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ABSTRACT

Generation of submillimeter radiation by stimulated Raman
scattering in an intense relativistic.electrpn beam subjected to
a spatially periodic transverse electric field is examined. The
requisite electric field modulation can be obtained by rippling
the wall of the cdnductiné drift tube. When the electron beam is
subjected to a periodic longitudin§l electric field, short wave-
length plasmons, rather than photons are generated. The growth
rate and other parameters related to this instability are

discussed.
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I. INTRODUCTION
Free electron lasers based on stimulated Compton!’Zor Raman®’*’S$
scattering by relativistic electron beams require a low frequency

pump wave for their operation. To date, consideration has been

given to pump waves that are either of the. form of a static, spa-
tially periodic magnetic field‘fz'“’sﬁg propagating electromagnetic
waVe.® 1In order to achieve interesting levels of submiilimeter
radiation, one must strive for the largest pump amplitudes (at the
shortest wavelengths) that are technically feasible. When one con-
templates using an electromagnetic pump, a microwave generator cap-
able of delivering' 400 to 1000MW of power at a wavelength of
several centimeters is needed. When the pump is in the form of a

- static; periodic transverse magnetic field of amplitude Boi.dnd
spatial periodicity %, values of the ratio BQL/25800G/cm with
0.6<%2<3.2cm have been achieved so far; however, larger modulations
would be most desirable.

Here we expibre the possibility of using a quasi-static elec-
tric field as the pump. 1In éontrast to the aforementioned tech-
niques, the electric field pump exploits the intense space charge
fields of an unneutralized electron beam itself and is self-
generated, thus avoiding the difficulties of manufacturing strong
pumps having the desired short wavelength periodicity. Intense
space-charge fields are associated with beams of large current
density and we shall therefore concern ourselves only with pulsed,
relativistic -electron beams carrying currents that are typically
10kA and greater. Here also stimulated Raman®’7’® scattering,
(requiring dense plasmas with Debye lengths that are short compared

with relevant wavelengths) takes precedence over Compton®’®/10/1!




scattering, (where the Debye length is comparable with the wave-
length), and it is the former process that will be of interest to
us. .
Two kinds of electric field pump may be of interest. In the
one, the electric field- is polarized transverse to the direction
of beam propagation, and in the other it is polarized parallel to
it. These cases are illustrated in Fig. 1. When the modulation
is transverse, the three-wave parametric process is of the stimu-
lated Raman type leading to the generation of short wavelength
photons. When the modulation is parallel to the beam, all three
'participating waves are longitudinal waves résulting in the emis-
sion of short wavelength plasmons. The two situations will be
treated separately. We begin with the prdblem of transverse modu-

lation.

II. THE TRANSVERSE ELECTRIC PUMP

In the upper part of Fig. 1, the electric field is shown to
be oriented perpendicular to the direction of beam propagation.
In the rest frame of the moving electrons, this pump appears as a
transverse electromagnetic wave traveling antiparallel to the beam.
It induces, via the ponderomotive force (i.e. radiation pressure)
unstable axial density fluctuations which, in turn, give rise to
growing backward and forward scattered transverse electromagnetic
waves. The backscattered wave (propagating parallel to the beam
direction) is doubly Doppler upshifted in frequency and represents
the source of submillimeter radiation (photons). The frequency of
the backscattered wave, its growth rate and other relevant data

are summarized in the upper part of Table I. Indeed, these results




are the same as those derived’ for Raman scattering for a static,

periodic magnetic field pump, with the understanding that the mag-
netic modulation amplitude BOL for a magnétic'pump.plays the same

role as qu plays in the electric field pump. Thus, for example,

a magnetic pump'with a typical amplitude BoLf0.04T(4OOG).acting on
a given electron beam yields the same stimulated Raman growth rate
as an electric pump of amplitude EOL=cBOL=120kV/cm.

An electron beam of radius a, uniform velocity v and current
density J has associated with it a radial space charge electric
field given by J r/Zeov where r is the radius vector. At the beam
edge r=a, the electric field is J a/éeov, which for a relativistic
beam (v=c) of radius 0.5cm and carrying a current of 20kA gives a
field of ~2.4X106V/cm...Thus, a 10 percent spatial field modula-
tion appropriately induced leads to a pump of about the desired
strength. One way to achieve this modulation is to ripple the
wall of the conducting drift tube as illustrated in Fig. 2. It
will be shown momentarily that the potential V(r) at any point r
within the beam is a function of both the beam radius a and the
proximity of the conducting wall, tha; is, the distance b. On ac-
count of this radial poténtial distribution the beam electrons
acquire a radial distribtion of axial velocities. At a given
radius, tﬁe rippling of the wall induces an axial rippling in the
particle velocities. Since the current density is constant, this
in turn causes a rippling in the space charge density and thus in
the radial electric field.

We compute the radial electric field Eljr=a) at the beam edge
in an approximate way by assuming that the potential V is a func-

‘tion only of radius r. The neglect of any z (i.e. axial) depen-




dence, as if each section of the rippled drift tube were infinitely
long, is not too serious p;ovided that the modulation depth is
small compared with the periodicity. Moré specifically, we assume
that (b,-b;)2%<<2?(see Fig. 2). (That squared quantities rather
than linear dimensions enter the inequality comes from Poisson's
equation V2V=-p/eo.)

Consider, then, an infinitely long drift tube of radius b con-
taining an electron beam of radius a and uniform current density J.
The beam is subjected to an axial magnetic field Bz so strong that
(a) all electron motions can be considered purely axial, and (b)
the beam azimuthai self-magnetic field can be neglected compared
with B,. For convenience, the potential at the center of the beam
(r=0) is taken to the zero and the potential of the cylindrical
dfift tube is maintained at Vb (and equals the anode potential).
The potential difference between the source of the electrons (i.e.
the cathode situated at a large distance z from the region under
consideration), and the dr;ft tube is denoted by Vo‘

The problem is an electrostatic one requiring a solution of
Poisson's equation
w5 - rsa
- (1)

=0 a<r<b

Hj=

subject to the energy conservation equation,
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eEVO--Vb + V(r)]
~-1/2 (2)
- /e

and the boundary condition,
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The last equation is a statement of the fact that the potential is
continuous across the beam-vacuum interface r=a where it has a
value Vé} it has a value Vi, at r=b.

Equations (1) through (3) have been solved for beams having
relativistic!? and nonrelativistic!® speeds v. The results cannot
be expressed in closed analytic form in terms of elementary func-
tions, and have therefore been given in terms of series expan-
sions,!? interpolation formulas'? and computer generated outputs.'?
The results can be exhibited conveniently as a plot of beam cﬁr—
rent I versus the normalized potential Vb/Vo, considered as a
pérameter of the problem (Note that lVO—VbI is just the difference
between the cathode potential and the potential at the beam center
r=0). Figure 3 shows such a plot for eVo/m°c2=3, for different
ratios b/a. It is seen that if, for a given b/a, an attempt is
made to increase the current in the beam, the potential in the
center approaches closer and closer to the cathode potential. At
the maximum beam current this potential difference is almost zero,
and finally the intense radial space charge blocks the current en-
tirely. Note, however, that once the maximum possible current has
been exceeded (for a given b/a) our steady-state model most likely
fails; that is, the regime where the curves bend over and are
steeply downward directed is no longer valid. Indeed, there is ex-
perimental evidence!" that in this region the beam is unstable.
However, the section of the curve lying between Vb/vo=0 and
(Vb/Vo)max (corresponding to maximum current), represents stable
beam propagation, and it can be traversed by gradﬁally increasing

the current while holding the accelerating voltage Vo constant.

It is also observed that the larger the value of b/a the smaller




is the maximum attainable current. The reason is that with in-
creasing b/a, the electrons must create'larger radial electric
fields thus reducing their speed.

The radial electric field is zero at r=0 and it reaches its
maximum value at the beam edge r=a, where it can be calculated
from Eq. (3), once the potential Va at the beam edge has been de-
termined. The potential Va is given (to second order of an iter-
ation procedure) by Eqg. (10) of Ref. 12. Thé sought-aftér electric

field at the edge of the beam then takes the form,

; ) )
aE; oM (1 TeBe VBl . _
-7 T ?%lay vy = - (r=a) (4)
o o} A e 'c
where I and Vo are the beam current and acceleration potential,
respectively, )
Y. + 2y n(b/a)
= 9 c . = 2 _ 1/2
Ye 1 ¥ 2in(b/a) ' B = (g - 1)1/%/vg
eVo Vb , 1/2
Yo = |1 ¢ " - T ; Be = (Yc-l) /Yq
m_C o
o
= 2 . - 3 =
Yo = [T+ (eV /m )] : I, 4me m c/e = 17kA

The parameter Vb/Vo is a function of I and is found from Fig. 3.
Given I, Vo and (b/a), the normalized electric field (aEL/Vo) is
uniquely specified. Varying b with distance 2z along‘the drift tube
axis varies EL’ and formula (4) provides the basis for compu£ing
the amplitude of the spatial modulation.

For purposes of computation we assume that the electron beam
£ills the inner dimension of the drift tube such that a=b, of Fig.
2. We also assume that the system is operated at maximum (i.e.

limiting) current corresponding to the larger radius section, b,.




Use of Fig. 3 and Egq. (4) then allows one to computé (aELl/Vo) for
the smaller sized section b, and (aE,,/V ) for the larger sized
section b,. The peak-to-peak electric field modulation of the
pump is given by the difference a[Eil'BLZ]/Vo’ This i§ plotted in
Fig. 4a as a function of thevdepth of the drift tube convolutions,
b,/b,, together with the corresponding beam current I. The ampli-
tude of the modulation is seen to exhibit a maximum when b,/b,=1.5.
The appearance of the maximum is due to two competing effects. On
the one hand the modulation becomes smaller and smaller as b,/b,
approaches unity agd disappears altogether when bz/b1=l. On the
other hand, the smaller the value of bz/b1 the larger is the limit-
ing current (see Fig. 3) and the larger the absolute value of the
electric field.

When the beam energy is increased, relativity "stiffens"” the
electron motion, v approaches ever closer to ¢ and the space charge
density variations decrease. Thus with increasing Vo’ the frac-
tional electric field modulation a[Eix-Elz]/Vo falls as is shown in
Fig. 4b, where computations.are given for the case eVo/moc2=9.
Note, however, that the absolute modulation amplitude a(Ell-Elz)
still rises, though not dramatically, simply because I increases as
Vo increases. In Fig. 5 the modulation amplitude is plotted as a
function of Vo' suggesting an onset of saturation at large Vo'

Take, for exaﬁple, the following experimental arrangement. A
solid, unneutralized electron beam is produced by a 1l.5MeV, 20kA
diode and propagates through a rippled drift tube having éhe follow-
ing dimensions: a=b,=0.5cm; b,=0.75cm. We find from Fig. 4 that
the peak-to-peak electric field modulation is 336 kV/cm. The
ripple periodicity %, the spatial growth rate I', the radiated power

at saturation P, and the scattering efficiency7 n are calculated




.

from theory and the results are given in Table II, for two wave-
lengths of thé stimulated, back-scattered radiation, A=500u and A=
2mm. _ - |

For a longitudinal magnetic field B058kG experiments conducted
at both ripple periodicities given operate in the so-called high
gain collective regime,’ in which both scattered waves are normal
modes of the plasma.. Theory predicts® that cyclotron resonance
effects will enhance the growth rates given in the Table by a fac-
tor of [l-(e/2wsymoc2)B02]“ as Bo is increased. For BO>8kG, the
A=2mm interaction may enter the high gain noncollective regime’ in
"which the growth rate exhibits a different parametric dependence
on the pump electric field. To date, no experiments have been
carried out in this regime.

We note that in an actual experiment, a gently curved wall
ripple may be preferred, rather than the rectangular modulation
shown in Fig. 2; this will reduce the chance of arcing. Also, a
sinusoidal-like modulation contains fewer high freéuency spatial
harmonics. Alternately, a helical wall perturbation may well be
contemplated, in anology with the helical magnetic pump used pre-

viously.! "2

ITI. THE LONGITUDINAL ELECTRIC PUMP
Now we take up thé problem of a relativistic electron beam
subjected to a static longitudinal electric field modulation as
illustrated in the lower part of Fig. 1. There is no conversion
into electromagnetic radiation as was the case under discussion in
Section II. In the frame of reference of the beam, the pump wave

stimulates the growth of two space charge waves (plasmons). One
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of these is a growing forward scattered wave, and the other a back-

ward scattered wave. The latter is doubly Doppler upshifted in

frequency and is the source of submilliméter wavelength plasmons.
The growth rate of the instability is calculated in the cold

plasma approxima£ion using fluid equations. The beam is assumed

to be of infinite cross-sectional area thus reducing the problem

to one dimension, which is the z axis along which the beam propa-

gates. In the beam frame of reference in which the computa-

tions are performed (i.e. the prime frame), the relevant equations

are the particle and momentum conservation equations and Poisson's

equation, respectively:

an' av!
R A é-::-T (n'v') (5)
]
1
jor = Lo . (7)
(0]

Here n' is the perturbed rf density, N' is the average density, v'
is the perturbed rf velocity; g and m are the charge and mass re-
spectively, and E' is the z-directed rf electric field. For con-
venience, all nonlinear terms have been relegated to the right-
hand sideé of the equations. Eliminating the rf density n' from

these equations yields the nonlinear wave equation for the elec-

tric field

3%E"' v2gy _ _ 9 , OE!' gN'(., 3v' ,

T T 1 A T8 M A T3 (8)
which is to be solved simultaneously with Eq. (6). [w;=(N'e2/meo)l/2

is the plasma frequency.] To this purpose we write E' and v' as

S A AN X S AN
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the sum of three terms corresponding to the three interacting waves:

. 7 -3,
- = '
i E' = 3 Am(t e | + A&(t')e
m=1,2,3 (9)
. 0, 3
1 = = ! *
v 3 E Bm(t e + Bm(t')e
m=1,2,3

where Am and Bm are complex amplitudes that vary slowly with time,

and where Vi is the phase given by

wm = wmt' t kéz' (m=1,2,3). (10)

(The sign in front of km determines the propagation direction of
the wave in question).

To solve!® Egs. (6) and (8), we substitute Eqs. (9) in, say,
Eg. (8). We equate terms on the left-hand side of Eg. (6) that
are periodic in wl to terms on the right-hand side that have the

same period wl=¢2+w3; and similarly for wz and w3. By proceeding

in this way we are invoking exact phase matching and this is syn-

onymous to the requirement that the selection rules

W] = wy; + wy

(11)
> > >
ki = k; + k;

be obeyed. The remaining terms that do.not obey Egs. (ll) are
"nonresonént" and they do not contribute to the three-wave inter-
action process considered. Under the assumption of a constant am-
plitude pump wave (wave 1) the aforementioned manipulations result
in two coupled equations for the amplitude growth rates of the

forward and backward scattered waves (waves 2 and 3):
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dA
TEr = (3/4) (k{/0}) (a/m A, A8 (t")

3A | - | (12)
ger = (3/4) (k]/w]) (@/m)A A% (t*)

Thus, the two waves grow exponentially with a temporal growth rate

given by

r

g = 378 (k[ /w)) (@/mES
(13)

(374) (a¢/m) (B} /)

where Eé“ is the amplitude of the pump wave. The second form of
the equation comes from the fact that for the static pump wave,
w,=vk/, with v as the beam velocity. 1In the cold plasma approxi-

mation, the oscillation frequency of both waves equals the plasma

frequency wé, and on the basis of Eq. (1l1) it follows that

w; = 2wé (14)

which specifies the frequency of the pump (note that the pump fre-
quency w' and the wavenumber k'=w'/v do not represent a normal
mode of the plasma). Transforming!® from the beam frame to the
laboratory frame, and then transforming the temporal growth rate
to a spatial growth rate, leads to the formulas listed in the
lower half of Table I.

In these calculations electron temperature and finite trans-
verse beam geometry are neglected. Consequertly k, and k; of the
two scattered waves can take on any values as long as the momentum
conservation Eq. (11), k/=k]-k; is satisfied. 1In a more realistic
model, introduction of temperature eliminates the arbitrariness
in k| and k,, and Landau damping further limits their values to

kiLasl, k;Ly<l(Lp is the Debye length). A finite beam cross-
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section and the proximity of the conducting drift tube also elimin-
ate the arbitrariness in k| and k;. 1In this case the proper des-
cription of the space charge waves on the beam is given by the
Trivelpiece~-Gould dispersion relations.!’.

One way to generate a static periodic‘electric field Eou is
by charging with alternate polarity a set of equally spaced metal
discs separated from one anothér by insulating spacers. Though
viable, this method is difficult in practice considering the fact
that Eo"needs to be several hundred kilovolts per cm. A more
promising approach is once again to ripple the wall on the drift
tube. Since rippling induces-a density modulation, longitudinal
space charge fieldsare created. Crude estimates suggest that the

strength of this modulation can be made comparable with that shown

in Figs. 4 and 5 for transverse modulation.

IV. DISCUSSION

The notion of rippling the wall of a drift tube or charging
alternately a system of spaced discs for purposes of wave amplifi-
cation (or particles acceleration) is by no means new. Here we
wish to discuss the similarities and differences of the various
works and compare them with the present proposals.

Nation,'!® Kovalev, et all® and Carmel, et al?’ performed ex-
periments in which intense, relativistic electron beams were al-
lowed to pass through corrugated metal drift tube structures. In-
tense microwave emission in the centimeter wavelength range was
reported. In these studies the experimenters exploited the fact
that a corrugated periodic waveguide can support a family of "slow'

electromagnetic modes®! whose phase velocity is less than c. By
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adjusting the beam velocity to come into approximate phase synchro-
nism with the electromagnetic wave, energy is extracted from the

particles and the wave grows. This is a two-wave interaction pro-

cess involving the slow space charge wave on the beam and a back-
ward electromagnetic mode of the corrugated structure. The pro-
cess is quite unlike the one discussed in Section II which is a
three-wave interaction between the space-charge beam wave and two
fast, forward electromagnetic waves. Indeed, by making our wave-
guide of sufficiently small diameter, we hope to cut off the lower
frequency hackward electromagnetic modes which participated in the

interactions described in Refs. 18, 19, and 50.

Birdsallzf reports the operation of the so—called'"Rippled
Wall Amplifier" in which a nonrelativistic beam (voltage ~700V,
current ~l10mA) passes through a corrugated drift tube like that
illustrated in Fig. 2. A wave launched at the input end emerges
amplified at the output end. The periodicity 2 is arranged so that
£=ﬂv/wp. The interaction is basically a parametric (i.e. three-
wave) process in which the pump frequency is twice the plasma fre-
quency. The interaction is very similar to that described in Sec-
tion III (cf Eq. (14) and Table I) and differs in one respect
only: since the beam is nonrelativistic (y-+l), there is virtqally
no Doppler shift and the frequency of the growing waves is low
and is given by w=mv/% [cf Table I].

In the experiments of Decker and Hirshfield?® a tenuous, non-
relativistic electron beam (density ~3x10°cm~3%, voltage ~10V) was
subjected to quasi-static (10-300MHz) periodic electric field Eok
produced by exciting a set of spaced, insulated, metal discs with

‘a signal from an rf generator. Because of the tenuous nature of
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the beam, the Debye length Lﬁivéh/wé was comparable with the wave-
length A' of the density modulation, and the pump wave interacted
"resonantly" with indi&idual electrons within their‘velocity dis-
tribution.?* For that reason a Vlasov description of the inter-
action was mandatory, and the latter falls into the category of
Compton-like?* processes. This is unlike the collective mecha-
nism proposed in Section III where the pump wave interacts with
the velocity distribution of the dense electron beam as a whole
(L6<<X') and where a fluid-mechanical description suffices (at
least to lowest order).

Smith and Purcell?® passed a tenuous relativistic electron
beam close to the surface of an optical diffraction grating and
éfoduced light. The wavelength of the light depended on the
angle of emission and on the energy of the electron beam. In this
mechanism the electrons travel in near synchronism with one of the
slow surface harmonic waves (phase velocity<c) associated with the
grating periodicity, and interact strongly with the longitudinal
electric field component of the wave. The device is essentially a
traveling wave.amplifier for light, and is quite unlike the three-
wave parametric systems described in this paper.

In conclusion, we have shown that the space charge of an in-
tense, unﬁeutralized relativistic electron beam can furnish an in-
tense quasi-static electric pump for stimulated three-wave scat-
tering experiments. When the electric field is transverse to the
beam, the process is stimulated Raman scattering leading to emis-
sion of submillimeter electromagnetic radiation. When the elec~ '
tric field modulation is parallel to the beam, the three-wave pro-
cess yields submillimeter wavelength plasma oscillations (plas-

mons). The latter could be converted to photons by one of several
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processes. On the other hand, the short wavelength plasmons may
be used in plasma heating experiments in which the modulated beam
is iﬁjected into an ionized gas.

Wave studies with rippled drift tubes are about to begin.?®
The electron beam is generated by a 1.5MeV, 20kA, 30nsec accelera-
tor (Physics International Pulserad 110A) and is confined by a
~10kG axial magnetic field. A 60cm long section of drift tube is
rippled and has parameters like those given in Table II. The ok-

servations will be compared with theoretical predictions.
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Table II. Parameters for a free-electron Raman laser for a peak-
to-peak pump modulation of 336kV/cm and a=b,=0.5cm,
b,/b,=1.5; 2 is the pump perioaicity,‘F the spétial
growth rate, P the power at saturation, and n the effi-

ciency at saturation.

L(cm) | T(em™!) | P(GW) | n(%)

A=500 1.3 .058 1.2 3.9

A=2mm 3.9 .093 3.6 -} 11.5
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FIGURE CAPTIONS
Schematic drawing of static, periodic electric pump fields.

In the upper figure the electric field is polarized at

right angles to the direction of beam propagation. In the

lower figure it is polarized along the beam direction.

Schematic drawing of a rippled drift tube.
Beam current as a function of the normalized voltagé Vb/Vo
for several values of b/a. The calculations were made

from Eq. (20) of Ref. 12.

The normalized peak-to-peak modulation amplitude and the
beam current, as a function of b,/b,. The electron beam
fills the inner radius of the tube (a=b,), and the current

is the limiting current for the larger-sized tube, b,.

The maximum modulation amplitude (see Fig. 4) as a func-
tion of beam voltage, for the same conditions as those of

Fig. 4.
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