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A formalism is presented which has been used to study the nonlinear evolution of the reactive beam-
plasma instability in the presence of wave coupling. Special consideration is given to describing the energy
of the unstable mode in deriving the coupled-mode equations, and this results in a four-wave model for the
interaction. The results show that pump depletion can stabilize the linear instability, and also predict
transitional behavior in saturation mechanisms which is observed experimentally.

I. INTRODUCTION

The interaction of electron beams with a background
plasma has been studied intensively for several years.'
Recent work has focused largely on describing the non-
linear evolution of the interaction,2 since it presents one
of the simplest nonlinear systems available while offer-
ing a variety of physical phenomena, depending upon
specific conditions of the experiment or assumed model.

Several beam-plasma experiments have reported
parametric decay processes involving the unstable
beam-plasma mode as one of the interacting waves.
It has been observed that such wave-wave couplings can
dominate over other nonlinear mechanisms to stabilize
the linear growth of the beam-plasma wave by pump de-
pletion. 3' In addition, beam trapping and parametric
decay have been found to act as competing saturation
mechanisms, each dominating over a different range of
experimental conditions.'' 5 In this paper we discuss a
model for the early nonlinear evolution of the reactive
beam-plasma instability which views the interaction as
a four-wave resonant coupling. The model presents an
interesting extension to the well-understood three-wave
problem and predicts stabilizing effects on the linear
beam-plasma instability due to parametric decay, as
well as transitional behavior with competing saturation
mechanisms.

This work has focused largely on the results of an ex-
periment which has been described previously. 3 The
linear dispersion relation for this experiment, describ-
ing radial eigenmodes propagating in the direction of the
beam flow v6, is given by

k2 2 1 +(kllk )(1fD(wk,) =1 + w-Z )+ i ilfL. =0

(1)
where k, is the radial eigenmode of the system which is
determined by the beam radius, f, 1 - g2,/W',, =

m,, aa t, =YkT,/m,, Y is the ratio of specific heat,
and wD = - k,.vb. The sum is over all plasma species.
This dispersion relation is shown in Fig. 1 for condi-
tions of the experiment. A weak electron beam (1 mA,
1000 V), which independently supports fast and slow

')Present address: Lawrence Livermore Laboratory, Liver-
more, Calif. 94550.

space-charge waves, is injected coaxially into a mag-
netized background plasma to cause reactive growth of
the beam modes by the linear beam-plasma instability.
The reactive nature of the linear coupling causes the two
beam waves to form conjugate beam-plasma modes as
shown, with the same real frequency and wavenumber
but with equal growth and decay rates. These two
modes, along with the two nonlinear decay products,
form a system of four coupled waves. The beam is cur-
rent modulated to obtain a well-defined, convectively un-
stable beam-plasma wave (labeled B in the figure) which
is experimentally observed to grow until its amplitude
becomes sufficiently large so that it is able to resonantly
decay into a backward-propagating Trivelpiece-Gould
mode (labeled T) and a forward-traveling ion-acoustic
mode (labeled A) of the plasma column. It is observed
that saturation in spatial growth of the beam-plasma
wave coincides with the onset of parametric decay and
that a significant fraction of the beam-plasma energy can
be resonantly lost to the T mode. Wave coupling effects
occur for both modulated and free-running beams and
are strongest over well-defined ranges of beam fre-
quency, beam energy, and background plasma density.
Within these ranges there is no evidence of spectra due
to other saturation mechanisms. Figure 2 shows the
well-defined spectra of the pump and decay modes ob-
tained for the modulated case.

In studying the parametric interaction, mode energies
must be carefully considered since the interaction in-
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FIG. 1. Linear dispersion relation for the reactive beam-
plasma instability.
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FIG. 2. Spectrum of the
beam-driven parameter decay
instability: (a) low-frequency
fluctuations and ion-acoustic
spectrum; (b) corresponding
high-frequency spectrum show-
ing narrow beam-plasma wave
and Trivelpiece-Gould spec-
trum.
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volves an energy loss process from a high-frequency
pump mode which has negative energy in the uncoupled
state. Such a situation is usually explosively unstable,
and would then serve only to enhance the growth of the
beam-plasma mode. In Sec. II a generalized energy
conservation theorem is used to derive a resonant
wave-coupling model for the parametric decay instabil-
ity as driven by the reactively unstable beam-plasma
mode. The formalism permits one to properly treat
the small -signal energy of the unstable mode, to discuss
its significance in the context of the full nonlinear theo-
ry, and requires that the interaction be viewed as a
four-wave, rather than as a three-wave, coupling.

Section III discusses the nonlinear evolution of the
coupled-mode system for the special cases of the space-
independent and time-independent set of equations. The
results of an analytical and numerical analysis for each
case are summarized, and conditions necessary for the
nonlinear stability of the system are established. The
dependence of saturation amplitude and turning point
distance on initial mode amplitudes, linear growth
rates, and coupling coefficient are studied. Similarities
to the three-wave case and its relevance to the time-
asymptotic state of this system are discussed.

Section IV discusses the predictions of this theory
over parameter ranges relevant to this wave-coupling
experiment and to several others where beam trapping
has been observed as the dominant saturation mecha-
nism. The results suggest that stabilization of the un-
stable beam-plasma wave by parametric decay is possi-
ble over the parameter range of this experiment, and
that wave coupling should be important early in the de-
velopment of the beam-plasma interaction before beam
trapping can occur. Scaling laws obtained from the nu-
merical integration of the coupled mode equations are
used to identify sensitive experimental parameters
which determine the saturated amplitude of the beam-
plasma interaction. The results predict that parametric
decay effects should dominate for those cases involving
strong linear growth rates or frequencies near the maxi-
mum growth rate, while beam trapping effects should
dominate for weaker beam-plasma instabilities or at
frequencies removed from the maximum growth rate re-
gion. These predictions are compared with experimen-
tal observations.

1I. DERIVATION OF THE INTERACTION MODEL

In this section we describe the formalism used to de-
rive coupled-mode equations for the reactive beam-
plasma instability and subsequent wave-wave coupling.
The approach used for this model is analogous to that
used for the three-wave case. The energy transferred
between modes is assumed to modify the linear wave
amplitudes through a slowly-varying component a(F, t),
which is introduced to describe the first-order solution
on a longer time scale than the linear equations would
otherwise permit. The behavior of a(f, t) is described
(for the three wave case) by a coupled mode equation of
the form

(2)

where the capitalized subscripts denote the coupled
waves, K is the coupling coefficient, d/dt=8/at +vm.v
occurs on a time scale slow compared with w-, and

vI- aw/akl m is the group velocity of (any) mode M.
Equations similar to (2) are written for each mode, and
the resulting set of nonlinear equations is solved to ob-
tain the nonlinear evolution of the system. The coupled-
mode equation is obtained from a conservation equation
of the form

a
TtWm+V*Sm +Pgf.M-pem (3)

which is derived for our model using a generalized en-
ergy theorem. Here, w. and s, are the small-signal
energy and power flow, Pd, m represents the power dis-
sipation and p,, . represents an external source term
driving mode M. The source term arises from the non-
linear coupling, and gives rise to the spatial and tem-
poral changes in mode energy. Initially, we neglect the
linear dissipative effects represented by pd. However,
the linear beam-plasma interaction is a reactive type of
instability and the formalism forces one to account ex-
plicitly for the finite growth and decay rates of the
beam-plasma waves. In order to obtain a proper time-
scale matching of the nonlinear equations on both sides
of (3), the parametric interaction is described as a
four-wave coupling involving the two plasma modes A
and T, and the growing and decaying beam-plasma waves
(which are denoted G and D, respectively). The for-
malism leads to a coupling coefficient that is complex,
instead of the usual form which is either purely real or
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imaginary. 7 It is found that K contains resonant terms
as a result of the presence of the beam-plasma modes,
and that the wave coupling can become very strong near
the maximum growth rate of the linear instability. The
formalism indicates that the small-signal energy of
either beam-plasma mode taken independently, wG or
wD, is identically zero. Instead, a complex quantity
denoted Tv., formed by a combination of both beam-plas-
ma modes, is used to derive coupled-mode equations
for modes G and D. We find that iDB can still be written
in the usual form for mode energy as EoE2w(8/8u)z,
where Z(w, k) is the dispersion relation, if this quantity
is now evaluated at the complex frequency O~= Co +jY
(note the twiddle convention for complex quantities).
Using this form for mode energy, one can obtain four
coupled-mode equations describing the space-time be-
havior of the interacting waves.

A. Derivation of the generalized conservation theorem

The modes of interest are all lightly damped and kX,,
<< 1, so that kinetic effects may be neglected. We
therefore use a three-fluid model for the system to de-
rive an energy theorem similar to Eq. (3). We combine
the force and continuity equations for each of the three
plasma species, together with Poisson's equation, to
obtain a form for the conservation equation that is com-
mensurate with the form of a coupled-mode equation.
In the following, zero- and first-order plasma variables
(density n, velocity v) for the plasma electrons, ions,
and electron beam are written, respectively, as:

n =nol+n,, V =Ve, ... electrons,

n =no +n, , V =v 1 , ... ions,

nf=nb+n, v =v+va, . . beam .

The seven fluid equations in the resulting set are written
twice, once as an uncoupled set of linearized equations,
and again as a coupled set of nonlinear equations whose
solutions have a slow time variation as a result of the
nonlinear driving terms. The two sets of equations then
become

Linear set

+ V. (nov,) = 0,

avm 'noe g + q,n. 0V - qpnov, B ,Vn, =0,

+ V -(novi) = 0,at

av
mnot + qinoVP+qjvjxBo+mjvi1Vni = 0,

an.+ V-(nvv+nbvs) = 0,at

avt

-qenvo x Bo+m,vtVn 8 = 0,

-VOV17 =0.
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(4a)

(4b)

Nonlinear set

+ V- (nov,) = N,

a,
n, at + qnoV - q,nov, x Bo + moviVn, F,

In1I+ - (nov) = Ni ,

av
mnat + qjnoV4 +qiv, x Bo+m vtVn, = Fi,

an,+ 7.(nsvb+nbve) = N,at

m~bat+

-q , nvyxBo+m~viVn = F0 ,

EOV- V = - q,(n,+nO) -qjn,

where

N,- (n,v,),

F,= m,n,,[(V,-V)V, + y(v1,/n2,o)7(nn,)J,

(5a)

(5b)

(Sc)

(5d)

(5e)

(5f)

(5g)

(6)

and s =e, i, or 3 for each species. In keeping with the
usual expansions consistent to first order, we have
written the nonlinear terms which appear as first-order
products as source terms on the right-hand side of the
Eqs. (5a)-(5f).

We look for normal mode solutions to Eqs. (4) and
(5) of the schematic form x,=Xexp(jagt -jk,-r),
where x. represents any plasma variable, and expect
two distinct sets of solutions corresponding to the linear
and nonlinear sets of equations. For the linear equa-
tions the modes exist independent of one another, so
that the set of solutions to these equations have the
form:

nlL (r,t)

V, L (r, t)

nfL (r, t)

vIL(rt)

nBL(r, t)

va(r, t)

PL(r,t).

N,M(, , kM)

Vm(wm, km)

NIM(Wo,kM)

V M(WMkM)

'M(COM, km)

Vsm(w y, km)

iM(My,km)

exp(jAmyvmt), (7)

where A= wOt +km-r, and Ym >0 represents the linear
growth or decay rate of any mode M. Note that due to

(4 c) the linear beam-plasma instability the exponential
growth of the conjugate modes (YG =- r) occurs even

(4d) in the absence of dissipation and must therefore be ex-
plicitly accounted for in the normal mode form. The

(4e) oscillatory behavior of modes D and G are identical-so
that we may write AG =AD AD.

The linear form of the equations determine the dis-
persion relation (1) for the system and may be used to

(4f) evaluate the expression for the energy of the normal
modes which are given by :D(O, k) =0. Simplified expres-

(4g) sions for these quantities can be obtained if one assumes
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v, =vt =0 and studies the usual confined-flow case of
Bo - o. Both conditions can be shown to approximate the
experimental conditions well. The dispersion relation
is then given by

k) - + U+ =0, (8)

where T,6  1 - 6 /vat , uil = m,/Mn, 7=_nb/nl, and vB
W./k,, is the phase velocity of mode B along the mag-

netic field axis.

The linear equations are used later to simplify the
expressions obtained for the coupling coefficient by re-
lating the seven normal mode amplitudes to a single
variable. For example, in terms of the field-induced
electron velocity Vm, one finds from the simplified
linear equations that

Vgim= -JtTeVe,, Nm =n '
VA'

vam = WMTV, Nam n , eM eM ,
WDM Dm

(9)

the evolution of the modes in Eq. (10).

To derive a conservation equation from the set of
equations (4) and (5), we follow the generalized approach
of Bers and Penfield. 8 The equations are multiplied by
the necessary quantities and added or combined until all
terms reduce to a time-derivative or divergence of
some quantity, as in Eq. (3). The nonlinear terms
combine to constitute the external driving term Pe. By
setting the nonlinear terms to zero, the remaining quan-
tities can be identified as the small-signal energy and
power flow and can be evaluated accordingly for any
mode. Using the subscripts L and N to denote the linear
and nonlinear equations and solutions, we form the
quantity:

[(,. b + (v,',id) + (vs,-f)

+[vL-5b) +(vI-5d) +(VaL-5f)]. (12)

Equations (4a), (4c), (4e) and (5a), (5c), (5e) can be
used to form the relations

(13)= qsN8 , VitL =0 ,

= 'vmT~mV,,, Nj = - J1T,V,

EM = j-l klTlViqe km

where OD=WM-Vbkm. The linear equations also pro-
vide several useful properties of the normal mode am-
plitudes which can be used to relate the four coupling
coefficients that are obtained independently for each of
the interacting waves. Arbitrarily choosing Vi to be
real and taking the rest of the variables to be complex,
we can show from (9) that VD = Vec Similarly, one can
show for the equations describing this experiment that
the normal mode amplitudes X, of the conjugate waves
D and G satisfy the relation X. =X , where the asterisk
denotes the complex conjugate.

For the nonlinear set of equations, the solutions are
coupled by the nonlinear interactions which give rise to
s slowly-varying amplitude am(r,t) which is identical for
each variable. The set of nonlinear solutions to Eqs.
(5) may therefore be written:

nN(r, t) Ni(wO, km)

vIN(rt) V1 il(Mpkm) am(r t)exp(jA mymt),

vn,(r, t) VBm(,o,, kml)

LoNr t) L m~, km) - (0

where the sum is over the interacting modes. We as-
sume that the interaction is resonant so that

OD = WG=WA + T

kD =kG = k, =kA + kT .

Only the resonant combinations of modes defined by
these matching conditions are allowed to contribute to

where j,= j, -((8/at)v0 is the total current and j.
s s q on,0v, +qevbns is the particle current. Using these

and the beam force equation, we obtain:

mn.,vsN sL + 21mv ns.NfL +EOVON VOL

+ nBNTL +nflLTN) + V - mV(nsLvsN +nsNVsL)

. T j N e 2dvh
+ jtNOL +]tLPN ++ ngv

.nLovs -FV,~F + EM mtvs N!A. +~ (pL q8N.
8 n.0s

+ Vb. n + TLNI, (14)

where J, q,(nSvb +nva) is the beam current and TL
Me$'b Here, we have again assumed the confined-

flow limit to eliminate vector cross-product terms
which otherwise appear on the right-hand side of (14)
and cannot be physically interpreted as either mode en-
ergy or power flow.

B. Derivation of the coupled-mode equations

The form of the terms on both sides of Eq. (14) is
suggestive of a coupled-mode equation. Each term on
the left-hand side involves the product of a linear and
nonlinear solution, while each term on the right-hand
side involves the product of two nonlinear and a linear
solution. When the normal mode form of the solutions
is substituted into Eq. (14), each term on the left-hand
side will contribute a single slowly varying amplitude,
while the right-hand side will contribute a product of
slowly varying amplitudes. The modes associated with
each of the solutions are then chosen to satisfy the reso-
nance conditions.

For example, consider the following terms from the
conservation equation just derived:
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d
(menoveNV - eL + - q4 L V (nVeN)+... . (15)

Again, schematically writing any of the plasma vari-
ables x =n, v, or 6 as x = aMXYm exp(jA,), we obtain a
coupled-mode equation for a stable mode (say, mode A)
by taking:

xN =aAXA exp(jAA) +aTXT exp(jAT)

+ [aGXG exp(vt) + aDXD exp(- yt)] exp(jAB) (16)

XL =X*A exp(-jAA).

The left-hand side of Eq. (15) then becomes

y-mVno[aA exp(jAA) +aTVTexp(jAT) +...]

d dX [V*Aexp(jAA)] +.} = [aA(I VA1 +...- = (aAWA)

(17)
where wA has been identified as the small-signal wave
energy given as usual by a sum of terms of the form
XAX*= I XA 12. In the absence of any nonlinear terms
(p, - 0), therefore, Eq. (14) reduces to a statement of
the constancy of wave energy for a stable mode:

coupled-mode equation for a, of the form

d [a (V . V*G + - V - -]= g aD =KaAar . (23)

In analogy with the expression obtained for stable
modes, we are therefore led to define a new quantity
(within the parenthesis) for the energy of the beam-plas-
ma mode which we shall denote be,. It cannot be energy
in the usual sense, since, in general, it is a complex
quantity and involves a part of both the decaying and
growing beam-plasma mode. This form for iv' is of the
type usually obtained after introducing the mathematical
concept of adjoint field quantities in connection with
rapidly decaying waves, but here the concept has a more
physical basis in the presence of the decaying and grow-
ing fields which comprise the total beam-plasma mode.'

, The physical interpretation of the beam-plasma ener-
gy is made clearer by evaluating the expressions for
z7- and s,, consistently with the confined-flow dispersion
relation given in Eq. (8). Using the simplified linear
equations to express the mode amplitudes in terms of
Em and derive the dispersion relation, one can show that

(d/dt)(wA) =0 . (18)

When p,*0, however, the nonlinear terms of (15) be-
comes

[4* (exp -jAA)]V-[a*.NTaBVB exp(-jA +jA8)]

={4* exp(-jAA)(-jkA) exp(jAA)N,*V,,}a*aB (19)

so that wA can be factored out, using (18), to obtain the
desired coupled-mode equation

WA(d/dt)aA =P,,A =KAa*aB. (20)

For an unstable wave (mode D or G) the modal energy
changes on a time scale ?' > W- 1, so that (18) is not true
and a different form for modal energy must be adopted.
If we attempt to derive an equation for a. in a similar
manner, we would let each system variable take the
form

x,, = aaXv exp(jA, + YO +aDXD exp(jA, +yt) +...

XL =X* exp(-jA, +yt). (21)

For this case, it is not possible to both satisfy the reso-
nance conditions and obtain an expression for model en-
ergy of the form I E 12. The exponential factors do not
fully cancel, and Eq. (14) becomes

(d/dt)[wr exp(2yt)] =0. (22)

Since both the differential operator and the exponential
factor involve the slow time scale variation, in the limit
p,-0 we are forced to conclude that WG =0 so that a
coupled-mode equation for aG cannot be obtained. How-
ever, from Eq. (21) it can be seen that both the oscilla-
tory and exponential behavior will cancel when the prod-
uct involving aXXe is taken. In fact, this is the only
contributing product and yields a form for the modal
"energy" (now that for the total beam-plasma mode)
which is given by a sum of terms Z XDX*G -EDE* and can
be shown to be a constant quantity using the linear equa-
tions. From this formalism, one therefore obtains a

WB D = o.EkE*, , IB =EOE*W a -
B k,

(24)

Thus, ivB is still given by the usual expression for mode
energy, but it must now be evaluated at the complex
root c,, rather than at the real root as for the case of
a stable mode. Later analysis will also show that the
nonlinear stability and saturated amplitude of the beam
mode depends on the physically more-meaningful sign
parity of the real part of z2v 3,10

An equation for the behavior of the growing beam-
plasma mode, similar to Eq. (23), may be found in the
same way as that for a, and involves its own form for
the coupling coefficient. This coefficient and those ob-
tained for aA and aT, can then be related to that obtained
in the equation for a, by using the symmetry relations
between the normal mode amplitudes which were dis-
cussed earlier. This is tantamount to deriving Manley-
Rowe relations for the parametric interaction and per-
mits the coupled mode equations for the four modes to
be written in terms of a single coupling coefficient, as
we show in the next section.

C. Coupling coefficient and symmetry relations

To derive an expression for the coupling coefficient,
we proceed to evaluate the right-hand side of Eq. (14)
in the limit where v, =v, =0 and Bo-co, and find

vL-F, +vL,-Fi +Va-FO +<P2[q,(N, +Ni) +qN]

+ invIn1 +-b v-Fb +mvb-VOLNb- (25)

In the equation describing the growing beam-plasma
mode a0 (r, t), we recognize which products will contrib-
ute to the nonlinear driving term by taking

XL-~D exp(-jAB - y'), xN aGXG exp(jA+Yt),

so that both exponential and oscillatory variations will
cancel under the assumed matching conditions. After
substituting this into Eq. (14) and normalizing the nor-
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mal mode amplitudes to the fieid-induced electron ve-
locity, one finds

(d/dt)aG =jmenoVeAV.TVe'E * K((/*v)aAaT.

Here, the coupling coefficient is given by

a= + + )+ - JTAT1 T* + +-)
\V T Sa) VAVrV*a \ v a

+TATTT* 1 1 _

_V -T vB )
(26)

Equations for the other mode amplitudes are found
similarly. To obtain a coupled-mode equation for the
decaying beam-plasma mode, for example, we evaluate
the same expressions after taking

xL ~X* exp(-jAB + yt), x,~ aX~exp(jAB -

To obtain equations for the stable A and T modes, we
must allow both the decaying and growing beam-plasma
mode to act as pumps in conjunction with the remaining
stable mode. For example, one of the nonlinear terms
in Eq. (25), qOLV-(neN vN), takes the following form
when evaluating the coupled mode equation for mode A:

q,$* exp(-jAA)[-jkA][aDNea exp(- Yt)+aGN, exp(vt)]

x exp(jAB)a*TV.* exp(-jAT) + [aDVE exp(- Yt)

+ a0V:B exp(t)l exp(jAB -jAr)a*4N, .

In this expression the nonlinear term involving the den-
sity and velocity products has been properly symme-
trized with respect to variations at AA and AT, as re-
quired by the matching conditions.

The resulting four coupled-mode equations can be
simplified and the exponential growth and decay factors
eliminated by normalizing the mode amplitudes to the
action density

A,= a,(wM,/w) 1/ exp(rt). (27)

We then find that the coupled-mode equations may be
written as

+Wd _ Y) - A=jK*AAAT,+ y) A, =jKAAA,, -t AG j*A~,dtdt

d d (28)
AA =jA(KAD + KAG), -AT =jA* (KA, + K*A),

t. A

where d/dt again represents the convective derivative.
Here, symmetry relations which exist between the four
coupling coefficients have been used to write the four
equations in terms of a single coefficient. Equation (26)
can also be further simplified by using the following or-
dering of system parameters which correspond to ex-
perimental conditions of interest (see Fig. 1):

VA>Vb, VB5Vb, Vb>V"e, VB--V'Vo.

The simplified coefficient is then given by

.kA = W R1/2 (29)2 VA kA \2 7 mno] k a

The complex phase angle of K is determined primarily
by the complex factor U1/ 2, which arises from the ener-
gy of the beam-plasma mode given by Eq. (24):

(30)

The symmetry between the coupling coefficient can
also be shown to satisfy Manley-Rowe relations de-
scribing energy flow between the modes. Equations (28)
can be combined to obtain

AAA =2 JA, =- 2R,(AA*).

It follows from Eq. (27) that the slow variations in mode
energies are given by

IAw- I =A I U I

The energy flow is therefore from the beam-plasma
mode into modes A and T in the ratio of their frequen-
cies.

Threshold effects for this interaction can be studied
by assuming a strong undepleted pump mode. The rele-
vant coupled-mode equations for the driven modes are
then

dd
AA =jK*A"AB, ±A=jK*A*A ,dt d

where K* is the coupling coefficient derived previously.
Assuming that modes A and T have exponential varia-
tions with damping rates VA and v7, respectively, at in-
stability threshold we have

f> 16 'A'r 1 - 1 - V
Vt' w oT2 vb~VAIJ

where VB is the field-induced electron velocity. In the
limit 7 -0 this reduces to the usual result involving the
decay of an electron plasma wave into another electron
plasma wave and an ion-acoustic wave.

Equation (30) shows that the magnitude and phase of
the coupling coefficient is most sensitive to the beam
term in 01/2. For weak beam-plasma interactions,
where vB"Vb, I KI will be small and the wave-wave cou-
pling correspondingly weak. For stronger beam-plasma
interactions, however, where the difference between the
beam drift velocity and phase velocity of the beam-plas-
ma mode becomes appreciable, the coupling coefficient
can be significantly enhanced. This difference depends
sensitively upon several system parameters and will be
discussed in detail shortly.

In the work to follow, it is convenient to rewrite the
coupled mode equations in terms of dimensionless quan-
tities. We choose to normalize all mode amplitudes to
the initial value of mode A [denoted as AAO =AA(0)] and
to scale other parameters accordingly:

L + +r D=jexp(jO )AT,

( + - r)d =j exp(-j )IAT,or8x /
(31)

- + V B + r A =jT*[D exp(j6r)+G exp(-j6K)],

+ Va + r '=jA*[Iexp(j6O)+G exp(-j0)],V7 oa x
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Linear Region Nonlinear Region

FIG. 3. Anticipated behavior for the nonlinear evaluation of
the beam-plasma instability.

where

r |KlAgo t ; KI AA I ,

y M AM(x,T)
IKI ;AAO AMO-

Here, the coupling coefficient has been written in terms,
of its magnitude and phase k= IKI exp(jBO), and v,M-a w/a k,1 carries sign parity so that Vr< U. For gen-
erality, we have included the effect of linear damping of
the plasma modes.

The most striking difference between Eqs. (31) and
the usual three-wave model is that for this case the cou-
pling coefficient is, in general, a complex quantity, in-
steady of being purely real. The manner in which IKI
and 0. appear in the equations indicates that the magni-
tude of the coupling coefficient determines only the rate
of the nonlinear mode evolution, while its phase [and
therefore that of iv-1'/ in Eq. (30)] determines the stabil-
ity of the interaction.

III. SOLUTIONS TO THE STEADY-STATE EQUATIONS

Equations (31) describe the early nonlinear evolution
of the system where first-order corrections to the lin-
ear instability occur. To properly describe the spatial
mode profile which is observed experimentally, Eqs.
(31) should exhibit the qualitative behavior shown in
Fig. 3. An extended region of linear behavior exists
where the beam-plasma and plasma modes independent-
ly propagate at unperturbed growth or decay rates. The
amplitude of the beam-plasma mode eventually reaches
a threshold pump level for parametric decay where
modes A and T grow at the expense of the energy of
mode B. If the dynamics permit, the energy loss will
stabilize the linear growth of mode B and the system
will thereafter exhibit fully nonlinear behavior. For a
system of finite length .1, mode T must grow from ther-
mal levels near the end of the system. On a longer
space scale, therefore, mode B must either decay to
below threshold levels or higher-order processes will
occur which decouple the modes.

To obtain the time-asymptotic spatial profile predict-
ed by Eqs. (31), a complete space-time solution to the
set of partial differential equations is required. In gen-
eral, the special cases involving the time-independent
(d/dt =0) or space-independent (d/dx =0) equations can-
not be expected to reveal the exact final state of the sys-
tem. An analysis of the three-wave analog to this prob-
lem has shown that, although periodic steady-state so-
lutions to the time-independent case can be found, the

Logarithm of Bthresholdmode amplitude
T..'......'.... .A.
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system will always evolve into a unique spatial state
which exhibits decaying long-term behavior for all three
modes and is otherwise accessible by only a specific set
of boundary conditions. 11

We have therefore initially chosen to investigate the
more limited question of system stability by considering
the early nonlinear behavior predicted by the steady-
state time and space equations independently. Parame-
ter sensitivity studies are made for each case to verify
the numerical and analytical results. At the same time,
the scaling laws obtained from these sensitivity studies
span the large parameter space which is covered by the
four-wave system, identify sensitive system parame-
ters, and predict behavior which can be compared with
that observed experimentally. Common behavior for
the two special cases may also be indicative of that for
the exact space-time solution.

The normal mode amplitudes used for initial or bound-
ary conditions have been calculated using a fluctuation-
dissipation theorem relevant to the experimental condi-
tions of interest here. 5 The initial mode amplitudes are
assumed to arise from beam or plasma fluctuations pri-
or to the linear coupling, when the usual statistical
methods may be used. The dressed test-particle ap-
proach may be used to calculate the wavenumber spec-
trum for any mode M13

F I A n,f,(v,y) 1

21rf0 (MA D,) A(V.M)

where F1 '= a2 J2 (kroa), a is the plasma radius, f, is the
Maxwellian distribution, X, is the Debye length of each
species, and 3 ,C is the real part of the dielectric tensor.
The thermal field strength for each mode can then be
evaluated by integrating this expression over self-con-
sistent matching regions in (w, k) space. This has been
done for both an unmodulated beam and where the beam
energy has been entrained above thermal levels over a
narrow bandwidth. The initial conditions calculated for
these cases are summarized in Table I. It can be seen
that the nonthermal beam fluctuations dominate the
modulated case as expected. More importantly, the
normalized linear growth rate r is found to be a large
parameter in this system of equations, and this fact can
be exploited to obtain asymptotic solutions for the mode
behavior.

Equations (31) have been investigated analytically for
the time- and space-independent cases within certain
limits where solutions are possible and scaling laws can

TABLE I. Initial conditions for the cases
of a modulated and an unmodulated beam.

Unmodulated Modulated

A0  1 1

To 0.17 0.15

B, 0.02 3.8

r 5.6 x10' 4.0x 10"0



be obtained. The equations have also been integrated
numerically using a linear multi-step predictor-cor-
rector package, with conservation conditions derived
from the relevant equations evaluated at each step to in-
sure that the integration proceeds accurately. The
equations have been integrated using the rectangular
form for the complex mode amplitude to avoid the singu-
lar behavior which occurs in the limit AAO =0, a case of
interest when studying the three-wave analog to this
problem.

A. The space-independent equations

The simplest case of this four-wave interaction is ob-
tained by considering coupling of the modes in time only.
For this case, it is not possible to demonstrate nonlin-
ear system stability directly by standard phase-space
arguments or by deriving constants of the motion. The
two independent motion constants which can be derived

d
W[ AI - IT12] =0, (32a)

Wt[IAI2+2Re(DG*)] = 0, (32b)

do not show boundedness of any mode solutions, but can
be used to determine the accuracy of the numerical in-
tegration and to simplify the form of the coupled mode
equations. If modes A and T are assumed equal at any
time (say t =0), then by Eq. (32a) they will remain equal
for subsequent times, and one equation can be eliminat-
ed. In addition, if modes D and G are combined and
written as a single beam-plasma mode (denoted by B),
we find the problem can be reduced to one involving only
two variables:

d2

d2 B+[4WAI-r2]B =j2rF4,
dtT (33)

-A =A*B,
dt

where W = cos(29k) -Re(iv-,), X = sin(2 0,), and B
= j[Dexp(jOK)+Gexp(-jr)]. The sign of W is obviously
the dominant factor in determining system stability, and
may be regarded as the sign parity of the "total" beam-
plasma mode energy. Additionally, with the usual as-
sumed condition of phase-locked modes, one can obtain
the following form for Eq. (33):

b(r) + (4wa2 - r2 )b+2r tco = 0,
(34)

a(r) = coshl 2[2 Jr b(t)dt,

where a, b are the magnitude of modes A and B, and co
is a constant factor. A linear regime clearly exists ini-
tially where 12 < 4Wa2 . As mode A is driven nonlinear-
ly, a turning point is reached for mode B if Re(hB) > 0,
while enhanced growth occurs for Re(VB)<0. The con-
stant term is small over most of the range and serves
only to determine precisely where (d2 /dt2 )b vanishes.

The existence of a turning point can be seen for the
special case X =0 by defining u(r)= f' b(t)dt. Integrating
Eq. (34) twice gives

J- dt = fU [P(u)1"-du, (35)

where P(u) =rFu -2W cosh(2u)+C 2 , and C2 =2+[(d/dt)u]2

> 2.

The roots of P(u) determine the behavior of u(r). For
w > 0, two distinct roots exist, so that near a root uT
we can write P(u) (u - UT) and Eq. (35) becomes (r - T)
- (uT-u)"f. Therefore, a turning point occurs at finite
time TT and bounded solutions for b(r) exist. For nega-
tive values of W, a double root in P(u) occurs and Eq.
(35) becomes (T -Tr)-ln(u -UT). For this case a turn-
ing point does not exist for finite Tr. Although no closed
form solution to Eq. (35) could be found, one expects TT
to scale as r-i since r 1.

The fact that r is a large parameter also permits one
to obtain approximate solutions to Eq. .(34) in the linear
and turning point regions for W > 0. Assume a WKB for
b(T) which permits either growing or oscillatory be-
havior

b(T) = b. expIf (t)dt] . (36)

In the linear region the equation for w(t) obtained from
(34) reveals that w is approximately constant and equals
± r, so that "linear" solutions for the beam and plasma
modes can be written:

b(r) =bocosh(FT), a = coshl /[2 f b(t)dtl . (37)

As we have shown, the nonlinear growth of the plasma
modes cause mode B to reach a turning point where
(d2 /dr2 )b =0. In this region, Eq. (34) has the solution

b(r) = a-' 1 3Ai[a 1 /3 (T - Tr)], (38)

where a= 4r(da/dr)1T and Ai is the Airy function. For
r<rT, Eq. (38) exhibits growing solutions into the turn-
ing point, while for r> 7 T, b(r) exhibits oscillating solu-
tions as it evolves away from the turning point. As-
ymptotic matches can be shown to exist between the
linear and turning point solution, and between the turn-
ing point solution and that of the full nonlinear equa-
tions.5 Although these results do not provide explicit
solutions to the system of equations, they demonstrate
the existence of bounded behavior and stabilized growth
as a result of the nonlinear mode coupling.

These results can be verified by comparing the scal-
ing predicted from the appropriate "linear" solutions
with those observed from a numerical integration of
Eqs. (31). Using Eqs. (37) and the requirement that
4a2 (tr) = 2 at r =-r, we can solve for TT and the turning
point amplitude b(-T7):

rT. = In In , bTT = r In . (39)

Thus, the saturation level of the beam plasma should be
insensitive to its initial amplitude and scale approxi-
mately linearly with the normalized growth rate F.

The space-independent form of Eqs. (31) have been
integrated numerically over a variety of system condi-
tions, and typical results are shown in Fig. 4 for sever-
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FIG. 4. Time evolution of modes D, G, and A (A= T assumed) for (a) stable, and (b) explosively-unstable cases.

al phase angles of the coupling coefficient. The inter-
action is stable for I 9kI <45', while explosive behavior
occurs for 10, -450, corresponding to Re(Ra)s 0. For
10, 1> 45* the explosion point moves to earlier times. A
distinct region of linear growth exists for the beam-
plasma mode until mode A becomes sufficiently large
to couple all four modes. Since mode D reaches ampli-
tudes comparable to the other modes, the interaction
must be viewed as a full four-wave coupling. In the
fully nonlinear region, the system evolves as a series
of bounded relaxation oscillations or exhibits oscillatory
behavior. By a systematic variation of parameters the
scaling relations predicted by Eqs. (35) and (39) have
been verified. 5 One of the most interesting results of
these sensitivity studies, however, is the strong de-
pendence of the saturated amplitude b(7T) on the phase
angle of the coupling coefficient. This is shown in
Fig. 5 where we plot the logarithm of the amplitude of
the mode action density versus 6,. This indicates that
the saturation amplitude can span a wide range of values,
increasing significantly for 8; 20*. This suggests that
transitional nonlinear behavior is possible. For ex-
ample, while pump depletion might stabilize the growth
of the beam-plasma mode for small values of 0, other
mechanisms could intervene for larger values of 0. to
limit the mode amplitude before pump depletion can
occur.

B. The time-independent equations

An analysis of the steady-state spatial equations is
substantially more complex than the previous case,
since the interaction now involves a backward traveling
mode and the problem becomes a boundary-value prob-
lem, rather than an initial-value problem. Mode T
must grow from thermal levels at the end of the system,
so that numerical integration of the equations now re-
quires a variation of T (x =0) to satisfy T (x =.C )=0.

We again find it convenient to combine modes D and G
into a single mode B to obtain

SB + [2W(Cl IT 12 - C2 A 2) - r2 ]B

- 2WAT(Cir. - Car,) =j2rTrAT,
d d

-A =c(rA - T*B), -T = C(rT-A*B),dx dX

where all variables are defined as in Eqs. (33), and the
constants Ca= VE/VIA >> 1 and Ca = vE/Iv,T l 1. We
have explicitly taken vr < 0 in these equations. If we
set r.= r, =0 as before, conserved quantities can be de-
rived which require periodic behavior for modes A and

T[ClIT12+C1AI2] = 0,
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FIG. 5. Saturation amplitude of beam plasma wave versus
phase angle of coupling coefficient for space-independent equa-
tions.

d
.[2C, Re(DG*)+IAI =0 .

Since C1, CZ > 0, this requirement of bounded solutions
shows that the mode coupling cannot have a destabilizing
effect on the beam-plasma instability; at the same time,
it does not insure that linear growth of the beam-plasma
mode will saturate by pump depletion.

The simplified phase-locked equations for this case
can again be used to predict the early nonlinear system
behavior

d-1
b + [2(Ct 2 _ C-a) _ r2b] = 2at(cjr, - Cr,)

d d (40)

dxa Cl(ra - tb), Tt = C,(rt - ab).

If we consider a strong pump which (slowly) increases
in amplitude and look for solutions of the form a, t e"',
where a = constant, we find

a =-(C 2r, - cir,)*± [4(cr, +Cir,)2 - CIC 2b
2]112 ,

Modes A and T therefore have linear, decaying solutions
below some threshold for pump mode amplitude, above
which they exhibit oscillating behavior at a frequency
which is pump-amplitude dependent.

For the undamped case (r. =r,) =0 Eqs. (40) can be
rewritten to resemble those obtained for the usual
three-wave backscatter problem

d d ddb - r bdx=-at, --a=tb, - -t=-ab. (41)
X f dx dx

These equations are identical to the three-wave problem
except for the r 2 term in the beam equation. The effect
of simple linear growth in the three-wave case would be
represented by a term of the form (- rb), rather than
the form in Eq. (41) involving the integral.

p -

0-

0 -

0
0-

r= 1

D(O) = G(O) e
A(O1 = 1

- I
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In the absence of the r 2 term, Eqs. (41) have the
well-known elliptic solutions

b =b(O)dn [b(O)x, , a =a(O)sn [b(O)x,

t =t (0 )cn b(0)X )x .

A numerical integration of the undamped four-wave
equations for the case r = 0 is shown in Fig. 6 to verify
the accuracy of the program. Figure 6(a) shows one set
of periodic solutions. As mentioned earlier, these so-
lutions are not time asymptotically stable, and will
evolve in time into the decaying hyperbolic functions
shown in Fig. 6(b). These latter solutions represent
the unique final state possible for the system and occur
independent of the initial conditions imposed upon the
system.

For nonzero r, the undamped four-wave equations
can be solved as for the time case:

d2

y b +[2(ct 2 - cal) - r 2]b = 0,

a = ao sin[(cic)f2 f bdz'+o 0 ,

t = (ca/ci)2a, cos [(cic2)'12 f bdz'+o 0 ,

where

tan-'[(c 1 /2 a(O) ao = 2 c-t(0)+a2(0).
LIM got() II C2

These equations show that in the absence of any dissipa-
tion in the plasma modes and for conditions relevant to
the experiment, no turning point is possible in the equa-
tion for b(x). Only growing or oscillatory solutions ex-
ist which depend upon the relative values of a(0), t(O),
and T. This is shown in Fig. 7 which illustrates the
two types of spatial profiles obtained for the undamped
four-wave equations over a wide range of input condi-
tions. For b(O) below some threshold values, the inter-
action is simply a strong-pump coupling of modes A and
T with no stabilizing effects on the beam-plasma mode
evident. For b(O) above the threshold value, all modes
exhibit periodic bounded behavior, but no region of lin-
ear growth is evident in the beam-plasma mode which
would properly model the experimentally observed spa-
tial profile. In addition, the proper boundary condition
on T(x =9) is not met for these conditions. Since the
proper combination of linear behavior and boundary con-
ditions is not satisfied, we conclude that the undamped
equations cannot model the physical system.

The introduction of dissipation to the plasma modes
has a dramatic effect on the mode profiles. Since VT

<0, any decay of mode T in the linear region appears
as growth along the beam direction and can introduce a
turning point in the equation for mode B. There is no
reason to expect a priori, however, that this dissipation
will produce distinct linear and nonlinear regions, and
simultaneously satisfy the boundary condition that
T(x =2) be small.

Since r, rt, <e T, we can describe the initial develop-
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FIG. 6. Numerical solutions to the time-independent equations for the three-wave (r=0) case, showing the (a) periodic and (b)
fundamental solutions.

ment of the damped system by the equations

b=boerx, t=toerx, (d/dx)a=cltb. (42)

A turning point for this system can be shown to exist
for t(0)'greater than some threshold value and is given
by

where is a normalizing factor such that a(0) = 1. Nu-
merical integration of the four-wave equations with dis-
sipation reveals that solutions exist for 10,1 <45* which
exhibit distinct linear and nonlinear regions, satisfy the
the condition that T(x =.C) be small, and show stabilizing
effects due to pump depletion. An example of the spatial
distribution obtained for boundary conditions and damp-
ing rates relevant to the mode coupling experiment is
shown in Fig. 8. The solution is valid only over the
range 0<x<.0, and in this range the turning point in
b(x) predicted by Eq. (42) clearly exists. Although in
this example b(x) renews its growth near the end of the
system, concurrent with rapid oscillations of the plas-
ma modes, the exact mode behavior in this region is
extremely sensitive to the value of t(0) used in the inte-
gration. Somewhat smaller values of t(O) exhibit oscil-
lating solutions for t(x) without a turning point in b(x),
while larger values of t(0) exhibit oscillations in b(x)
without t(x =2) being small. Solutions could not be
found which exhibit spatially decaying nonlinear behavior

for all modes; however, the demands of computer time
did not permit a wide range of conditions to be studied.
These fundamental solutions may exist for only specific
boundary conditions or in the time-asymptotic sense, as
for the analogous three-wave backscatter case. Such an
analysis is beyond the present scope of this work.

Using the numerically derived turning point distance
(x,) and mode amplitude B(x.) as a measure of satura-
tion level we can perform sensitivity studies involving
the dependence of xT and B(XT) upon equation parame-
ters, as was done for the time case. The results for
the spatial system similarly show that both B(xT) and
rXT are insensitive to the values of B(x=0) and scale
with r approximately as xT-r- and B(xr)-r. More
importantly, the turning point amplitude also exhibits
the strong dependence on 0 , which is observed for the
time case, as shown in Fig. 9. The error bars reflect
the large number of integrations required for each value
of Ok to find the range of t(0) values involving the most
strongly saturated beam-plasma mode. For I6tI <450,
parametric decay is always found to have a stabilizing
influence on the growth of the unstable beam-plasma
wave. Although the nonlinear interaction is not explo-
sively unstable for 1,I > 45*, in this regime the unsta-
ble growth of the beam-plasma mode continues unper-
turbed over the nonlinear region, while modes A and T
periodically exchanges energy at a rate proportional to
the amplitude of the growing mode.
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IV. SCALING RELATIONS APPLIED TO
EXPERIMENTS

Varational studies of the time and space-independent
coupled mode equations have indicated that the satura-
tion amplitude of the unstable beam-plasma wave de-
pends most strongly upon the parameters r and 0, and
therefore scales approximately as

Es = a1 (exp a2 ,) (43)
Es IKI (3

where a, and a2 are proportional constants. Although
it has been noted that I KI has a strong resonance near
vB =vb, the most sensitive dependence of Es is clearly
upon the phase angle of the coupling coefficient. The
value of these quantities can be evaluated from the lin-
ear dispersion characteristics of the modes, and their
variation studied when system parameters such as beam
energy, operating frequency, and so on are changed. In
this section we compare such behavior with that ob-
served in several beam-plasma experiments.

The dispersion relation describing the general beam-
plasma instability is given by

#(w, k) =7[U)2/(w - k*Vb )2], (44)
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T(0) below (a) and above (b) threshold for stabilization of grow-
ing beam-plasma mode.
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where 3c,(w, k) is the relative dielectric constant for the
background plasma. The simplest expression for the
reactive high-frequency instability can be obtained from
Eq. (8) by ignoring thermal and ion effects

k2  c + 
2

, (I ( lC-I,) /v

0'0 10 30 40

(45)

OK (degrees)

FIG. 9. Dependence of turning point amplitude upon phase
angle of the coupling coefficient.
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In Eq. (29) we saw that the complex nature of k is es-
sentially determined by the factor U 1 2, which is given
in its simplest form corresponding to Eq. (45) by

IT = I1 (1 - V /lVI-3.- (46)

For the case of spatial growth, we assume a fixed
(real) frequency and look for complex wavenumber k,
=W/vb+A. For low-frequency modes w o, where
(WO, ko) denotes the mode corresponding to maximum
growth, we can ignore corrections to 3c, in Eq. (44) and
find

W 2 a

Vb kVi - o

In this region we have spatial growth for dense plasmas
where w, > k v0 , which is the case for the wave-coupling
experiment considered here. In this limit U,,=j77l12, so
that 0,=- 4 5 ', and one expects relatively large satura-
tion amplitudes. For the less dense case, A has real
solutions, and the phase angle of the coupling coefficient
should be correspondingly small. For operating fre-
quencies near wo, we are forced to include corrections
to 3, as can be seen from the dispersion characteris-
tics in Fig. 1. Keeping only first-order corrections to
k, we find

.-) = - - .( b, '

Since 0112 involves the cubic quantity directly, A is
purely real and 0. should vanish near the region of max-
imum growth. The saturated field strength due to wave
coupling should therefore be smallest in this region,

and it is significant that the strongest decay spectra are
observed experimentally by tuning to this region. For
higher frequency modes w > w0 , the wavenumber shift
again becomes complex so that 8, is nonzero. As the
operating frequency approaches cutoff and the growth
rate vanishes, U again becomes real and 0 . should van-
ish.

This variation in 0,, and the correspondingly large
range in saturated wave amplitudes, can cause transi-
tional behavior in saturation mechanisms. This behav-
ior is more evident in Fig. 10, which shows the disper-
sion relation numerically evaluated for the wave-cou-
pling experiment, along with the corresponding variation
of the magnitude and phase of the coupling coefficient
with operating frequency. The exact roots correspond-
ing to the beam-plasma mode are evaluated using Eq.
(8), and Eq. (29) is then used to evaluate the coupling
coefficient. The frequency dependence and absolute val-
ue of I KI and 0, agree with that predicted in the limits
discussed. It is clear that very near (wo, ko), both the
resonance in I KI and the vanishing of 9, contribute to
minimize the saturated field strength. The behavior of
K at lower frequencies, however, indicates that the
saturated field strength will increase significantly for

W < Wo. This suggests that the growth of the beam-plas-
ma modes near (wo, ko) may be stabilized by pump deple-
tion at a level below which other nonlinear mechanisms
can occur, while other mechanisms could dominate the
nonlinear development of the system for lower frequency
modes. This frequency dependence of saturated field
strength has been observed both in the wave coupling ex-
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FIG. 11. Magnitude and phase of coupling coefficient versus
frequency for several values of beam energy.

periment and by Jones et al. ,' where modes near (wo, ko)
saturated via parametric decay while lower-frequency
modes saturated by beam trapping.

By numerically evaluating the dispersion relation and
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FIG. 12. Magnitude and phase of coupling coefficient versus
frequency for several values of background plasma density.
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FIG. 13. Magnitude and phase of coupling coefficient versus
beam energy for wave-coupling experiment. Values obtained
for w/ow= 0.9.

coupling coefficient for varying experimental conditions,
one can study the regions over which the decay instabili-
ty might dominate over other saturation mechanisms.
Figures 11 and 12 show two such cases, where we plot
the frequency dependence of I KI and 9, under conditions
of experimental interest for several values of beam en-
ergy and background plasma density. The general fre-
quency dependence of 0, changes little over a broad
range of beam energies, although for a fixed operating
frequency the value of 9, will remain sensitive to beam
energy. This latter case is shown in Fig. 13, where we
plot IKI and 9, as a function of beam energy over a
range accessible to the experiment. It is clear that E.
should increase significantly at lower beam energies,
and this is consistent with experimental observations
that beam energies in excess of about 800 V are required
to obtain strong decay sidebands.

The frequency profile of 0, changes significantly as
one reduces the background plasma density, as shown
in Fig. 12. For experiments involving low frequency
modes and lower density plasmas, 0. is reduced from
its value at high densities as discussed previously. For
modes operating near that of maximum growth, however,
it can be seen that the coupling coefficient becomes com-
plex as the background density is reduced, and the mode
where 9 . vanishes shifts to lower frequencies. For low-
density experiments, therefore, ES should remain large
over the most unstable portion of the frequency spec-
trum, and stabilization mechanisms other than pump de-
pletion by parametric decay may be important. Similar
studies concerning the variation of I KI and 8, with beam
current and plasma radius indicate that Es is insensitive
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TABLE II. Parameters of several beam-trapping
experiments.

Author No(cm 3 ) U,(v) Wo/wpe

Gentle (Ref. 14) 1 x10 300 0.50

Nyack (Ref. 15) 3x 10 8  100 0.62

DeNeef (Ref. 15) 5 x 10 8  150 0.67

Malmberg (Ref. 15) 5x 108 100 0.73

to beam current except at low values (45 ImA), where
0, begins to deviate from small values. The variation of
I KI and 6, with radial wavenumber is similar to that ob-
tained for a variation in background density, with the
frequency corresponding to Ot =0 decreasing with larger
wavenumber. Over the large range of system parame-
ters studied, a case was never observed with 1,1 >45*,
suggesting that the decay process can never act as a de-
stabilizing mechanism to the linear beam-plasma insta-
bility.

Beam trapping has been conclusively identified as the
dominant saturation mechanism in several weak beam-
plasma experiments,1 4

," however, most of these experi-
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FIG. 14. The dispersion relation and coupling coefficient
evaluated for a beam trapping experiment: no = 1 x 109 cm-3 ,
U5 =300 V, I 5=1 mA, k 1 =190 m- 1.
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FIG. 15. Saturated field strength, due to wave coupling and
beam trapping, versus beam energy. Assumed conditions:
no=3x 1010 cm-, Ib=1 mA, k,=210 cm t , w/w,,=0.9.

ments share a common region of parameter space, as
summarized in Table II. In general, they seem to have
utilized a low density background plasma and beam pa-
rameters such that the ratio wo/w is much less than
unity. Figure 14 shows the dispersion relation numer-
ically evaluated for one such experiment, whose param-
eters are typical of that for all other trapping cases
studied. 14 The numerical results predict a mode of
maximum growth whose frequency is consistent with the
ratio measured. The corresponding plots of I KI 'and 0.
in Fig. 14 show that for these cases 0. is large over the
entire unstable frequency spectrum, suggesting that the
saturated field strength due to parametric decay is sub-
stantially larger than that for the wave-coupling experi-
ment described previously. At the same time, the rela-
tively small values of (Vb - VB) for these cases predict
that the field strength required to stabilize the unstable
beam-plasma mode by beam trapping is small

ET =4kU(R -V/vb )2. (47)

Figure 15 compares the variation of saturated field
strength with beam energy for both parametric decay
and beam trapping under conditions relevant to the wave
coupling experiment, using the numerical scaling of
Sec. III and Eq. (47). While the absolute field strengths
calculated are subject to the errors discussed earlier,
it is evident that wave coupling and beam trapping ef-
fects may act as competing saturation mechanisms, with
each dominating over a different parameter range.

An example of such a transition in nonlinear behavior
is presented in Fig. 16, which shows three photographs
of the high-frequency spectra of the decay instability
described previously in Fig. 2. For U,=1100 V a well-
defined decay sideband spectrum of TG modes is seen
below the entrained beam-plasma wave. Except for the
corresponding spectrum of IA modes, no other spectra
are present along the length of the system. At 900 V
the decay spectrum is weakened and paired sidebands
begin to appear at a lower difference-frequency from the
main wave. At lower beam energies the narrow, low-
frequency sidebands largely dominate the spectrum.
The decay spectrum is insensitive to beam current,
while the frequency of the low-frequency sidebands vary
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FIG. 16. High frequency spectrum of the beam plasma in-
stability for several values of beam energy.

strongly with beam current. Although the origin of the
low-frequency sidebands has not been investigated, their
sharp resonant nature and strong frequency- and ampli-
tude-dependence upon the beam-plasma wave amplitude
suggest that they may be linear sidebands which arise
as precursor to trapping sidebands, 16 and suggest the
onset of another saturation mechanism.

V. CONCLUSION

A formalism has been derived to study the nonlinear
evolution of the reactive beam-plasma instability due to
wave-coupling. The results require a four-wave model
for the interaction and indicate that pump depletion can
stabilize the growth of the linear instability at levels be-
low which other nonlinear mechanism become important.
Sensitivity studies show that this can occur over a side
range of experimental conditions. The range of plasma
density, beam energy, and mode frequencies over which

strong parametric coupling has been observed is con-
sistent with this model. The model also predicts tran-
sitional behavior between parametric and beam-trapping
effects which has been observed in two experiments.
This arises due to a variation in the phase angle (or
real part) of the beam-plasma mode energy. This vari-
ation causes a corresponding change in the maximum
field amplitude due to parametric decay and an inverse
dependence in field amplitude due to beam trapping.
The range of experimental conditions over which beam
trapping has been observed seem consistent with this
model. For the range of parameters studied to date,
parametric effects dominate at the mode of maximum
linear growth and for the stronger beam-plasma insta-
bilities where (1 -v/Vb) is not small. The issues in-
volving the time-asymptotic spatial mode profiles need
to be resolved and should provide further insight into
the long-term evolution of the beam-plasma instability
and wave-coupling mechanisms in general.
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