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Radiation from relativistic rumaway electrons is considered as a
source for plasma frequency radiation in tokamaks. Two specific emission
mechanisms, Cerenkov emission, and radiation produced by nonlinear
coupling of plasma and acoustic waves, are studied. In many cases the
Cerenkov emission provides a reasonable speétral fit. It can also be used
to measure the runaway current, and to estimate the runaway cutoff vel-
ocity. The nonlinear emission is found to be negligible unless the acous-
tic waves are enhanced by about two orders of magnitude above the thermal
level (or the plasma waves correspondingly enhanced above their super-
thermal level). Some observations, though, indicate the need for signi-
ficant nonlinear (or other) emission in .addition to the Cerenkov emission.
For some typical Alcator data, the Cerenkov model gives a runaway current

of 2.5 percent of the ohmic current, and a cutoff energy of 1.5 MeV.



I. INTRODUCTION

In many Tokamaks radiation has been observed extending in frequency
from the plasma frequency at the center of the discharge, to the elec-
tron cyclotron frequency at the outer e@ge of the plasma 1-5.' The charac-
teristics:cf this radiation as it is ptesently'obsefved are btiefly sum-
marized as fcllows. It occurs for (Qo/mpo) 3/2 where Q and mp are the .
cyclotron and plasma frequencies,‘and subscript o denotes values at the
plasma center.. Its shape varies with (fyup)o? from a ratherkparrow (expeti—_
mentally unresolved) feature near wpog’slfcr small (Q/w ) - -to muchv‘

broaderl’z’5

, sometimes double peaked4; structures at larger'(ﬂlmp)o.
Its intensity is typically several times the-blackbody level for the
corresponding electron temperature, and the extraordinary polariza-

‘tion intensity has been observeda’5 to exceed the ordinary mode.

‘Several theories 6-10 have been proposed to explain this emission.

The purpose of this paperhis to examine and develop the two seemingly most
cogent theories with emough realistic detail to make a direct comparison

with experiment.

The first mechanism considered was proposed by Freund, Lee and Wu 6,
and invokes the direct Cerenkov emission by relativistic runaways of extra-
ordinary mode electromagnetic radiation; it is emitted over a broad range

of frequencies. The second mechanism, proposed by Butchinson, Molvig and

9

Yuen 7, considers the nonlinear conversion of an elevated alectrostatic . . -
plasma spectrum to electromagnetic emission, by scattering from thermal

level ion-acoustic fluctuations; this process emits only just above the



plasma frequency at the source point.

In section II. the televant equations governing the Cerenkov emission
are given, and are related to an observed specific radiation intensity.
It is shown that in many cases the intensity of radiation is approximately
proportional to the total runaway current, and an approximate formula is

presented.

Section III.. develops and expands-théAnonlineax.mpdel, including a
closely related decay proéess. This treatment is conditioned by knowledge
of the Cerenkov emission, and it is shown that for the relationship between
the runaway distribution and the plasma wave energy density predicted by

the self-consistent theory of Molvig, Tekula and Bersll

, the nonlinear.
emission from scattering from thermal ion-acoustic fluctuations is.
small compared to the Cerenkov emission. Nonlinear conversion should be

:important only if a more elevated level of acoustic or plasma wave spectra

exists.

In section IV. an attempt is made to reproduce the experimental spectra
in shape and intensity from the Cerenkov emission. In some cases a reason-
able fit can be found but only for rather specific parameters, thus providing
tentative information onm the cutoff energy of the runaway tail and the total

current it carries.

In other cases, while partial agreement can be obtained, discrepancies
in shape remain which appear to be unavoidable for the Cerenkov process.

Section V. discusses these and other limitations.



II. CERENKOV EMISSION
A. Character of the Emission

The Cerenkov emissibn can be computed as the incoherent  sum df
emissions from the individual runaway electrons, moving along the magnetic
field, in a cold, uniform plasma., The perpendicular velocity can be ig-
nored because most of the emission comes from electfons for whiﬁh
YrL/A<<1, where Y is the.relativistic factor, 23 is the Larmor radiust ;
and A is the wavelength. The cold dielectric response is used becausg
the radiation phase velocity is much greater than the electron thermal
vglocity. (Since the emission frequency @ < QE, where QE is the cyclotron
frequency at the plasma edge, it is always well below the local upper hy-
brid resonance). The plasma is considered uniform, since ﬁﬁe wavelength
is small compared to field, demnsity, and temperature scale lengths. The
‘plasma is also opticaily thin to the Cerenkov emission; the small positive
slope of the runaway distribution (see later ) is so small that the amplifi-
.cation length for the extraordinary mode is much larger than a typical Toka~

mak minor radius.

The dispersion relation and the coherence condition are two constraints
on the Cerenkov emission which account for many of its.ptoperties. The in=-
dex of refraction, n, as a function of w and cos & E;(g-g/kg)(where 4 is the
wave vector, -and § is the magnetic field) is the Appleton-Hartree relation:

62 (w?,co0s28) =
' w )2 w_\2
1- {‘ &2 L )
N2l \, |1/2
Wp 2 Y 2\2
A48 20 = | [D 4 o\ 2 w
\ 21 (m ) : (w) sin“0 + (Eu-)sin 8 + A(_d) cos“8{1 -(;2) )

(1




where wp and Q have their local values, and the minus sign defines the
extraordinary (x) mode, the plus sign the ordinmary (o) mode.

The coherence condition is (v is the velocity of the emitting partiéle):'

w
—_ = 2
% v cosf , (2)

2
Equation (1) implies that for w > Wps the frequencies observed, n > 1
for the x mode, while n2 < 1 for the o mode. Thus, only the extraordinary
mode is emitted for w > wp - Combining Eqé. (1) and (2), v/ec = u(&, cosf)=

[n(w, cosB) coselal. From Eq. (1), it follows that

> 0

3[n2(w2,c0528) cos?8]
3 (cosZg) ‘

for wp < w < Q, so that u decreases as cos8 increases, and a particle cannot
radiate at frequency w unless its velocity is greater than upin (w) =
u (w, cos® = 1). This quantity upy, is typically much gr;ater than the
electron thermal velocity, so that only the nonthermal tail radiates. As
w goes to uwp, 0 goes to 1, and Unin becomes highly relativistic, the lowest
frequency of emission corresponding to the highest possible u = u., the
velocity at which the runaways are cut off. |

Equations (1) and (2) can also be combined to find:

oo (1) o[ (o () o el
(@) (&) ) + o’ / }
S ) RS [

To get Eq. (3) the radical in Eq. (1) must be squared, so that the

corresponding sign, referring to the choice ‘'of mode, is lost. While the sign



in Eq. (3) refers to one of two roots to a quadratic quatiom, it does.not
necessarily, as in (1), refer to one mode. Depending on its arguments,

cosge 4 may be acceptably double valued, single valued, or violate the

+ £ 1. However, when‘a single choice of sign

requirement O < cos?8

satisfies this requirement for wp < @ < Q (as is usually the case; see

Eig. 1) it is identified with the x mode. A more convenient quantity

for numerical computation is niﬂi[uzcosze+]-l, which must satisfy:

u? > 1. B (4)

} +‘.jN

The quantity coszeg_can be studied numerically, and for typical parameters

decreases as u increases for fixed w, and as © increases for fixed u:

| ) i(césZG)min é.co;zei(mmax; u=:1). (5)
Many of the emission characteristics obtained from Eqs. (1) and (2) are

summarized by the contour plot of u(cosB, w), shown id.figure 1.

B. Spectral Emission and Isotropized Flux

The spectral source of radiation per unit volume s* (erg./sec.-cm.s.-az,)
is just the spectral power from each electrom, de/dt (u,w) (erg./sec.-Hz.),
incoherently summed over the electron tail distribution function fT(u):

") = [£(w) g—% (u,0) du . (6)

The spectral power, de/dt, was first computed by Kolomenskiil?; it is just

- qu . E)r = vt’ where q and ¢ are the particle charge and position, and
the electric iieldvg includes dielectric shielding effects:
kv y

E_(k,u) = —3—o Tm1 v §
p - 22,24 P9 4

-1’

where



2
=4
T =\=z)lk k - k25 |+
Pq (w)[pq pq] “pq ,

and € is the dielectric tensor.

The cold dielectric temsor is used; in which the tail electrons, whose
density is negligible, are neglected. Imnverting the Fourier tramnsform,

and taking the' perpendicular velocity equal to zero, gives:

2.2
g_i_ = Re lq%-fmdm/;ine dej;zdn 8(n u cosb - 1) x

{n“cosze - n'ey {1 +cos®™] + e} - €] } w

[Elsinze + Escoszeﬂ [n? - n;(w,cose)][nz— né(m,cose)]
where | o - .

e ? w_2Q w2
g, 31+ —L— ¢ 2 —-2> —  ande, z31--E

Q% w? 2 (% w?) ) w?

In the angular integration, the delta function picks out the contributions from
coszel_}_. These are the radiation terms which, when the real part of the

 integral over n is taken, are integrals over w, whose integrands are:

o 1 \+
de - Lw (1- )—
dee (4:0) 2c g,u?

X | .
,-ele,_ (}K) u* - (28152 (%Z+ eg)uz +e, (g-)] |

—[a\s : T (0 ®
‘u’e, (?5) ejut =72, (sf-ei-!— e§> u? + 2¢, (2&:§+ ai) u?+e2 (%) ] r2

where the b here correspon& to the + in (3).




From the radiation volume source Sx, the radiative flux’Fx
(erg./sec. - cm? - Hz.) corresponding to the observed quantity, must be
- found. To do this, the transport of the radiation must be considered. The
maximum phase velocity anglé at the source can be found from (5), and is
typically about forty degrees. While there is a substantial difference
between this angle and the local group velocity angle, the angle of interest
is the group velocity angle at the edge, where the phase and group veloci-
ties are equal. Since the index of refraction decreases to one at the edge,
the net effect is for the ray to bend away from the normal, towards the
field, and the maximum ray angle that could be seen is less than forty
degrees. Tokamak observations, though, are typically made within a small
angular range about the direction perpendicular to the magnetic field
(s 2° in Alcator). Cerenkov emission must thus be reflected to be detected.
The observed ratio of x to o polarized radiation is, in fact, consistent
with a model where the ordimary emission is produced bylﬁolarization scram-
bling occuring during multiple reflections.4 Because of the reflectionms,
only the angle-integrated, or isotropic emission, rather than emission as

a function of angle, is of interest.

The argument for isotropization is only important, of course, if the
radiation can get out of the plasma. Total internal reflection can be a

serious constraint on the emission.l3 In a slab model, none of the

Cerenkov emission can get out; along the ray, kjj¢ /w = ncos® is comserved,

so that equating ncos6é at the point of emission to ncosf at the edge, where

-1 -1

n = 1, gives [(ncos8) ] T=u-= [(cose)edge] > 1, requiring particles

source ‘
to move faster than the speed of light. The situation improves somewhat for

toroidal geometry. In a steady state with azimuthal symmetry, the two con-

stants along the ray are14 k¢R = k¢Ro(1 + r/Rocose), and w (Ro is the




'major radius; ¢ and © toroidal and poloidal angles, and r.the usual

-radial coordinate). Approx;mating k., = kcos8, the condition for the

¢.

radiation to escape becomes

ncosf (1 + r/Rocose)l = cos® (1 + a/Rocose)ledge

source

(a 1s the minor radius) so that, neglecting &/Rb), the weakest escape

condition is

¢ 1 S 1 - 1
ncosB’ source — (1+ %") 1.2

= 0.8,

: o
when a/R.c> - 0.2, as in TFR and Alcator. Note though, that [ncosel—l
'is just u(w, cosB), as plotted in figure 1, which thus shows that for
typical parameters this weak escape condition is satisfied over most of the
Cerenkov emission region, and also just above mp’ where all the nonlinear
emission occurs. Including the factor (cose)edge implies that to allow the
escape of radiation from, for example, Cerenkov emitting particlgs wiﬁh

velocities above 0.9¢c, © < 30°, which is not very restrictive. Even if

edge
a more detailed ray tracing analysis were to show that a significant frac-
tion of radiation could not escape directly, it might still escape by scat-
tering off density fluctuations. This would amplify some emission (being
analogous to partial reflections) and could also alter the spectral shape.
Iniﬁhe following, the lower limit to the velocity of the emitting particles
is taken as 0.8 ¢, Eonsistent with the weak escape condition. Furthermore,

most of the emission is due to relativistic particles, for which the

escape condition is not very restrictive.



To compute Fx, a uniform, cylindrical model iS'édopted, where th; fun—
- aways are confined to a radius £ in a Tokamak of minor radius a. The walls
are considered not to be smooth and, for simplicity, the radiation is as-
sumed to be isotropized by refiection. The quantity q is defined as the
fraction of radiation reflected back into the same mode, the remainder being
absorbed or (a fraction p ) converted to the other polarization. The
energy emitted per second is s* times the volume occupied by the runaways.

This is isotropized, on reflection, over the area of the chamber walls and

27 solid angle. The total flux in one direction (27 solid angle) is
then: (Sx)(source volume)/(area of chamber walls) = SxLZ/Za. Including

reflections and polarization scramblinga, the result is:

= q s%22 (;{) . | | (9a)

1D [1-/1-2] \22

The corresponding o mode flux is:

FO=__LFX

(9b)
(1-q) :

C. Runaway Current

In many cases, Fx(w) is approximatel§ proportional to IR’ the current

carried by the runaways. The runaway current satisfies:

IR o e fT (u) du, (10)

while the radiation flux satisfies:

Fr(u) © /%% (u,wj 'fT(u) du. (11)

These are approximately proportional when most of the current and radiative
flux is produced by highly relativistic runaways. This is true because

de/dt (u,w) is a weak function of u near u = 1; the degree of weakness varies



with (Q/mp). The integrals (10) and (11) may then be expanded, taking

‘"u=l1-§, in the form (uR is the runaway velocity):

f Uc GR -é-g.
g(u) fT(u)du'= _{Eg(l)—G du] + v ] fT (1-68)ds . (12)
c

“r

u=l

With this expansion, F* and IR are, to lowest order, both proportional to

*r
'5[ £,(1-6)ds,
Cc

the number density of relativistic runaways.

In the distribution usedilater, for example, fT(p) is flaﬁ in momen-
tum space, and rapidly rising in velocity space, so that the velocities
of most of the emitting particles are near the cutoff velocity. In figures

2 and 3, for example, u, = 0.97, and de/dt(u,w) varies by less than ten

percent for u > 0.9.

When the exact Cerenkov spectrum (6) (convoluted with the detector
response, as in figures 2 and 3 ) is reasonably similar to the observed
spectrum in some frequency interval, from @, to w, = w; + Aw, say, the
Cerenkov mechanism may account for the emission in that interval. If,in
addition, the conditions for equatioﬁ (12) are satisfied, (12) can be used
to relate IR'to FEBS’ the observed émission flux. Averaginé over the region

of fit, this relation is of the form:

. 2 [ F (0 :
de - C OBS (13)
I = clF — (l,m)> S - / do | ——— |,
R < oss/d" B \ S€ (1,w)

@, dt

where C is a constant depending on plasma and model parameters. This is



a very useful relation; although IR can be computed once fT(u) is

- known, a theoretical runaway distribution such as (18), given later, is
exponentially sensitive in ., (where o, is the runaway tail heigﬁt) and u.
to plasma parameters (density, temperature, and applied electric field)
which are only approximately known. The sensitivity is such that a ten
percent uncertainty in line average density, electron temperature, and
loop voltage (near one volt) causes the predicted classical value of

(nT/n) to vary by as much as two orders of magnitude.

To complete the Cerenkov emission model, C is computed, and Fx is

normalized to F (the blackbody flux for the electron temperature Te)’ for

BB

convenience, and because the uncertainty in the absolute level of emission

is sometimes substantial. From equations (6), (9), and (12),

u

2 .

2 w_e c

= 9% P fn (Wdu} &, (14)
4(1-q)ac 1-(P/1-q) 2]. | T w

R

(11

vwhere 4 (Zc/mpez)de/dt(l,w) is the dimensionless spectral shape which is of

order one. The blackbody flux in one direction and for one polarization is:

= e . (15)

The runaway current, using (12), is:

c
L= /fT(u)du m2lec . (16)
"R

Both F* and IR are proportionmal to 22, the square of the runaway channel

width, so that somewhat arbitrary quantity drops out of the result. Combining



12

(14), (15), and (16), the runaway current determined by the observed emission

= 1/ 2y.
~1is then (where v, (Te/me). ):

e (RN @ B () e

While Equation (17) applies for all distributioms, fT(u), that give

a good spectral fit, and that allow use of equation (12), a specific d;s-,
tribution must, of course, be chosen for computation of the spectral
shape. The one used here, and referred to in the following sections, is
a flat tail in momentum space: fT(p) = (DT/pe)[H(p—pR) - H(p-pc)], where
o, is the tail height, and P.» Pps and P, are the thermal, runaway, and -
cutoff momenta, respectively. This is an excellent approximation to the

distribution function calculated in Ref. 1l. Since fT(u) du = fT(p) dp,

/2

n -3
EEACE (;f) [B(u-u) - Bu-u )] (1-u?) (18)

With this distribution, the emission integral (6) consists of elliptic
integrals, and must be evaluated numerically. In the integration, equa-
tion (4) is numerically checked in each u interval, to determine which

roots (3) contribute to the emission. In additionm, regions where cyclotron

absorption is significant are excluded, according to the usual coﬁdition:ls

]

kcose+




ITI. NONLINEAR EMISSION

A. Character of the Emission

The nonlinear emission mechanism consists of two incoherent wave-wave
processes. One process, electromagnetic radiation from the scattering of
a superthermal level of plasma oscillations with a thermal level of ion-
acoustic fluctuations, was discussed in Ref. 9, and is referred to here as
the scattering process. Another process, not included in Ref. 9, is the
decay of plasma oscillations into iomn-acoustic fluctuations and electro-

magnetic radiation, the decay process. For the hot plasmas (Te~ 1keV.)

considered here, the nonlinear emission, like the Cerenkov emission,
occurs only for w > wp. More precisely, w > mp unless the sound frequency

2
w, lkA” cs[ > (3/2)mp(kp/kD) , where kA” is the parallel acoustic
wavenumber; cs < ('I.‘e/mi)l/2 is the sound velocity, mi is the ion mass,

kp is the plasma wavenumber, and kD is the Debye wavenumber.

- - . . 1/2
For kp z kAH wp/c, this requires (ve/c) < (me/mi) , OT Te $ 0.3 keV.

The decay process is analyzed much the same as the scattering
process is in Ref. 9, but causes important qualitative differences in the
resulting emission. The wave-kinetic equation is a continuity equation

for the electromagnetic energy density: aek/at +V - (ygek) = (sources) + -

~ -~

(sinks), where € is the total (field plus particie) energy density per

~

unit k-space volume and yg(g) is the group velocity. For weakly damped

modes, k = k(w,cos8), and €, and other k - dependent quantities can be

k
regarded as functions of w and cosf. One source term is the Cerenkov
emission, while the remaining sources and sinks are wave-wave scattering

and decay terms. In steady-state, and when the spatial dependence of
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Yg can be neglected, the kinetic equation becomes:16

8 (k- kp—kA) 5(m1$-w15 -mlfA)
v + Ve =(41r) dk dk, P
~-g - g aep aeA
w
Bm P awp A awA
O.\A _?_P_
X e %% T o kk T o Skk +
i “p ~A ~ -p ~ ~A
-
- 5(15-151) + l_cA) cs(ml.9 m‘-spﬂl-‘A) 0, T_P_
lu I 3€ Je sk Ek + Tsik ek T ek
og p A “p ~A ~p = -~ ~A
Y50 % e YA B
P %% A i
+ pF, (19)

where superscripts S and D refer to the scattering and decay processes,
and subscripts A and p refer to acoustic and plasma waves. The quantities
£, ep, and €, are the dielectric constants for the transverse, plasma,.
and acoustic waves.  The first term on the rigﬁt hand side of (19) was
discussed in Ref. 9. The second term consists of two emission terms,
cbrresponding to the induced decay of plasma waves by transverse and
acoustic waves, and one absorption term, corresponding to the scattering
of transverse with acoustic waves to produce plasma oscillations. An
additional index, deno;ing whether emission is in the ordinary or
extraordinary mode, is understood. The quantity u is the non-linear
coupling coefficient, defined such that the scattering of two waves
produces a non-linear current along the polarization of a third, emitted
wave:

1.3
el = &k, fdu, vk, ,ky,0,,0,) .
k, = k +k2,m =y +m2 [ 1[ *1’°-2'"1 ZEkl,w FT_(z,mz

=3 3 1




L
The Cerenkoy source term, Pk’ contributes only to the x mode.

-

The electrostatic turbulence produced by the runaways, ek , has
been calculated in Ref. 11 by requiring a steady state electrgi distribu=--
tion function, where the force of the applied electric field is balanced
by an effective friction due to pitch-angle scattering by the turbulence.
The unmagnetized plasma oscillations are greatest at the frequency
corresponding to the central demnsity. This is because the runaways
are cut off by magnetized plasma oscillations, which grow as they
convect out of the plasma. Similarly, the waves are in a state of
marginal stability, where collisional damping is balanced by Landau
growth due to a small positive slope in the distribution function. The
level of plasma oscillations found in Ref. 11 is so much greater than
the thermal level acoustic f£luctuations (ek /egA~ 10!9) that
(EBP/ERA) >> (mp/wA), and an excellent apprgximation to (19) is:

_ ,.D__s w D, ,w s, ., L
Yg(lf) Yels = (YIS ‘YIS) € + (wAYE elSA-) +(NAY15 EISA) +P1S . (20)

Here, Yg is the induced radiation amplification rate, and Yi is the

induced damping rate. They are given by:

D,S
Y 0=
4 (i3 3 2512 T
(4m) ./; kp‘/a K Y 3e B(g-gpigA)6(w-mk uw ) — (21)
A € P A P ~A ~Pp
W w, ——
W pawp AamA

where D corresponds to the upper sign, and S the lower sign. 1In the

following sections, where estimates of the nonlinear emission are made,
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the distinction between the scattering and decay processes actually
Ais not important. This.is, however, a special case, and in general,
when, for example, the acougtic wave level is elevated enough to
generate significant nonlinear emission, the distinction can be very
important.' Thus, before estimating the nonlinear emission, general
formulas distinguishing the scattering and decay ﬁrocesses are here
given. The deltﬁ functions in y impose the matching conditions, and
'already contain the dispersion relations. VThis is enough to determine

A

integrals, the g vectors where everything is evaluated are denoted

gp and k, as functions of w and cosf, so that, after doing the k

by gg’i (w,cos8). Converting the delta function of mp(kp) to a function
]

-~

of Ep’ noting that € is proportional to G(gp ), the y's become
: 1

(super-scripted expressions with D and S are evaluated at gg’i):
L. ’
D,
%k, ).D.8
4; D,S2 —2 o
D,S (my " Ju2"] _ w / 7p (22)
Yk d¢e e, \ D,S P A D,S ° :
y w28, —R, —A lvg - vg,l
30 pdu, A du, |
Equation (20) can then be put in a more useful form:
de -£, X P
e Y,k (23)
d % v
s | s

where Pk is the last three terms on the right hand side of equation (20),

X = 1(72 -~Yz)/vg, and s is the distance along the ray.




17

Equation (23) is valid inside the runaway channel; wave-particle
effects have been neglected, for the x mode, as déscribed above, and for.
the o mode, whose phase velocity is greater than the speed of light. At .
the edge of the runmaway channel, for group velocity angle eg, o is:

I X R
k [1 - exp( x/singgZ}

2

e, ( ) = = —— (24)
8 iné

k'sin g v sing, (X/Slneg) |

which simplifies in two cases. In the "optically thick" case, defined by
. _ S D

wstao | > [xl > 1, e (a/stns) = @/xv) = B/ (g - Y,

when ¥ > 0, and the emission is damped; when x < 0, and the emission is

amplified, €, (2/siné ) = (P /lYS - YD!)exp(lxllsine ). 1In the optically
k 8 'k 'k g
thin case, x < x/sineg << 1, and eg(zlsineg) = (szlvgsineg). Note

that the meanings of "thick" and "thin" are complicated by the fact that
two wave-wave processes are present. The thickness is determined by
a difference of growth rates, X a YS - YD, while the source strength |

goes as the sum, Pk a YS + yD. If, for example, YS and YD are both

large but cancel substantially, the emission can be "thin", yet large
compared to the blackbody level. Unlike the result in Ref. 9, in such

a case the emission is not only superthermal, but also semsitive to the

plasma parameters through Pk'

-

B. Detailed Formulas

The quantities € s o YD, ys, and thus the quantities in Eq. (22),
| P A _ '
and vg must be found to determine the level of emission and its sensi-

tivity to variation in the plasma parameters, both as functions of w and

6. For g  the spectrum used is given in Ref. 11 as (subscripts || and 1
~P




denote components parallel and perpendicular to the magnetic field):

- - Emcdded?, (25)
I A

for kp >'(wp/c); €, 1is zero for kp < (wp/c), or kPL # 0. Here, E

R
P

is the runaway field: ER = [4wne32n(A)/Te], and 2n(A) is the Coulomb

logarithm, For the acoustic wave, a thermal level corresponding to

the ion temperature Ti is takenl7’:
' T
= i . (26)
= 3 -
e]-‘-A (27) '

To get kP A the dispersion relations, including (1), are combined

with the matching conditions: w= wp +w k“'-'-kpi k, » and k_,_=+k
Ay’

plus corresponding to scattering, and minus to decay. The remaining

dispersion relations are w = |k%.lcs, where e, = [(Tei-BTi)/mi]

and mp = wpe 1+ (3/2)(k:/k;)]. Here, and in the remainder of

section III., the subscript p refers to the plasma wave, while wpe

is the local electron plasma frequengy. Since wy << mpe,

Az (w- mpe)/mpe << 1 can be used as a convenient expansion parameter,
Parallel k matching can be rewritten as [ka I = (kp—kcose)sgn(kp-kcose)
which, substituted in the w matching condition, along with the dispersion

relations, yields a quadratic equation for k§’D(m,cose). The solution

is, defining ag’D(m,cose) = (c/wpe)kg’n(w,cose):



ai’D(A,cose) =

, (27)

c c 2 v |21 cg 1/2
312l +{1-2| + 6|-8| |a + (1+4) —=|cose x n(4,cos8)I
. : L

2
Ve
3

Lc

where S and D correspond to upper and lower signs respectively, and

I = sgn [ap - n(1l +A)cos8]. In practice, only one value of I gives a
consistent solution. (There is also a small region where there is no
consistent sign, and therefore no matching). The plus sign has been
chqsen in the root of-the quadratic because (for Te = 1 kev.) for
values of A such that a > 1, when there is matching to the superthermal
plasma wave spectrum, the radical is greater than (cs/c). Given

s,D

cp, kA’ follows from k matching.

To compute the coupling coefficients u, the polarizations of the
electromagnetic waves are needed. For scattering, this is the polar-
ization of the electromagne;ic mode. For decay, the coupling is the
same as for the inverse process, where electromagnetic and acoustic waves
scatter to produce plasma oscillations, whose polarization is along
the magnetic field. fhe electromagnetic polarization in the high

frequency, cold plasma limit is:

ie 2
% + 2 i + |2 sinfcosh z
- 2 2,2 <
- (n"-¢,) n“sin"0-¢
T = 1 3 (28)
- 2 1/2 ? .
£ 4 . 2
2 n sin 6cos 8
b3 * T3 2 2
n -el) (n"sin e-e3)
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where ﬁ = ;. Expanding in (ealsinze) (which 1is small except at very small
angles, where the polarizations beccmé right and left circularly polar-.

ized, and the coupling becomes small) the lowest order polarizationms for

"the two modes are

ix(cose,m) =

sinze wpe

and io = g. To compute u, these polarizations are dotted into the total

nonlinear current of the two scattering waves (denoted by 1 and 2). This

total current is of the form (no + Y + §2 + eee) (Y + Yz + ?NL + ee0),
. and the part which satisfies matching is ﬁ1§2 + 8,8 +o Yo Foeee .

To compute this current, the ions are treated in the guiding center

A
is also used to get the magnetized ion-acoustic dispersion relation.

approximation. This assumption, w, << Qi (the ion cyclotron frequency)

It is justified for o mode emission because k° << (mpe/c), so that BA ‘
is nearly anti-parallel to Ep and B, and magnetic effects can be

neglected. For the x mode, first note that the coupling is proportional

NL

to (yx . g/kA) (provided gx ez > J » (%, 3), as shown later

-x
for the nonlinear current JNL). This factor is of order one at small

and intermediate angles, but ¢ 10-1 for 6 > 60°ftaking n/mpe = 3).

But, qu Zsin2(6/2)(cs/c)mpe s (91/3), for 6 < 60°, so that the guiding

center approximation is good in the region of strong coupling to the

z mode. The fluid equations may then be used to compute u =

(i."-]?cL+k o+, /By

" Ek " ). The equation of continuity shows that
=1'-2"1 72 ~1'71 <22

for scattering, (ﬁAvP/ﬁPVA) z (c/cs) >> 1, and for decay as well,

&,v /

%x,0 nx,ovA) = (c/cs). Thus, @ ° gNL = (% g)JNL for both




processes, since Yp = vp% dominates the nonlinear current for the
scattering process, and for the decay since the polarization is the °
same as that of the plasma oscillations, along the magnetic field.

The resulting coefficients are:

-~ N -w_q -w_q
”:S; = Iz |t c;se TN (292)
A'e [1 + sin"8(—) "] A'e
(.Dpe
S _ | _—_pe’
Vo T lFmoT | (29b)
ATe
Ao oA W T -u_ q ) {w
uD =T "z 41rkp; ie ) 2cosg 2.1/2 [Awierl f,e ’ (29¢c)
x X% ATe [1 + sin“8(——)°] A eJ
mpe L
D -mpeq “pe .
Mo 4k, T w | (29d)
A'e

The remaining pieces of x and Pk to compute are the w(d3¢/dw)'s,
" and the grouﬁ velocities. The quantity w(3e/9w) is almost exactly two
for the plasma and electromagnetic waves. For the acoustic wave,

2 .
mA(Bs/BmA) = 2(kD/kA) . The group velocities are

vgp = (dmp/dkp) = 3(ve/c)vea, and v [A = BmA/BkA“ = cssgn(kA”), for

the plasma and acoustic waves. To first order in (53/sin26), the

magnitude and direction of the x mode group velocity are:

(o]
v = ox (30a)

TR

sin26 & 5

and

e3cos6
tan (8 _-8) = - 3 - (30b)
gx nxsin 8




For the ,o mode:

v = n c sind
go o
and

tan (ego-e) = cot 8.

C. Integrated Emission of x Mode

The nonlinea; emission near mpe can, in principle, be detected
either directly, or after the radiation has been reflected. Since direct
emission must be nearly perpendicular to the magnetic field, the coupling
to ﬁhe x mode is suppressed by at least three and a half orders of mag-
nitude; this follows for 6 > 88°, (Q/mpe) 2 2, and noting that the group
and phase velocity angles are approximately equal near perpendicular
emission. Only reflected x emission is then significant. To estimate
this emission, first note that (szlvgsineg) is an upper-limit to EE' |

This will be used to show that with a termal level of sound fluctuations

" the emission is negligible.

The rate at which energy leaves a length L of the rumaway channel

(analogous to s*V for the Cerenkov emission) is

3 .
2 QLJ/; ke, v sinf .
T g™ Mg

Converting this to a reflected and isotropized flux, as for the Cerenkov

emission, gives:

x,NL ql 1 nge v sind . (32)
TN oy P
1-q

The units of FX’NL are erg./cm.z-sec.; since the predicted nonlinear



spectral shape is a line much narrower than the resolution of the ob-
servations, the frequency-integrated emission has been computed for
‘ comparison. Substituting ek = (Pkl/vgsineg), and rewriting d31§ =

2nd(cose)k2dk = 21rd(cose)k2(3k/3m) (3w/3ap)dap,

2
FX’NI‘ - 27L /d(cose)da k (a ,c0s0) %k du . (33)
a (1-q) [l-( m Ba

As previously mentioned, emission is negligible at small angles,
sinze < €4 << 1, since the polarization becomes perpendicular to the
magnetic field. Thus the only significant contribution to (33), and

all following integrals, comes from the region where sin29 >> €

3.
In that limit,
( =31 [l+cot26+f-P£2]
w'x ¢ Q

and

oW Ve 2
ap c pe

Furthermore, P, = 2(w/w,)e YS , and (¢ _/v ) can be neglected compared
: A lfA k s’ e

k
to 3(ve/c). With these approximations, the resulting flux, normalized
to FBB’ the blackbody level integrated over the observed width of the

wpe neak, is:

2 R S Y

Fpg 1) [1- G >1 TelEr

D P
ey R e £ (n,9)- | (34)

Here, 8w is the width of the observed (upe peak, equated here to the
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resolution of the detector, so that FBB (Tempe/Zv ¢ )(6m/mpe)(l+6m/wpe).

The parameter n = (Q/mpe)o, and y is the cosine of the minimum angle for
‘'which (eslsinze) << 1, taken here as eight degrees, corresponding to
(w/w e) ®= 1.001. The maximum value of ap is amax % 3, estimated from

»(27), taking (k ”)max kD which gives A a maximum of (ch /m ) 0.02.

The function £(n,y) which is of order ome, comes from the 6 integral, and is:

- 1/2
g = R 2| [+ 1y Qoo eY; R
n n“-1 n (14n ) ny
i
* fn ll— . (35)

The result given in (34) is constrained by the Cerenkov model for
the broadband emission. In particular, to explain the broadband emission
requires a tail height which can be obtained from equations (16), (17),

and (18) (subscript C refers to the Cerenkov emission):

o], H B  >.

[u.v, - upYg]

/2

where vy = (l-uz)"l .  The question, then, is whether Fx »NL

2 FBB’ since

the discrepancy between the Cerenkov emission and the observed w e peak

is comparable to FBB' Substituting (nT/n)C for (nT/n) in Eq. (34) yields:

F (n,¥) .
BB A+ sw/w_) )
“%p [u.v, = upYgl

Pl [_E_ H[THEJ D-amix] <[ BBN ] N ‘ an




For figures 2 and 3, (mpelsm)z 4, (ve/c) 1/22, (Ti/Te)= 1/3, (E/ER? =1/20,

- 23, n=2, ¢ %0.99 £(n,y) = 2, the frequency average of
[(Fx/FBB)(w/mpe)z(llém)] =35, and [ucyc-uRYR] = 2.7. TFor these vaiues,

(Fx’NL/FBB)= 8 x 10—3, which is certainly negligible.

This result is to be contrasted to that in'ﬁef. 9 where it was
found that'(Fx’NL/FBB) = 3. There are three main reasons for this
disagreement, First, the value of (n,r/n)C (for 2 = 3cm.) indicated
here by the Cerenkov emission is much less than the value taken in
Ref. 9. Second, (mpeléw) is taken as 4 here, not 10 as in Ref. 9.
Third, partly as a consequence of the first two factors, the emission

is found here to be optically thim, not thick as in Ref. 9.

To see the contrast in results in more detail, the result in
Ref. 9 can be compared with equation (34), giving (the values found

in Ref. 9 are denoted by subscript HMY):

i {ﬁ] [&]{ q ] E‘r]c £(n,¥)
3 Caa®(a-o - G207 [‘_‘T_] L+ Gole ]
o JaMy

2 | | <
’ l e amax] { FBB } ) (38)
m .

The first factor is present because the emission is optically thin. An

approximate upper limit to (Xx/Sineg) is

) S
AR B et
12 ¢ ™ Ve e {ag}4 [14-(Sin26)n2]

-4
Taking the paramaters following (33), and (nT/n)HMY =7.2 x10 ,




wpe T4 x 1011Hz., and £ * 3 cm., the first six factors are about 10-'l

This is smaller than the result in Ref. 9 (where x ®* 1 is found)

3

mainly because Bohm-Gross di;persion has been correctly included,

accounting for an additional factor of (1/3)(11:.e/mi)1/2

(c/ve) = 1/6.
While the spectral shape is correspondingly broadened by the dispersionm,
so that the frequency-integrated emission is probably little altered,
the transport of the radiation is much different. The plasma is

" transparent to emission so that computing the reflected, isotropized
emission is appropriate. The emission is also proportional to &,
the distance over which the radiation is amplified. Regarding xx/sineg,
the cotze factor may allow a small amount of optically thick emission
for 6 < 17°, but this would only make the integrated emission somewhat
smaller than in (33). The second and third factors in (34) correspond
to geometric and reflection effects on the isotropized emission from a
finite source. When £ = 3 cm., (nT/n)C =5 x 10_6, s§ ?Qat
(nT/n)C/(nT/n)HMY is about 7 x 10-3. If % is much smaller, this ratio
increases, but is cancelled by the decrease in the first two factors.

The remaining factors account for the x mode polarization and group

velocity as functions of 6 and w.

D. Integrated Emission of o Mode

For the o mode, coupling is strong at perpendicular propagationm,
and unreflected emission can be detected. Direct emission is, in fact,
greater than reflected emission, although both are small compared to ﬁhe
blackbody level, for (nT/n) = (nT/n)C, and g, = I3

L
ko on3
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<< gin 6,

To estimate the emission, consider, again for 53

S
(xo/sineg), which is approximately equal to (zyslvg), since sineg
is one to first order in (e3lsin26). Then xi is easily found to be
1n.n

(note subscripts and superscripts "o" on , vg, Y, and F denote the

ordinary mode):

[72]

- F_s 1/2{1_) pe* ||e 3{}_} ’r tffﬂ_l (39)

m 12 csllz A ER n [as)u ‘

i 3
Substituting (gT/n)C for (nT/n), as before, gives:

0 e

o 3] |m; L \ER é;/zJ q ] 1~-q
_ 2,

{EHRS B Ky

oy - uwyl [(a9)*
c'c R'R P

x

(40)

- Estimating xg for figures 4 and 5, taking laiul/(a§)4 of order one,

x§.= (5 x 10-2/2). Since X = xS - xz, this is an upper limit to Xg?

o
and, since (53)“1/2 has been evaluated at m/wpe * 1.001, the emission
will be thin for all frequencies, and all angles greater than about ten
degrees. The possibility that £ is small enough to make the emission
thick is unlikely, unless some mechanism is found to prevent runaway
outside of a tiny central region; in the theory in Ref. 11 relativistic
runaways are predicted out to three or ﬁore centimeters from the axis.

Then, is approximately Z(m/wA)YilTi/(Zw)3](2/vg). Equating this

®x
to an effective thermal level, Teff/(2w)3, and substituting (n,l,/n)C




in the formula for Y:,

e - DA |- |

O e Pl
FBB mpe Aw

The energy density e corfesponds to emission that directly fills

k

the entire detector acceptance region. With Alcator in mind, this region
is approximately a cone of half-angle two degrees about the perpendicular
to the magnetic field. The radiation emerges in a cone of half-angle

30° or larger. This follows from the conservation of k,:

¢

1
€ /2c0t6
3 source

eed e = ¢os
g (1 + {éf]cos@]

R
o

The detector is thus filled with rays corresponding to energy density
& = Teff/(Zn')3 at their source. The k-space energy density of blackbody
emission from the same region is Te/(Zw)s, so that the ratio of fluxes

observed is (Teff/Te)' Integrating over frequency (the 6 dependence of a

is neglected, as for the x mode):
{ 4\
it o A 2 lal| B2 l: - [_E_)Z
3 -
F T, || 6w ||53/2] ]2 xERJ q 1-q

BB
[ )
X FBB mpe ;ij
Sw
[ucYc-uRYR] {1+ m ]
pe

. (42)




For the parameters of figures 2 and 3, this is (FO’NL/FBB)z (0.15/2).
If % is smaller than the radius of the spectrometer entrance, this
“result must be corrected by the fraction of the detector entrance area
filled. For Alcator, this is about (0.3)24, so that (FO’NL/F
5 x 10-2. For £ > 2.5 cm., the detector area ;s £filled, but then
(FO’NL/FBB) s 6 x 10-2, which is thus the upper limit. The fact that
the source is cylindrical rather than slablike, will reduce this resulﬁ

further by a factor of approximately (30°/90°) or (1/3).

Reflected o mode emission can also be computed, starting from

equation (32). The result is:

e HEEE <>

F
= = 2/3
BB Sw :
v e
pe R
-2 )
X l~a ) > (43)
,[ max/ | _ ¢2)1/2 .

which is about 10-2 in the case of figures 2 and 3. The net o mode
nonlinear emission is then at most about three percent of the blackbody

level.



IV. COMPARISON TO OBSERVATIONS

Alcator data are taken for comparison, since they provide clear
spectral resolution and polarization measurements. They are, further-

more, similar to spectra seen in other Tokamaks.

Figure 2 shows a fit of the Cerenkov spectral shape to the x mode
data where n = 2. The Cerenkov source has been folded with the detector
response to obtain this figure. The response at w, to emission at Wy
is proportiomal to sinz[n(wz-wl)/Gw]/[n(mz-wl)/émlz. The emission source
has also been cut off at the cyclotron frequency at the plasma edge,
éE’ since most x mode radiation between QE and Qo will be absorbed
in an intervening upper hybrid layer. The choice of u = 0.8 satisfies
the weak escape condition. The cutoff velocity u, is chosen as 0.97
_ to give a reasonable spectral fit. This 1.5 MeV cutoff has smaller
discrepancies-at'both ends of the spectrum than lower or higher cutoffs
would have at one end or the other. When u, is lower, the spectrum
slopes upward, and hés a greater dip in the center. When u, is higher,
the spectrum flattens out, destroying the dip, and increasing the excess
at the upper end. There is, though, also a small increése in emission
near the central plasma frequency, which, for cutoffs around three or
four MeV., improves the fit at the lower end of the spectrum, so that
u, could be taken somewhat higher. Using these wvalues of up and u.s
and the other parameters given in figure 4, formula (17) gives IR z
2.6 kAmp. The observed ohmic current is 110 kAmp. so that the runaways

carry about 2.5 percent of the total current.



For the o mode, a f£fit to which is shown in figure 3, the same
spectral shape is reduced by (p/1-q). While this is 0.5 for the values
p = 0.15 and q = 0.7 given i:y Butchinson and Komma, a value of 2/3
gives a nruch better fit; this results from a less than ten percent
change in each of p and q, well within the limits of uncertainty of
those éarameters. For the o mocie, there is also emission above QE’
since x mode emission propagating inward can be reflected and converted
to o polarization. This is a fraction (1/2)(p/1-q) of the x mode
source, since half of the emission is absorbed in the upper hybrid layer.

The source has an inherent cutoff at about 0.9 Qo.

In both the x and o mode fits there is a deficiency of emission
just above the central plasma frequency. This possibly indicates the
need for additional emission, such as the nonlinear process would pro-
vide if the acoustic fluctuations were at least two orders of magnitude
greater than the thermal level (or if the plas;ma fluctuations were
cdrrespondingly enhanced above their superthermal level). Furthermore,
the deficiency is two to three times greater for the o mode, which
in general has a more promounced two-peak structu;:e. This is consistent
with the ratio of integrated nonlineaf o and x emissions estimated

‘from (37), (42), and (43).

Another observed spectrum, this oﬁe for the o mode, and for
n = 3.2, is compared to the Cerepkov emission in figure 4. Here up = 0.8,
and u, = 0.88. Lower or higher u, would produce too little or too much
" relative emission in the lower part of the spectrum. The fit seems about

as good as possible for the present model, in view of the single particle
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spectral shapes shown in figure 5. The hollow shape of the resulting
spectrum in figure 4 cannot be eliminated by the choice of fT(u), or by
folding in the detector response. Furthermore, the inherent cutoff in
the emission at about 0.99° seems to preclude improving the fit by
.including emission from particles in a region of lower local plasma

frequency. Such particles would contribute more emission in the region

(between 1.4 and 2.3 wpo in figure 4) where there is a deficiency of
Cerenkov emission from the center of the discharge; however, they would
also add that much more to the emission at the upper end of the spectrum,

" so that the fit of the spectral shape would not be improved.

Since the fit in figure 4 is not good, and requires a cutoff
velocity which is too low to justify use of equation (12), it does not
. give a direct measure of the rumaway current, as from'eédation 17n.
It is, however, at least true that the Cerenkov emission and the ob-
served spectrum both emit the most at the upper“endkof the spectrum

when (Q/mp)o is increased to 3.2.




V. DISCUSSION

Discrepancies in the fits near mpo suggest the need for significant
nonlinear emission at that frequency. Further evidence for such emission
~ is the observation of very narrow, high intensity, sporadic "bursts" of
radiation just above mpo. These were first seen several years ago in
the "Uragan" stellerator,18 and more recently in Alcator A and C. In the
"Uragan" observations, the detailed spectral structure was resolved, show-
ing emission at mpe + nwéi, for n < 5. This was interpreted as due to
scattering between enhanced plasma oscillations and low frequency flue-

' tuatioms, generated by linear mode conversion of a superthermal level of
sound}fluctuations. In Alcator, similar (though unresolvgd) bu;sts
appear to occur predominantly near the beginning of shots. This may cor-
respond to a stage in the discharge when (Ti/Te) is small enough to allow
a high level qf sound fluctuations. Another possible source of thé |
fluctuations is from drift waves, which are greatly enhanced, as evidenced
by their effect on the plasma energy tramsport. A further constraint

on the low frequency fluctuations, and the nonlinear emission process,

is that such a process must be suppressed for parameters such as those

corresponding to the spectrum in figure 4.

As for the discrepancies in the fit at intermediate values of m,
as in figure 4, relativistically shifted emission from the first cy-
clotron harmonic may account for some of the deficiency. -This would
correspond to the fact that at higher values of (lep)o, enhanced
emission is observed between the first and second cyclotron harmonics,
since the relativistically shifted emission is expected to occur both

above and below the cyclotron frequency.5



Despite these and other remaining problems, the observationms,
such as those shown in figures 2 and 3, give a direct measure of the
runaway current, and allow determination of an approximate rumaway
cﬁtoff velocity._ This demnnstrates neﬁ diagnostic value for such

‘spectral data.
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FIGURE CAPTIONS

F . K i - =J.
ig. 1 Contour plot of u(w/mpo,cose) in (w/mpo,e) plane (Q/mp)o 3

Fig. 2 Observed x emission in Alcator (figure 7 of reference 5)

for average electron density E; 6 x lO13 cm?3, Bo < 61 kG.,

t

toroidal electric field E = 1 V./m., and Teo 1 kev.,
compared to Cerenkov emission for (Q/mp)o = 2. The blackbody
level is normalized to the second cyclotron harmonic, not

shown. In Egs. (13) and (17) wy =1, lw o’ Aw= 0.2 wpo’

<<£%/FB§::> = 5.0, and w/m ):>> = 1.4,

Fig. 3 Same is figure 2, but for o mode.

Fig. 4 Observed o emission in Alcator (figure 8(c) of reference 5)
for Eé= 4 XT1013cm.—3, B, * 79kG, and T__ = 1 keV., compared
to Cerenkov emission for (Q/mp)o = 3.16. The blackbody level
is determined as in figure 2.

Fig. 5 Single particle emission spectra, normalized to the same height,

for particles of different velocities, when (Q/mp)o = 3,16.
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