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Radiation from relativistic runaway electrons is considered as a

source for plasma frequency radiation in tokamaks. Two specific emission

mechanisms, Cerenkov emission, and radiation produced by nonlinear

coupling of plasma and acoustic waves, are studied. In many cases the

Cerenkov emission provides a reasonable spectral fit. It can also be used

to measure the runaway current, and to est'imate the runaway cutoff vel-

ocity. The nonlinear emission is found to be negligible unless the acous-

tic waves are enhanced by about two orders of magnitude above the thermal

level (or the plasma waves correspondingly enhanced above their super-

thermal level). Some observations, though, indicate the need for signi-

ficant nonlinear (or other) emission in addition to the Cerenkov emission.

For some typical Alcator data, the Cerenkov model gives a runaway current

of 2.5 percent of the ohmic current, and a cutoff energy of 1.5 MeV.
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I. INTRODUCTION

In many Tokamaks radiation has been observed extending in frequency

from the plasma-frequency at the center of the discharge; to the elec-

1-5tron cyclotron frequency at the outer edge of the plasma . The charac-

teristics- of this radiation as it is presently observed are briefly sum-

marized as follows. It occurs for (Q6/wo) Z 3/2, where Q and mp-are the

cyclotron and plasma frequencies, and subscript o denotes values at the

plasma center. Its shape varies with (Q/Wp)O, from a rather narrow (experi-

2,5mentally unresolved) feature near a for small (92/w ) -to much
po p 0,

1,2,5 4broader '', sometimes double peaked , structures at larger (a/w )

Its intensity is typically several times the.blackbody level for the

corresponding electron temperature, and the extraordinary polAriza-

4,5tion intensity has been observed to exceed the ordinary mode.

6-10Several theories have been proposed to explain this emission.

The purpose of this paper is to examine and develop the two seemingly most

cogent theories with enough realistic detail to make a direct comparison

with experiment.

The first mechanism considered was proposed by Freund, Lee and Wu 6

and invokes the direct Cerenkov emission by relativistic runaways of extra-

ordinary mode electromagnetic radiation; it is emitted over a broad range

of frequencies. The second mechanism, proposed by Hutchinson, Molvig and

Yuen 9 considers the nonlinear conversion of an elevated electrostatc -

plasma spectrum to electromagnetic emission, by scattering from thermal

level ion-acoustic fluctuations; this process emits only just above the
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plasma frequency at the source point.

In section II. the relevant equations governing the Cerenkov emission

are given, and are related to an observed specific radiation intensity.

It is shown that in many cases the intensity of radiation is approximately

proportional to the total runaway current, and an approximate formula is

presented.

Section III.. develops and expands - the nonlinear, model, including a

closely related decay process. This treatment is conditioned by knowledge

of the Cerenkov emission, and it is shown that for the relationship between

the runaway distribution and the plasma wave energy density predicted by

the self-consistent theory of Molvig, Tekula and Bers , the nonlinear -

emission from scattering from thermal ion-acoustic fluctuations is

small compared to the Cerenkov emission. Nonlinear conversion should be

important only if a more elevated level of acoustic or plasma wave spectra

exists.

In section IV. an .attempt is made to reproduce the experimental spectra

in shape and intensity from the Cerenkov emission. In some cases a reason-

able fit can be found but only for rather specific parameters, thus providing

tentative information on the cutoff energy of the runaway tail and the total

current it carries.

In other cases, while partial agreement can be obtained, discrepancies

in shape remain which appear to be unavoidable for the Cerenkov process.

Section V. discusses these and other limitations.
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II. CERENKOV EMISSION

A. Character of the Emission

The Cerenkov emission can be computed as the incoherent- sum of

emissions from the individual runaway electrons, moving along the magnetic

field, in a cold, uniform plasma. The perpendicular velocity can be ig-

nored because most of the emission comes from electrons for which

YrL/A<<l, where-y is the relativistic factor, rt is the Larmor radius,

and X is the wavelength. The cold dielectric response is used because

the radiation phase velocity is much greater than the electron thermal

velocity. (Since the emission frequency o < QE, where QE is the cyclotron

frequency at the plasma edge, it is always well below the local upper hy-

brid resonance). The plasma is considered uniform, since the wavelength

is small compared to field, density, and temperature scale lengths. The

plasma is also optically thin to the Cerenkov emission; the small positive

slope of the runaway distribution (see later) is so small that the amplifi-

cation length for the extraordinary mode is much larger than a typical Toka-

mak minor radius.

The dispersion relation and the coherence condition are two constraints

on the Cerenkov emission which account for many of its properties. The in-

dex of refraction, n, as a function of W and cos 6 (-B /kt)(where k is the

wave vector, and B is the magnetic field) is the Appleton-Hartree relation:

n2 (W2,cos 2e)

1 - ) ( J s

2 z sin 4 i in 40 + co7 2 2 1/2
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where wp and 0 have their local values, and the minus sign defines the

extraordinary (x) mode, the plus sign the ordinary (o) mode.

The coherence condition is (v is the velocity of the emitting particle):

v cose. (2)

2
Equation (1) implies that for w > wp, the frequencies observed, n > 1

for the x mode, while n2 < 1 for the o mode. Thus, only the extraordinary

mode is emitted for w > wp* Combining Eqs. (1) and (2), v/c = u(w, cose)u

[n(w, cosB) cos6]'1 . From Eq. (1), it follows that

arn 2 (w2 ,cos2e) cos 2al > 0
9(cosZ8)

for wp < w < Q, so that u decreases as cose increases, and a particle cannot

radiate at frequency w unless its velocity is greater than u n M

u (w, cose - 1). This quantity Umn is typically much greater than the

electron thermal velocity, so that only the nonthermal tail radiates. As

w goes to Wp , n goes to 1, and umin becomes highly relativistic, the lowest

frequency of emission corresponding to the highest possible u - uc, the

velocity at which the runaways are cut off.

Equations (1) and (2) can also be combined to find:

cos+8 , { 2 [1- (.)22uz -( )2 2u2 + (1-uz)
-p

( 4-([- ( )U2 +()2 (1-u2*j1/2

2u2 L ( ]) - U2 + (l-uz) (j )2 (3)

To get Eq. (3) the radical in Eq. (1) must be squared, so that the

corresponding sign, referring to the choice of mode, is lost. While the sign
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in Eq. (3) refers to one of two roots to a quadratic quation, it does not

necessarily, as in (1), refer .to one mode. Depending on its arguments,

cos 2e may be acceptably double valued, single valued, or violate the

requirement 0 . cos26 .< 1. However, when a single choice of sign

satisfies this requirement for w < o < Q (as is usually the case; see
p

F.ig. 1) ;Lt is identified with the x mode. A more convenient quantity

-1
for numerical computation is n = [u2cos2e+J , which must satisfy:

n u2 > (4)

The quantity cos 2 e+ can be studied numerically, and for typical parameters

decreases as u increases for fixed w, and as o increases for fixed u:

(cos 2 8) m cos 2e (cmx, u =1). (5)

Many of the emission characteristics obtained from Eqs. (1) and (2) are

summarized by the contour plot of u(cose, w), shown in figure 1.

B. Spectral Emission and Isotropized Flux

The spectral source of radiation per unit volume S (erg./sec.-cm.8 -Hz.)

is just the spectral power from each electron, de/dt (u,w) (erg./sec.-Hz.),

incoherently summed over the electron tail distribution 'function f T(u):

sx(CO) (U) T du) (u,w) du .W6

The spectral power, de/dt, was first computed by Kolomenskii1 2 ; it is just

- q(y . E)r = vt' where q and r are the particle charge and position, and

the electric field E includes dielectric shielding effects:

E (k,w) q T -

P- 27r2W2 pq

where
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T (c2)Tpq kpkq - k26pq]+ Cpq

and e is the dielectric tensor.

The cold dielectric tensor is used, in which the tail electrons, whose

density is negligible, are neglected. Inverting the Fourier transform,

and taking the perpendicular velocity equal to zero, gives:

Re igo2u wdwfsind ndn 6(n u cos9 - 1) x
t 7 rcJ ajf n

n osn£e _2e f + cos26] + 4 - C

[CjSin? + C3cos 2 e1 (n2 - n2 (W,cose)][n2- n (W,cos) ]
x0

where

W 2 W
£1 P e~ 2 and e3 -

W22 O Op2 O

In the angular integration, the delta function picks out the contributions from

cosO. These are the radiation terms whichwhen the real part of the

integral over n is taken, are integrals over w, whose integrands are:

dc (u4) q2 um +

(ut- )= 2c C u

U4 ( U - (cicz + C u2 + C(

-2e C -£ + S) u2 + 2r- 2C + E) u2+ 2

where the + here correspond to the + in (3).



7

From the radiation volume source S x, the radiative flux F

(erg./sec. - cm? - Hz.) corresponding to the observed quantity, must be

found. To do this, the transport of the radiation must be considered. The

maximum phase velocity angle at the source can be found from (5), and is

typically about forty degrees. While there is a substantial difference

between this angle and the local group velocity angle, the angle of interest

is the group velocity angle at the edge, where the phase and group veloci-

ties are equal. Since the index of refraction decreases to one at the edge,

the net effect is for the ray to bend away from the normal, towards the

field, and the maximum ray angle that could be seen is less than forty

degrees. Tokamak observations, though, are typically made within a small

angular range about the direction perpendicular to the magnetic field

(5 2* in Alcator). Cerenkov emission must thus be reflected to be detected.

The observed ratio of x to o polarized radiation is, in fact, consistent

with a model where the ordinary emission is produced by polarization scram-

4
bling occuring during multiple reflections. Because of the reflections,

only the angle-integrated, or isotropic emission, rather than emission as

a function of angle, is of interest.

The argument for isotropization is only important, of course, if the

radiation can get out of the plasma. Total internal reflection can be a

13
serious constraint on the emission. In a slab model, none of the

Cerenkov emission can get out; along the ray, klc /w = ncose is conserved,

so that equating ncos6 at the point of emission to ncos6 at the edge, where

n = 1, gives [(ncos) source u = [(cose)edge] > 1, requiring particles

to move faster than the speed of light. The situation improves somewhat for

toroidal geometry. In a steady state with azimuthal symmetry, the two con-

14
stants along the ray are k R k R (1 + r/R cose), and z (R is the

0 0
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major radius; 0 and e toroidal and poloidal angles, and r the usual

radial coordinate). Approximating k = kcos8, the condition for the

radiation to escape becomes

ncos6 (1 + r/R cose) source - cose (1 + a/Rocos9) edge

(a is the minor radius) so that, neglecting O-/R ), the weakest escape

condition is

0.8,ncos) source - (1+a) 1.2
R
0

when a/R0 0.2, as in TFR and Alcator. Note though, that [ncos] 1

is just u(w, cosO), as plotted in figure 1, which thus shows that for

typical parameters this weak escape condition is satisfied over most of the

Cerenkov emission region, and also just above w , where all the nonlinear

emission occurs. Including the factor (cosO)edge implies that to allow the

escape of radiation from, for example, Cerenkov emitting particles with

velocities above 0.9c, eedge < 30, which is not very restrictive. Even if

a more detailed ray tracing analysis were to show that a significant frac-

tion of radiation could not escape directly, it might still escape by scat-

tering off density fluctuations. This would amplify some emission (being

analogous to partial reflections) and could also alter the spectral shape.

In the following, the lower limit to the velocity of the emitting particles

is taken as 0.8 c, consistent with the weak escape condition. Furthermore,

most of the emission is due to relativistic particles, for which the

escape condition is not very restrictive.
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To compute F, a uniform, cylindrical model is 'adopted, where the run-

aways are confined to a radius L in a Tokamak of minor radius a. The walls

are considered not to be smooth and, for simplicity, the radiation is as-

sumed to be isotropized by reflection. The quantity q is defined as the

fraction of radiation reflected back into the same mode, the remainder being

absorbed or (a fraction p ) converted to the other polarization. The

energy emitted per second is S times the volume occupied by the runaways.

This is isotropized, on reflection, over the area of the chamber walls and

21v solid angle. The total flux in one direction (21w solid angle) is

then: (.Sx)(source volume)/(area of. chamber walls) = S x12/2a. Including

4
reflections and polarization scrambling , the result is:

F j ( . (9a)
(1-q) [1_ (P/l-q)) 2a)

The corresponding o mode flux is:

F 0 p F (9b)
(1-q)

C. Runaway Current

In many cases, F (w) is approximately proportional to I R' the current

carried by the runaways. The runaway current satisfies:

'R afu f T (u) du, (10)

while the radiation flux satisfies:

(o) (u, W) f (u) du. (11)

These are approximately proportional when most of the current and radiative

flux is produced by highly relativistic runaways. This is true because

de/dt (u,w) is a weak function of u near u = 1; the degree of weakness varies
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with (n/w ). The integrals (10) and (11) may then be expanded, taking
p

u 1 - 6, in the form (u. is the runaway velocity):

u c6

J g(u) f (u)du (1)-6 + fT (1-6)d6 . (12)
T du T

With this expansion, F and IR are, to lowest order, both proportional to

fT (1-6)d6,
C

the number density of relativistic runaways.

In the distribution used later, for example, fT p) is flat in momen-

tum space, and rapidly rising in velocity space, so that the velocities

of most of the emitting particles are near the cutoff velocity. In figures

2 and 3, for example, uc W 0.97, and de/dt(u,w) varies by less than ten

percent for u > 0.9.

When the exact Cerenkov spectrum (6) (convo.luted with the detector

response, as in figures 2 and 3 ) is reasonably similar to the observed

spectrum in some frequency interval, from W, to W 2 = 031 + AW, say, the

Cerenkov mechanism may account for the emission in that interval. If,in

addition, the conditions for equation (12) are satisfied, (12) can be used

to relate Ijto FBs, the observed emission flux. Averaging over the region

of fit, this relation is of the form:

W2 Fx (m

IC<FX (l,). OBS (13)

r OBS d dt

where C is a constant depending on plasma and model parameters. This is
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a very useful relation; although I can be computed once fT(u) is

known, a theoretical runaway distribution such as (18), given later, is

exponentially sensitive in nT (where nT is the runaway tail height) and uc

to plasma parameters (density, temperature, and applied electric field)

which are only approximately known. The sensitivity is such that a ten

percent uncertainty in line average density, electron temperature, and

loop voltage (near one volt) causes the predicted classical value of

(nT/n) to vary by as much as two orders of magnitude.

To complete the Cerenkov emission model, C is computed, and F is

normalized to FBB (the blackbody flux for the electron temperature T ), for

convenience, and because the uncertainty in the absolute level of emission

is sometimes substantial. From equations (6), (9), and (12),

t2 w (4

u(lx =c/lZlP/l a) f ~ (u) du)~c ~ (4

where6 W (2c/w e2)dz/dt(l,w) is the dimensionless spectral shape which is of

order one. The blackbody flux in one direction and for one polarization is:

F (iW2T (15)
BB .

4Br2 c2

The runaway current, using (12), is:

uc

2fT(u)du ec (16)

uR

Both F' and I are proportional to X2, the square of the runaway channel

width, so that somewhat arbitrary quantity drops out of the result. Combining
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(14), (15), and (16), the runaway current determined by the observed emission

is then (where v e (T /M )1/2):

e ee
IR < F ~ h;> 4(1-q) .l?( ) a Yene* (7

qe 
(17)

While Equation (17) applies for all distributions, fT(u), that give

a good spectral fit, and that allow use of equation (12), a specific dis-

tribution must, of course, be chosen for computation of the spectral

shape. The one used here, and referred to in the following sections, is

a flat tail in momentum space: fT(P) - (nT/P)[H(PpR) - H(p-pc)], where

nT is the tail height, and Pe' PR , and pc are the thermal, runaway, and-

cutoff momenta, respectively. This is an excellent approximation to the

distribution function calculated in Ref. 11. Since fT(u) du - fT p) dp,

n -3/2
fT(U) (7) u H(u-u ) - H(u-uc)] (1-u 2 ) (18)

With this distribution, the emission integral (6) consists of elliptic

integrals, and must be evaluated numerically. In the integration, equa-

tion (4) is numerically checked in each u interval, to determine which

roots (3) contribute to the emission. In addition, regions where cyclotron

absorption is significant are excluded, according to the usual condition:1 5

k 3vkcos8.+ e
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III. NONLINEAR EMISSION

A. Character of the Emission

The nonlinear emission mechanism consists of two incoherent wave-wave

processes. One process, electromagnetic radiation from the scattering of

a superthermal level of plasma oscillations with a thermal level of ion-

acoustic fluctuations, was discussed in Ref. 9, and is referred to here as

the scattering process. Another process, not included in Ref. 9; is the

decay of plasma oscillations into ion-acoustic fluctuations and electro-

magnetic radiation, the decay process. For the hot plasmas (T - lkeV.)

considered here, the nonlinear emission, like the Cerenkov emission,

occurs only for w > w . More precisely, w > w p unless the sound frequency
p p

WA kAl c > (3/2)w p(kP/kD) 2, where k is the parallel acoustic

wavenumber, c (Te /m) 1/2 is the sound velocity, m. is the ion mass,

kp is the plasma wavenumber, and kD is the Debye wavenumber.

1/2
For k ~ k l w /c, this requires (v /c) < (m /m )l, or T 5 0.3 keV.

p A11  p e e i ' e

The decay process is analyzed much the same as the scattering

process is in Ref. 9, but causes important qualitative differences in the

resulting emission. The wave-kinetic equation is a continuity equation

for the electromagnetic energy density: ac /at + V - (v c )= (sources) +

(sinks), where e is the total (field plus particle) energy density per

unit k-space volume and v (k) is the group velocity. For weakly damped

modes, k = k(w,cos6), and e and other k - dependent quantities can be

regarded as functions of w and cose. One source term is the Cerenkov

emission, while the remaining sources and sinks are wave-wave scattering

and decay terms. In steady-state, and when the spatial dependence of



14

v can be neglected, the kinetic equation becomes:16

-(k- 6 (wkwk k

- e (4r) fdkfdkA I 2 -pA

w p aw 'A awpA

x E A WPe+
-k %A w -p w -kA

M(-k + k 6(w k )
D+2 - - A (

De a ae Ak p k + k k - k k
-3 A ~p ~A Ip---

Wm p Mo A WoAJL

+ Pk (19)

where superscripts S and D refer to the scattering and decay processes,

and subscripts A and p refer to acoustic and plasma waves. The quantities

C, e , and cA are the dielectric constants for the transverse, plasma,

and acoustic waves. The first term on the right hand side of (19) was

discussed in Ref. 9. The second term consists of two emission terms,

corresponding to the induced decay of plasma waves by transverse and

acoustic waves, and one absorption term, corresponding to the scattering

of transverse with acoustic waves to produce plasma oscillations. An

additional index, denoting whether emission is in the ordinary or

extraordinary mode, is understood. The quantity U is the non-linear

coupling coefficient, defined such that the scattering of two waves

produces a non-linear current along the polarization of a third, emitted

wave:

J' k, + k W= + W fd 3 klfd'l N ( lVk 2 "1'w 2 ) rkiW1E223= k1 2+ w3 1 2 -'1 2~
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L
The Cerenkoy source term, P k contributes only to the x mode.

The electrostatic turbulence produced by the runaways, ek , has

~p
been calculated in Ref. 11 by requiring a steady state electron distribu-

tion function, where the force of the applied electric field is balanced

by an effective friction due to pitch-angle scattering by the turbulence.

The unmagnetized plasma oscillations are greatest at the frequency

corresponding to the central density. This is because the runaways

are cut off by magnetized plasma oscillations, which grow as they

convect out of the plasma. Similarly, the waves are in a state of

marginal stability, where collisional damping is balanced by Landau

growth due to a small positive slope in the distribution function. The

level of plasma oscillations found in Ref. 11 is so much greater than

the thermal level acoustic fluctuations (k /k - 1010) that
~p -A

(ek Ck A > (W wA), and an excellent approximation to (19) is:
-p -A

Yg () k k k k ) k + _ YkCk) +&(WYk Ek ) +P . (20)
- - A - -A A - -A

D S
Here, yk is the induced radiation amplification rate, and yk is the

induced damping rate. They are given by:

SD,S

(4)0 4fd3kf k[ pu A] 6(k-k± A w-wk , (21)
A 3C W ep A - p -A k-+)kp

&p A

where D corresponds to the upper sign, and S the lower sign. In the

following sections, where estimates of the nonlinear emission are made,
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the distinction between the scattering aInd decay processes actually

is not important. This is, however, a special case, and in general,

when, for example, the acoustic wave level is elevated enough to

generate significant nonlinear emission, the distinction can be very

important. Thus, before estimating the nonlinear emission, general

formulas distinguishing the scattering and decay processes are here

given. The delta functions in y impose the matching conditions, and

already contain the dispersion relations. This is enough to determine

k and kA as functions of w and cosO, so that, after doing the is

integrals, the k vectors where everything is evaluated are denoted

by kS (w,cose). Converting the delta function of w (k ) to a function
-pA p -p

of k , noting that e is proportional to 6(k ), the y's become
p-p -P±

(super-scripted expressions with D and S are evaluated at k

D,,

4A e D,S

D,S (4)4
1 DS 12 ( k . (22)

Yk B e aA D,S vP vAi D,S

(W w pawp AJA 1

Equation (20) can then be put in a more useful form:

dek £kX 
(23)

ds z v
g

where P is the last three terms on the right hand side of equation (20),

X - y D)/v , and s is the distance along the ray.
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Equation (23) is valid inside the runaway channel; wave-particle

effects have been neglected, for the x mode, as described above, and for

the o mode, whose phase velocity is greater than the speed of light. At

the edge of the runaway channel, for group velocity angle e, is:

k_ [1 - exp(-X/sine (24)
Ev sine (X/sine )
- g g g g

which simplifies in two cases. In the "optically thick" case, defined by

S D
IX/sine I > lXi 1> C Sia k (P =XV k/ - Y

g k 1 ~ 9 k (P k -r k

when X > 0, and the emission is damped; when X < 0, and the emission is

amplified, e (/sine () / ( Y - D )exp(lXl/sineg). In the optically

thin case, X < X/sinO << 1, and e (/sine ) = (P L/v sine ). Note
g -g g g

that the meanings of "thick" and "thin" are complicated by the fact that

two wave-wave processes are present. The thickness is determined by

S D
a difference of growth rates, X a y - y , while the source strength

S D S D
goes as the sum, Pk a Y + Y . If, for example, y and y are both

large but cancel substantially, the emission can be "thin", yet large

compared to the blackbody level. Unlike the result in Ref. 9, in such

a case the emission is not only superthermal, but also sensitive to the

plasma parameters through Pk

B. Detailed Formulas

The quantities ek Ck D y S , and thus the quantities in Eq. (22),
-p -A

and v must be found to determine the level of emission and its sensi-
g

tivity to variation in the plasma parameters, both as functions of w and

8. For tk he spectrum used is given in Ref. 11 as (subscripts 1 and .

~p
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denote components parallel and perpendicular to the magnetic field):

p P1

(25)UT T (k k 3
D p

for k > (W /c); C is zero for k < (w /c), or k #0. Here, E

p11  p kp p1  p P R

is the runaway field: ER = [4wne in(A)/T ], and in(A) is the Coulomb

logarithm. For the acoustic wave, a thermal level corresponding to

the ion temperature T is taken17:

Ti

ek 3
-A (2r)

(26)

SD
To get kP the dispersion relations, including (1), are combined

with the matching conditions: w= w ±wA, kI=kp±kA , and k- k A,

plus corresponding to scattering, and minus to decay. The remaining

dispersion relations are wk - kA c where cs = e + 3T i)/mij 1/2
-A k c

andw w [1 + (3/2)(k/k )]. Here, and in the remainder of
p pe ;

section III., the subscript p refers to the plasma wave, while w
pe

is the local electron plasma frequency. Since OA < Wpet

A B (W - We )/W << 1 can be used as a convenient expansion parameter.

Parallel k matching can be rewritten as 1k I (k -kcose)sgu(k -kcose)
ai p p

which, substituted in the w matching condition, along with the dispersion

relations, yields a quadratic equation for k (S,D(,cose). The solution
p

is, defining aSD (Wcosa) (c/W )kS ' D(w,cose):
p pe p
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aS,D O'Cose)
p

C C I e C 1/2
-F SI +1 +1 v - - (U+) -- Cosa x n(A'Cose)

SC 
Ce

where S and D correspond to upper and lower signs respectively, and

-r = sga [a - n(l +A)cosel. In practice, only one value of Z gives a
p

consistent solution. (There is also a small region where there is no

consistent sign, and therefore no matching). The plus sign has been

chosen in the root of the quadratic because (for T =x.1 keV.) for

values of A such that a > 1, when there is matching to the superthermal

plasma wave spectrum, the radical is greater than (cs /c). Given

ac, kSD follows from k matching.

To compute the coupling coefficients v, the polarizations of the

electromagnetic waves are needed. For scattering, this is the polar-

ization of the electromagnetic mode. For decay, the coupling is the

same as for the inverse process, where electromagnetic and acoustic waves

scatter to produce plasma oscillations, whose polarization is along

the magnetic field. The electromagnetic polarization in the high

frequency, cold plasma limit is:

n 2sin~cosO
x+ 2 ' + 2j 2

(n -C 1 ) n sin -
7re24 2 1/2(2

[+ 2 + n sin2 ecos 1

(n 2 -c 1 ) 2 (n 2 sin2 B-C 3 ) 2
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2
where B - z. Expanding in (e3 /sin e) (which is small except at very small

angles, where the polarizations become right and left circularly polar-.

ized, and the coupling becomes small) the lowest order polarizations for

the two modes are

f -Y cos6 Z
wpe sn

ar(cosew) - 2 1/2

s pe

and ir - Z. To compute ji, these polarizations are dotted into the total

nonlinear current of the two scattering waves (denoted by 1 and 2). This

total current is of the form (n + 1 + 2 + 1 1 2 + NL +-,

.and the part which satisfies matching is f 2 + + n 0 N +

To compute this current, the ions are treated in the guiding center

approximation. This assumption, A n (the ion cyclotron frequency)

* is also used to get the magnetized ion-acoustic dispersion relation.

It is justified for o mode emission because k0 << (w /c), so that kA

is nearly anti-parallel to k and B, and magnetic effects can be

neglected. For the x mode, first note that the coupling is proportional

to (! - /k 2 soprovided J - >> J - wn later

for the nonlinear current J"). This factor is of order one at small

and intermediate angles, but : 10 for e > 600*(taking n/ z 3).
pe

But, A : 2sin2 (8/2)(c /c)W s (S /3), for 6 < 60, so that the guiding
As pe i

center approximation is good in the region of strong coupling to the

x mode. The fluid equations may then be used to compute v -

*( j /Ek 1 2 kw) The equation of continuity shows that
k1 k2, W 1+W2 k ' 1 -2,2

for scattering, (A I /A) (c/c) >> 1, and for decay as well,

(1 Axo / XoI) (c/c). Thus, ? - (Q - i)JN for both
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processes, since v = v z dominates the nonlinear current for the
-p p~

scattering process, and for the decay since the polarization is the

same as that of the plasma oscillations, along the magnetic field.

The resulting coefficients are:

S -O q) cos_ __ _ peq '
cose - -- (29a)

x ' 4kAT [1 + s 2 1/2 4kAT

pe

S ~pe q
- 4rkAT e (29b)

Ae e

[-w q w [-w q -D '. cose p- - (29c)
4x x T [1 + sin2 0 2 1/2 4kAT e (

pe

D r p- q I )
AD pe (29d)

The remaining pieces of X and P to compute are the w(ae/3w)'s,

and the group velocities. The quantity w(3e/Dw) is almost exactly two

for the plasma and electromagnetic waves. For the acoustic wave,

2wA(ae/awA) = 2 (kD/kA) . The group velocities are

vgp = (dw /dkp) = 3 (ve/c)ve a, and v A = DA/3kAJ = cssgn(kA , for

the plasma and acoustic waves. To first order in (e3/sin 6), the

magnitude and direction of the x mode group velocity are:

c

vgx 1 2 w)2 (30a)

sin + 2 -- -

and

£ cose
tan (e -0) = (30b)

gxn 2 sin3six
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For theo mode:

v = n c sine (31a)
go a

and

tan (e -g ) cot . (31b)

C. Integrated Emission of x Mode

The nonlinear emission near wii can, in principle, be detected
pe

either directly, or after the radiation has been reflected. Since direct

emission must be nearly perpendicular to the magnetic field, the coupling

to the x mode is suppressed by at least three and a half orders of mag-

nitude; this follows for 6 > 88, (Q/ii ) 2 2, and noting that the group
pe

and phase velocity angles are approximately equal near perpendicular

emission. Only reflected x emission is then significant. To estimate

this emission, first note that (P k/v sine ) is an upper-limit to e k.

This will be used to show that with a termal level of sound fluctuations

the emission is negligible.

The rate at which energy leaves a length L of the runaway channel

(analogous to SxV for the Cerenkov emission) is

2rzLfd 3kev gsineg.

Converting this to a reflected and isotropized flux, as for the Cerenkov

emission, gives:

1 d 3kkv sine . (32)
F a(l-q) [1_ 2_ - 9

l-q

The units of F are erg./cm.2-sec.; since the predicted nonlinear
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spectral shape is a line much narrower than the resolution of the ob-

servations, the frequency-integrated emission has been computed for

comparison. Substituting e = (Pk /vgsin6g), and rewriting d 3  =

2d(cos6)k 2dk = 2wd(cose)k (k/3a)(w/Da )da
pp

F d(cose)da k2 (a 'Cose) k _w (33)
a 2 p p Dw Ba p

As previously mentioned, emission is negligible at small angles,

2
sin e < e3 << 1, since the polarization becomes perpendicular to the

magnetic field. Thus the only significant contribution to (33), and

all following integrals, comes from the region where sin2 3

In that limit,

(-) = - [1 + cot 6

and

3v a

Furthermore, P 2(w/wA)ky Sk, and (c/ e) can be neglected compared

to 3(v /c). With these approximations, the resulting flux, normalized

to FBB, the blackbody level integrated over the observed width of the

W pepeak, is:

F x, NL 2 [ q (w e/c) T.

FBB a (1-q) [1- (l)] [T

[ -2(~ wf a (34)[1 + 6W1 ]
pe

Here, 6w is the width of the observed ci peak, equated here to the
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resolution of the detector, so that FBB = (T e We/2w2c )O/ )(1+6/o p).

The parameter n = (Q/w ) , and * is the cosine of the minimum angle for

which (e3 /sin 26) << 1, taken here as eight degrees, corresponding to

(W/W )~ 1.001. The maximum value of ap is a 3, estimated from

(27), taking (kA max = kD, which gives A a maximum of (kD/c /We 0.02.

The function f(n,$) which is of order one, comes from the 6 integral, and is:

Z2 (n$ 1 3/2 (1+n 2) +/2 $f~r,' I + [ (1+ )2Z
+ n 11 (+n ) + m/

1-n . (35)

The result given in (34) is constrained by the Cerenkov model for

the broadband emission. In particular, to explain the broadband emission

requires a tail height which can be obtained from equations (16), (17),

and (18) (subscript C refers to the Cerenkov emission):

41 Ve'2 'ave 2 F 2
T 4 _ 2 3] (36)

n C p cj 2u q L-q BB pe >
c c - uRYR

=(- 2 -1/2 x, Nt
where y (1-u ) . The question, then, is whether F L> FBB, since

the discrepancy between the Cerenkov emission and the observed w peak
pe

is comparable to FBB. Substituting (nT/n)C for (nT/n) in Eq. (34) yields:

x,NL -2 Fx2- _ i E> a' BB'pe (37)
F T E f(() ,
BB w J~JTel 'ER, ( l+6w/wpe [ cyc RR
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For figures 2 and 3, (wp /6w)= 4, (v /c) 1/22, (T I/T )= 1/3, (E/ER)= 1/20,

a 3, = 2, 4 0.99, f(n,) Z 2, the frequency average of

[( /FBB)CW/W) 2 (11) 5, and ucy c-uRyR] 2.7. For these values,

/FBB) 8 x 10-, which is certainly negligible.

This result is to be contrasted to that in Ref. 9 where it was

found that (Fx n/F BB) 3. There are three main reasons for this

disagreement. First, the value of (uT/n)C (for X - 3cm.) indicated

here by the Cerenkov emission is much less than the value taken in

Ref. 9. Second, (w p/6w) is taken as 4 here, not 10 as in Ref. 9.

Third, partly as a consequence of the first two factors, the emission

is found here to be optically thin, not thick as in Ref. 9.

To see the contrast in results in more detail, the result in

Ref. 9 can be compared with equation (34), giving (the values found

in Ref. 9 are denoted by subscript HKY):

q C f (n,1

FBB BM 1q [l () 2 ] 1)3[ + 6w/w 3BB c 1-l-q 1 1 J/ pel

x ~ n 38

X 1 - a~ax BB'LI(8

The first factor is present because the emission is optically thin. An

approximate upper limit to (Xx/sin8 g) is

S
Z m  1/2 2

m-4

e r e , cot x

12LcJmj~vj~In [ S)4 [1+(ije)n2)

Taking the parameters following (33), and CT/n)M= 7.2 x 10-4
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W a 4 x 10 Hz., and Z 0 3 cm., the first six factors are about 10-

This is smaller than the result in Ref. 9 (where X 1 1 is found)

mainly because Bohm-Gross dispersion has been correctly included,

accounting for an additional factor of (1/3)(m n) 1/2(c/v ) 1/6.

While the spectral shape is correspondingly broadened by the dispersion,

so that the frequency-integrated emission is probably little altered,

the transport of the radiation is much different. The plasma is

transparent to emission so that computing the reflected, isotropized

emission is appropriate. The emission is also proportional to L,

the distance over which the radiation is amplified. Regarding x/sine ,
2

the cot 6 factor may allow a small amount of optically thick emission

for 6 5 170, but this would only make the integrated emission somewhat

smaller than in (33). The second and third factors in (34) correspond

to geometric and reflection effects on the isotropized emission from a

finite source. When X = 3 cm., (nT/n)C = 5 x 10-6 , so that

(nT/n)C/(nT/n)HMY is about 7 x 103. If X is much smaller, this ratio

increases, but is cancelled by the decrease in the first two factors.

The remaining factors account for the x mode polarization and group

velocity as functions of e and w.

D. Integrated Emission of o Mode

For the o mode, coupling is strong at perpendicular propagation,

and unreflected emission can be detected. Direct emission is, in fact,

greater than reflected emission, although both are small compared to the
T.

blackbody level, for (nT/n) = (nT Cn), and ek = 3
A (27)
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To estimate the emission, consider, again for e << sin 2e,

(X /sine ), which is approximately equal to (LyS/v ), since sine

is one to first order in (e3/sin 2). Then x is easily found to be

(note subscripts and superscripts "o" on X, v , y, and F denote the

ordinary mode):

1/2 3 n
S = W c Z cE [EJ ' IJ A (39)

Substituting (nT/n)C for (nT/n), as before, gives:

<(1/2 2~) ).(0
S Me - 2 1 -
an3 ms E 

1/1te3

2

x FB C ) (40)

[ucyc - Ue~ p

Estimating X S"for figures 4 and 5, taking I /(a ) of order one,

X - (5 x 10-2 /Z). Since X0 = X S- X D, this is an upper limit to X,

and, since (e3)-1/2 has been evaluated at w/w 1.001, the emission

will be thin for all frequencies, and all angles greater than about ten

degrees. The possibility that L is small enough to make the emission

thick is unlikely, unless some mechanism is found to prevent runaway

outside of a tiny central region; in the theory in Ref. 11 relativistic

runaways are predicted out to three or more centimeters from the axis.

Then, e is approximately 2(w/AS IT /(2r)3 ](L/v ). Equating this

to an effective thermal level, T eff/(27r) 3 , and substituting (nT/n)C
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in the formula for y S

T [a E2
eff [31 ) 1/2 E -

e3

x 2 TF {1~J2i {c 1(T-RT~4 (41)

BB p e (c c - uR R p

The energy density ek corresponds to emission that directly fills

the entire detector acceptance region. With Alcator in mind, this region

is approximately a cone of half-angle two degrees about the perpendicular

to the magnetic field. The radiation emerges in a cone of half-angle

30* or larger. This follows from the conservation of k

C1/2 ct-1 E C~tsource-
6edge = cos

[l + [ase
0

The detector is thus filled with rays corresponding to energy density

e T /(2w) at their source. The k-space energy density of blackbody

emission from the same region is T /(2w) , so that the ratio of fluxes

observed is (T /T). Integrating over frequency (the6 dependence of a

is neglected, as for the x mode):

Fo,NL T. cii 2 E 1-q 2

BB e E3/2J 1E -

x [BJe) 2 (W) (42)

[uc cuRR] [1 + ]
pe
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For the parameters of figures 2 and 3, this is (F'N /FBB)z (0.15/1).

If L is smaller than the radius of the spectrometer entrance, this

result must be corrected by the fraction of the detector entrance area

filled. For Alcator, this is about (0.3)L , so that (F o /FBB

x 0 For Z > 2.5 cm., the detector area is filled, but then

(F o,NL/FBB) 5 6 x 10-2 , which is thus the upper limit. The fact that

the source is cylindrical rather than slablike, will reduce this result

further by a factor of approximately (30*/90*) or (1/3).

Reflected o mode emission can also be computed, starting from

equation (32). The result is:

= 17~ (~ ()2) <) [ e;) 2()
F o,NL 22 '2)

[ + (ucy -uRYR]

pe

2

x -2 X)(3
xa (l -2 )m 1/2 (3

which is about 10-2 in the case of figures 2 and 3. The net o mode

nonlinear emission is then at most about three percent of the blackbody

level.
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IV. COMPARISON TO OBSERVATIONS

Alcator data are taken for comparison, since they provide clear

spectral resolution and polarization measurements. They are, further-

more, similar to spectra seen in other Tokamaks.

Figure 2 shows a fit of the Cerenkov spectral shape to the x mode

data where n - 2. The Cerenkov source has been folded with the detector

response to obtain this figure. The response at w to emission at w

2 2is proportional to sin (r(w2-wl)/6w]/[7r(w 2 -W1 )/ 6W . The emission source

has also been cut off at the cyclotron frequency at the plasma edge,

, E'since most x mode radiation between aE and 0 will be absorbed

in an intervening upper hybrid layer. The choice of uR = 0.8 satisfies

the weak escape condition. The cutoff velocity u is chosen as 0.97C

to give a reasonable spectral fit. This 1.5 MeV cutoff has smaller

discrepancies at both ends of the spectrum than lower or higher cutoffs

would' have at one end or the other. When u is lower, the spectrumc

slopes upward, and has a greater dip in the center. When u is higher,

the spectrum flattens out, destroying the dip, and increasing the excess

at the upper end. There is, though, also a small increase in emission

near the central plasma frequency, which, for cutoffs around three or

four HeV., improves the fit at the lower end of the spectrum, so that

uc could be taken somewhat higher. Using these values of uR and uc,

and the other parameters given in figure 4, formula (17) gives IR Z

2.6 kAmp. The observed ohmic current is 110 kAmp. so that the runaways

carry about 2.5 percent of the total current.
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For the o mode, a fit to which is shown in figure 3, the same

spectral shape is reduced by (p/1-q). While this is 0.5 for the values

4
p - 0.15 and q = 0.7 given by Hutchinson and Komm , a value of 2/3

gives a much better fit; this results from a less than ten percent

change in each of p and q, well within the limits of uncertainty of

those parameters. For the o mode, there is also emission above ,

since x mode emission propagating inward can be reflected and converted

to o polarization. This is a fraction (1/2)(p/l-q) of the x mode

source, since half of the emission is absorbed in the upper hybrid layer.

The source has an inherent cutoff at about 0.9 a
0

In both the x and o mode fits there is a deficiency of emission

just above the central plasma frequency. This possibly indicates the

need for additional emission, such as the nonlinear process would pro-

vide if the acoustic fluctuations were at least two orders of magnitude

greater than the thermal level (or if the plasma fluctuations were

correspondingly enhanced above their superthermal level). Furthermore,

the deficiency is two to three times greater for the o mode, which

in general has a more pronounced two peak structure. This is consistent

with the ratio of integrated nonlinear o and x emissions estimated

from (37), (42), and (43).

Another observed spectrum, this one for the o mode, and for

n = 3.2, is compared to the Cerenkov emission in figure 4. Here uR = 0.8,

and u - 0.88. Lower or higher uc would produce too little or too much

relative emission in the lower part of the spectrum. The fit seems about

as good as possible for the present model, in view of the single particle
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spectral shapes shown in figure 5. The hollow shape of the resulting

spectrum in figure 4 cannot be eliminated by the choice of fT (u), or by

folding in the detector response. Furthermore, the inherent cutoff in

the emission at about 0.99 seems to preclude improving the fit by

including emission from particles in a region of lower local plasma

frequency. Such particles would contribute more emission in the region

(between 1.4 and 2.3 w in figure 4) where there is a deficiency of

Cerenkov emission from the center of the discharge; however, they would

also add that much more to the emission at the upper end of the spectrum,

so that the fit of the spectral shape would not be improved.

Since the fit in figure 4 is not good, and requires a cutoff

velocity which is too low to justify use of equation (12), it does not

give a direct measure of the runaway current, as from equation (17).

It is, however, at least true that the Cerenkov emission and the ob-

served spectrum both emit the most at the upper end of thd spectrum

when (S/w ) is increased to 3.2.
p 0
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V. DISCUSSION

Discrepancies in the fits near wo suggest the need for significant

nonlinear emission at that frequency. Further evidence for such emission

is the observation of very narrow, high intensity, sporadic "bursts" of

radiation just above w . These were first seen several years ago in
po

18
the "Uragan" stellerator, and more recently in Alcator A and C. In the

"Uragan" observations, the detailed spectral structure was resolved, show-

ing emission at wpe + nw p, for n < 5. This was interpreted as due to

scattering between enhanced plasma oscillations and low frequency fluc-

tuations, generated by linear mode conversion of a superthermal level of

sound fluctuations. In Alcator, similar (though unresolved) bursts

appear to occur predominantly near the beginning of shots. This may cor-

respond to a stage in the discharge when (Ti /T ) is small enough to allow

a high level of sound fluctuations. Another possible source of the

fluctuations is from drift waves, which are greatly enhanced, as evidenced

by their effect on the plasma energy transport. A further constraint

on the low frequency fluctuations, and the nonlinear emission process,

is that such a process must be suppressed for parameters such as those

corresponding to the spectrum in figure 4.

As for the discrepancies in the fit at intermediate values of w,

as in figure 4, relativistically shifted emission from the first cy-

clotron harmonic may account for some of the deficiency. -This would

correspond to the fact that at higher values of (n/w ) , enhanced

emission is observed between the first and second cyclotron harmonics,

since the relativistically shifted emission is expected to occur both

above and below the cyclotron frequency. 5
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Despite these and other remaining problems, the observations,

such as those shown in figures 2 and 3, give a direct measure of the

runaway current, and allow determination of an approximate runaway

cutoff velocity. This demonstrates new diagnostic value for such

spectral data.
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FIGURE CAPTIONS

Fig. 1 Contour plot of u(w/w ,cose) in (w/w ,o6) plane. (Q/w ) =3.

Fig. 2 Observed x emission in Alcator (figure 7 of reference 5)

13 -3
for average electron density Ur 6 x 10 cm. , B 61 kG.,

toroidal electric field E 1 V./m., and T e 1 keV.,
eo

compared to Cerenkov emission for (0/w ) = 2. The blackbody

level is normalized to the second cyclotron harmonic, not

shown. In Eqs. (13) and (17) w, = 1.lwo , Aw= 0.2 w ,

/FB = 5.0, and 'Zw/w)> = 1.4.

Fig. 3 Same is figure 2, but for o mode.

Fig. 4 Observed o emission in Alcator (figure 8(c) of reference 5)

for n = 4 x 103cm. , B 79kG, and T Z 1 keV., compared
e 0 eo

to Cerenkov emission for (/W ) = 3.16. The blackbody level

is determined as in figure 2.

Fig. 5 Single particle emission spectra, normalized to the same height,

for particles of different velocities, when (0/w ) = 3.16.
p 0
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