DESCRIPTION

We consider a collisionless plasma described by the ideal magneto-

hydrodynamic (MHD) equations in slab geometry. It is assumed that the

local equilibrium magnetic field is = B (z + xy/L ), where B is a

constant, and Ls is the length scale characterizing the magnetic shear.

For this slab model to simulate tokamak geometry, the unit vectors z, x,

and y, respectively, are directed locally in the toroidal direction, the

poloidal direction, and the radial direction. The equilibrium plasma

has mass density p0 with scale length rn in the y direction. We assume

that a gravitational force per unit mass g = gy simulates the magnetic

field curvature. Here, g = v?/R, where v. is the ion thermal velocity,
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and R is the major radius of the torus. The plasma is assumed to have

zero flow velocity in the equilibrium state.

We consider small perturbations about such an equilibrium, assuming

that the plasma is incompressible and free of dissipation. The linearized

ideal MHD equations are given by

3B
=Vx(V I x) 

(1

4Tr+p(-V + V)9? + (~V%,~ Vpl 4'irp 1 g^ (2)

Rt + V.(p ) = 0 (3)

V-v = 0 (4)

V-9 = 0 (5)

where v , and p are the perturbed flow velocity, magnetic field,
1 1 1

and plasma pressure, respectively. Introducing the displacement

vector , where = 35 /at, we assume that the perturbations have the
1 1 1

form (r,t) = (y,t) exp (ik x + ik z), with a similar expression for B .
1y y x zy

The y component of Eq. (I) gives

B i(k-0 ) C y, (6)

where k = xk + zkz. Operating on Eq. (2) with V x V x, and taking

the y component of the resulting equation, we obtain
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2 2 . 2g
2 ( A_ (k. ) V2B - y (7)

at2 ly B2 0 ly rn

where use has been made of Eqs. (3) - (5). It has been assumed that

the equilibrium density gradient enters only in the buoyancy term

-4rp 1gy in Eq. (2), and that p is calculated from Eq. (3) with

SVP 0 -l p o/r . In Eq. (7), vA denotes the local Alfven

speed B /(4wp )l/

It is readily deduced from Eqs. (6) and (7) that the local

dispersion relation is given by

22 = (8)

S

where k,, E (k.-0 )/B0 , and

2 2 Rr/L 2  (9)
S V i /VA , s

For k1i Z I/Ls, the local dispersion relation (8) shows that the onset

of ballooning instability occurs for 1 > %c. On the other hand, in the

limit 1 + 0, Eq. (8) yields the local dispersion relation for shear

Alfven waves.

Substituting Eq. (6) into Eg. (7), we obtain

2 2Ad 2] 2g
_~ + r - , j V C y + E( . ' C)+ (2) 2+ + = 2ir 0  (10)

0' B
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where (I-I ) = B (kz + K xy/L s). We solve this equation subject to

the initial condition

Ely (y,0) = exp(u0ky - k y2 ), (II)

where u0 is a dimensionless parameter measuring the inclination of the

initial wave packet in the x-y plane. The gaussian envelope of the

wave-packet [Eq. (11)] assures that all solutions remain bounded as

IyI -+- <. We further assume that this initial wavelet is moving in

the +x direction.

In terms of the dimensionless space and time variables (s,[)

defined by
2 2 1/2

T = (v At/L )k /(k + k )/, (12)

s = (k2 +k2 )/2 (y + L k /k ), (13)
x z s z x

Eq. (10) can be expressed as

2
(___+ s2) ( _ -_ + 2s + 0 (14)

32 3S2 3s 13 -313 c 2

In Eq. (14), E - 1 (s,T), and 1 and lc are defined in Eq. (9).

The initial condition in Eq. (II) can then be expressed as

C(s,0) = exp(iu 0 s - s2), (15)

where we have set k = 0 without loss of generality.

As shown below, the evolution of the initial wavepacket

in Eq. (15) can readily be studied in terms of the spectral transform

z(u,T), where z(u,t) is related to E(s,T) by

()
(S,T) = fo du z(u,T) exp(ius). (16)

MONOMMOMWOOMMiNi
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The equation qoverning the solution of z(u,T) is

2 1 2 3Z (172 (U ) ) +

=) (17)

Moreover, the initial condition in Eq. (15) transforms according to

z (u,0) = exp[- (u-u0)2 /41], (18)

which represents a gaussian pulse centered at u . This pulse is assumed

to travel at the -u direction at time T = 0.

We note here an interesting relationship between z(u,T) and C(s,T).

If 1 is sufficiently large, we expect a localized, purely growing,

ballooning mode to be excited. In such a case, the eigenmode solution

((s,T) = exp(rT)p(s) (19)

has a corresponding spectral solution

z(u,r) = exp(Fr)Z(u), (20)

where r is the normalized growth rate of the eigenmode solution (s).

Substituting Eqs. (19) and (20) into Eqs. (14) and (17), the following

equations are readily obtained:

d 2) di- L 2
[(I + s)] + -r2 (I + S2) 0, (21)

1

( + u )] + [k - r2 (l + u )]Z = 0, (22)

INAMMINN16
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where si = s/r. Note from Eqs. (21) and (22) that the eigenmode

solution (s) and its Fourier transform Z(u) are governed by the same

equation. It then follows that if z(u,T) evolves to an eigenmode

solution in the spectral space u, it is also the eigenmode solution in

the real space s, after appropriate scaling. Therefore, in the following,

it is sufficient to investigate the evolution of the spectrum z(u,T)

from Eqs. (17) and (18).

111. NUMERICAL RESULTS

In this section we summarize numerical studies of the evolution

of the spectrum z(u,T) making use of Eqs. (17) and (18). We first

consider the case l = 0, and subsequently investigate cases with > 0.

It is assumed that u = 20 in all of the numerical calculations.

(a) S 0:

In this case, the ballooning effect is absent, and Eq. (17)

reduces to

a2z 2 a [I + u 2) z (23)

3-2  +u 2 au L u ]

6.
This equation is identical to the equation governing sound propagation

2
in a diverging tube with variable cross-sectional area S = I + u , where

u is the distance along the tube. The evolution of the spectrum z(u,-[)

is therefore identical to the evolution of the initial "sound pulse"

z(u,o) in such a tube (Fig. I). Transient amplification of such a

sound pulse is possible as the sound pulse reaches the region near

u = 0. Note from Eq. (23) that the speed of propagation du/dT

MANWOMM6
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of the sound pulse is equal to unity.

The detailed evolution of the spectrum z(u,T) is shown in Fig. 2

for the case of u0 = 20. The initial pulse has unit amplitude at T = 0,

centered at u0 = 20. By time T = 10, the pulse is centered at u = 10

and the amplitude is amplified by a factor of 2. This can be simply

interpreted from Fig. 1, i.e., the cross-sectional area S of the tube

at u = 20 is 4 times that at u = 10.

The sound pulse is then scattered at a later time as it approaches

the narrowest region of the tube (near u ~ 0 in Fig. I) between T = 18

and T = 22. Subsequently, the sound pulse divides into two pulses

that travel to u -+ ±- with diminishing amplitudes. For u = 20,

it is evident from Fig. 2 that the amplitude of the wavepacket increases

by a factor of 10 at maximum. On the other hand, if the sound pulse

is initially centered at u0 = 100, the amplitude gain would be approx-

imately 50 as the pulse reaches u = 0. This is in qualitative agreement

with the estimate given in Ref. 6. The nature of this transient

amplification has been discussed in Sec. I and is analogous to that

encountered in classical hydrodynamic shear flow .1

(b) 1 > 0:

The evolution of the spectrum for the cases I/ c = 0.5, 0.75, I,

and 1.1 is shown in Figs. 3 - 6, respectively. Note that the effect of

curvature on the evolution of the shear Alfven waves becomes increasingly

important for finite values of beta. These solutions are obtained by

solving Eqs. (17) and (18) numerically. In Figs. 3 - 6, the initial

spectrum z(u,o) is given by Eq.(18)with u0 = 20. During the time

NOMMOMMi
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interval between T = 0 and T = 10, the spectrum z(u,T) is nearly

identical for all the cases shown in Figs. 3 - 6. This is because

Eq. (23) is a good approximation to Eq. (17) during this time interval.

For I/ c = 0.5, it is evident from Fig. 3 that ballooning effects

only slightly enhance the amplification of the shear Alfven wave in

comparison with the case O/Oc = 0 (Fig. 2). In both cases, the peak

amplification factor is approximately 10 (compared with the initial

value), and the solutions decay at large times.

For 1/ic = 0.75 (Fig. 4), a weak ballooning mode develops from

the initial shear Alfven wave by time T = 30. Note that the spectrum

z(u,T) during the interval from T = 0 to T = 18 is similar to the

case /0c= 0.5 (Fig. 3). For O/SC = 0.75, the amplitude gain at

T = 30 is approximately 70.

For I/0C = I (Fig. 5), a moderately strong ballooning mode has

already developed by T = 30. Prior to T = 18, the perturbation is

essentially a pure shear Alfven wave. Moreover, the amplitude gain

at T = 30 is approximately 680.

For 1/0c = 1.1 (Fig. 6), a very strong ballooning mode appears,

and the amplitude gain is about 1450 at T = 30. Comparing the peak

amplitudes of z(u,r) at T = 22 and at T = 30, we estimate that the

growth rate of this mode is y = 0.36 v A/Ls. This is in qualitative

agreement with that obtained from the local dispersion relation

in Eq. (8). In particular, if we approximate ki, by 1/L in Eq. (8),

the locai growth rate is approximately y - 0.31 v A/L for /c= ..

109ANWS
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In summary, in Figs. 4 - 6, the initial perturbation evolves

Into a ballooning mode by time T = 30. Figures 4 - 6 illustrate the

spectrum Z(u) of the eigenmodes at various values of T. Moreover,

as shown at the end of Sec. II, for large T this also corresponds

to *(s) in configuration space.

IV. CONCLUSIONS

In this paper, we have studied the transient amplification of

shear Alfven waves and their development into the ballooning instabil-

ities as the plasma pressure is increased. The analysis has made use of

an ideal MHD description in slab geometry. The evolutionary process

described by such a simplified model is expected to be qualitatively

valid when applied to toroidal geometry. The main results of our

numerical study of the evolution of an initial wavepacket can be

summarized as follows. In the limit 5 + 0, the transient amplification

6
of shear Alfven waves confirms previous results6. For S < 1C/2, this

transient amplification is not significantly altered. For 0 0.750C'

however, ballooning effects dominate the evolution of the shear Alfven

waves, and substantial amplification is observed. Indeed, for

0 I.I3C, the initial shear Alfven waves develop into a highly

unstable, localized, ballooning mode.
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FIGURE CAPTIONS

Fig. 1. An initial sound pulse z(u,o) in a diverging tube.

The corss-sectional area S = I + u2 is a function

of the distance u along the tube.

Fig. 2. Evolution of the spectrum of shear Alfven waves without

ballooning effects ( = 0).

Fig. 3. Evolution of the spectrum of shear Alfven waves for

/S = 0.5.

Fig. 4. Development of the shear Alfven waves into a ballooning

mode for a/Sc = 0.75.

Fig. 5. Same as Fig. 4, with /c = .

Fig. 6. Same as Fig. 4, with 1c ..
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