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ABSTRACT

Generation of submillimeter radiation by stimulated Raman

scattering in an intense relativistic electron beam subjected to

a spatially periodic transverse electric field is examined. The

requisite electric field modulation can be obtained by rippling

the wall of the conducting drift tube. When the electron beam is

subjected to a periodic longitudinal electric field, short wave-

length plasmons, rather than photons are generated. The growth

rate and other parameters related to this instability are

discussed.
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I. INTRODUCTION

Free electron lasers based on stimulated Compton1 '2or Raman 3"' '

scattering by relativistic electron beams require a low frequency

pump wave for their operation. To date, consideration has been

given to pump waves that are either of the-form of a static, spa-
or

tially periodic magnetic field '2 ,4 ,s/a propagating electromagnetic

waie.3  In order to achieve interesting levels of submillimeter

radiation, one must strive for the largest pump amplitudes (at the

shortest wavelengths) that are technically feasible. When one con-

templates using an electromagnetic pump, a microwave generator cap-

able of delivering 400 to 1000MW of power at a wavelength of

several centimeters is needed. When the pump is in the form of a

static; periodic transverse magnetic field of amplitude B1 and

spatial periodicity Z, values of the ratio B1 /2800G/cm with

0.6<2<3.2cm have been achieved so far; however, larger modulations

would be most desirable.

Here we explore the possibility of using a quasi-static elec-

tric field as the pump. In contrast to the aforementioned tech-

niques, the electric field pump exploits the intense space charge

fields of an unneutralized electron beam itself and is self-

generated, thus avoiding the difficulties.of manufacturing strong

pumps having the desired short wavelength periodicity. Intense

space-charge fields are associated with beams of large current

density and we shall therefore concern ourselves only with pulsed,

relativistic-electron beams carrying currents that are typically

lOkA and greater. Here also stimulated Raman''' 8 scattering,

(requiring dense plasmas with Debye lengths that are short compared

with relevant wavelengths) takes precedence over Compton8 '9''10''
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scattering, (where the Debye length is comparable with the wave-

length), and it is the former process that will be of interest to

us.

Two kinds of electric field pump may be of interest. In the

one, the electric field- is polarized transverse to the direction

of beam propagation, and in the other it is polarized parallel to

it. These cases are illustrated in Fig. 1. When the modulation

is transverse, the three-wave parametric process is of the stimu-

lated Raman type leading to the generation of short wavelength

photons. When the modulation is parallel to the beam, all three

participating waves are longitudinal waves resulting in the emis-

sion of short wavelength plasmons. The two situations will be

treated separately. We begin with the problem of transverse modu-

lation.

II. THE TRANSVERSE ELECTRIC PUMP

In the upper part of Fig. 1, the electric field is shown to

be oriented perpendicular to the direction of beam propagation.

In the rest frame of the moving electrons, this pump appears as a

transverse electromagnetic wave traveling antiparallel to the beam.

It induces, via the ponderomotive force (i.e. radiation pressure)

unstable axial density fluctuations which, in turn, give rise to

growing backward and forward scattered transverse electromagnetic

waves. The backscattered wave (propagating parallel to the beam

direction) is doubly Doppler upshifted in frequency and represents

the source of submillimeter radiation (photons). The frequency of

the backscattered wave, its growth rate and other relevant data

are summarized in the upper part 'of Table I. Indeed, these results
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are the same as those derived 7 for Raman scattering for a static,

periodic magnetic field pump, with the understanding that the mag-

netic modulation amplitude B for a magnetic pump plays the same

role as E plays in the electric field pump. Thus, for example,

a magnetic pump with a typical amplitude B =0.04T(400G).acting onoJ-

a given electron beam yields the same stimulated Raman growth rate

as an electric pump of amplitude E0 3=cBo .l20kV/cm.

An electron beam of radius a, uniform velocity v and current

density J has associated with it a radial space charge electric

field given by J r/2e v where r is the radius vector. At the beam

edge r=a, the electric field is J a/2 0v, which for a relativistic

beam (v~c) of radius 0.5cm and carrying a current of 20kA gives a

field of ~2.4x106V/cm.. Thus, a 10 percent spatial field modula-

tion appropriately induced leads to a pump of about the desired

strength. One way to achieve this modulation is to ripple the

wall of the conducting drift tube as illustrated in Fig. 2. It

will be shown momentarily that the potential V(r) at any point r

within the beam is a function of both the beam radius a and the

proximity of the conducting wall, that is, the distance b. On ac-

count of this radial potential distribution the beam electrons

acquire a radial distribtion of axial velocities. At a given

radius, the rippling of the wall induces an axial rippling in the

particle velocities. Since the current density is constant, this

in turn causes a rippling in the space charge density and thus in

the radial electric field.

We compute the radial electric field E,(r=a) at the beam edge

in an approximate way by assuming that the potential V is a func-

-tion only of radius r. The neglect of any z (i.e. axial) depen-
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dence, as if each section of the rippled drift tube were infinitely

long, is not too serious provided that the modulation depth is

small compared with the periodicity. More specifically, we assume

that (b2-bi)
2 <<X 2 (see Fig. 2). (That squared quantities rather

than linear dimensions enter the inequality comes from Poisson's

equation V2V=-p/e .)

Consider, then, an infinitely long drift tube of radius b con-

taining an electron beam of radius a and uniform current density J.

The beam is subjected to an axial magnetic field Bz so strong that

(a) all electron motions can be considered purely axial, and (b)

the beam azimuthal self-magnetic field can be neglected compared

with B . For convenience, the potential at the center of the beam

(r=O) is taken to the zero and the potential of the cylindrical

drift tube is maintained at Vb (and equals the anode potential).

The potential difference between the source of the electrons (i.e.

the cathode situated at a large distance z from the region under

consideration), and the drift tube is denoted by V0 .

The problem is an electrostatic one requiring a solution of

Poisson's equation

r r (4 v(r) r<ae0 (1)T

= 0 a<r<b

subject to the energy conservation equation,

m c 2 C (r)-l = e VO-Vb + V(r)

-1/2 (2)

y (r) = El - (v(r)/c)2]

and the boundary condition,

a Ln !! [l = Vb . (3)
raJr=a-
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The last equation is a statement of the fact that the potential is

continuous across the beam-vacuum interface r=a where it has a

value Va; it has a value Vb.at r=b.

Equations (1) through (3) have been solved for beams having

relativistic12 and -nonrelativistic'" speeds v. The results cannot

be expressed in closed analytic form in terms of elementary func-

tions, and have therefore been given in terms of series expan-

sions,13 interpolation formulas12 and computer generated outputs.12

The results can be exhibited conveniently as a plot of beam cur-

rent I versus the normalized potential Vb /Vo, considered as a

parameter of the problem (Note that IVo-VbI -is just the difference

between the cathode potential and the potential at the beam center

r=O). Figure 3 shows such a plot for eV /m c2 =3, for different

ratios b/a. It is seen that if, for a given b/a, an attempt is

made to increase the current in the beam, the potential in the

center approaches closer and closer to the cathode potential. At

the maximum beam current this potential difference is almost zero,

and finally the intense radial space charge blocks the current en-

tirely. Note, however, that once the maximum possible current has

been exceeded (for a given b/a) our steady-state model most likely

fails; that is, the regime where the curves bend over and are

steeply downward diected is no longer valid. Indeed, there is ex-

perimental evidence1 that in this region the beam is unstable.

However, the section of the curve lying between Vb /Vo=O and

(Vb /Vo max (corresponding to maximum current), represents stable

beam propagation, and it can be traversed by gradually increasing

the current while holding the accelerating voltage V0 constant.

It is also observed that the larger the value of b/a the smaller
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is the maximum attainable current. The reason is that with in-

creasing b/a, the electrons must create larger radial electric

fields thus reducing their speed.

The radial electric field is zero at r=0 and it reaches its

maximum value at the beam edge r=a, where it can be calculated

from Eq. (3), once the potential Va at the beam edge has been de-

termined. The potential Va is given (to second order of an iter-

ation procedure) by Eq. (10) of Ref. 12. The sought-after electric

field at the edge of the beam then takes the form,

aE, m c2l [, Y' c a cI 4
-- = 2 V- jA-J eY (r=a) (4)

0 0 A Ye c

where I and V0 are the beam current and acceleration potential,

respectively,

Y + 2yc n(b/a) e - 1

Ye 1 + 2kn(b/a) 'e 2

eV
0 0b

Yc = +- 1(y2 -l)l/ 2/YC
m) cc c 0

Y= [1 + (eV0/m0c2 )] I = 47re0m0c 3 /e= 17kA

The parameter Vb/VO is a function of I and is found from Fig. 3.

Given I, V0 and (b/a), the normalized electric field (aE /V0 ) is

uniquely specified. Varying b with distance z along the drift tube

axis varies Ej, and formula (4) provides the basis for computing

the amplitude of the spatial modulation.

For purposes of computation we assume that the electron beam

fills the inner dimension of the drift tube such that a=bi of Fig.

2. We also assume that the system is operated at maximum (i.e.

limiting) current corresponding to the larger radius section, b2 -
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Use of Fig. 3 and Eq. (4) then allows one to compute (aE11 /V). for

the smaller sized section b, and (aE1 2 /V0 ) for the larger sized

section b2 - The peak-to-peak electric field modulation of the

pump is given by the difference a[Eg1 -E 1 2 ]/Vo. This is plotted in

Fig. 4a as a function of the depth of the drift tube convolutions,

b2/b,, together with the corresponding beam current I. The ampli-

tude of the modulation is seen to exhibit a maximum when b2/b,~1 .5.

The appearance of the maximum is due to two competing effects. On

the one hand the modulation becomes smaller and smaller as b./b,

approaches unity and disappears altogether when b2 /bl=l. On the

other hand, the smaller the value of b 2/b1 the larger is the limit-

ing current (see Fig. 3) and the larger the absolute value of the

electric field.

When the beam energy is increased, relativity "stiffens" the

electron motion, v approaches ever closer to c and the space charge

density variations decrease. Thus with increasing V0 , the frac-

tional electric field modulation a[E 11-Eg2 ]/V0 falls as is shown in

Fig. 4b, where computations are given for the case eV /m c2 9.

Note, however, that the absolute modulation amplitude a(E 1 1 -E 1 2 )

still rises, though not dramatically, simply because I increases as

V increases. In Fig. 5 the modulation amplitude is plotted as a

function of V0 , suggesting an onset of saturation at large V0 .

Take, for example, the following experimental arrangement. A

solid, unneutralized electron beam is produced by a 1.5MeV, 20kA

diode and propagates through a rippled drift tube having the follow-

ing dimensions: a=b1 =0.5cm; b2=0.75cm. We find from Fig. 4 that

the peak-to-peak electric field modulation is 336 kV/cm. The

ripple periodicity k, the spatial growth rate r, the radiated power

at saturation P, and the scattering efficiency7 n are calculated
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from theory and the results are given in Table II, for two wave-

lengths of the stimulated, back-scattered radiation, X=500P and X=

2mm.

For a longitudinal magnetic field B 08kG experiments conducted

at both ripple periodicities given -operate in the so-called high

gain collective regime, in which both scattered waves are normal

modes of the plasma. Theory predicts6 that cyclotron resonance

effects will enhance the growth rates given in the Table by a fac-

tor of (l-(e/2rrym c2 )B 0 ] 1 as B is increased. For B0>8kG, the

X=2mm interaction may enter the high gain noncollective regime7 in

which the growth rate exhibits a different parametric dependence

on -the pump electric field. To date, no experiments have been

carried out in this regime.

We note that in an actual experiment, a gently curved wall

ripple may be preferred, rather than the rectangular modulation

shown in Fig.. 2; this will reduce the chance of arcing. Also, a

sinusoidal-like modulation contains fewer high frequency spatial

harmonic-s. Alternately, a helical wall perturbation may well be

contemplated, in anology with the helical magnetic pump used pre-

viously. 1 '2

III. THE LONGITUDINAL ELECTRIC PUMP

Now we take up the problem of a relativistic electron beam

subjected to a static longitudinal electric field modulation as

illustrated in the lower part of Fig. 1. There is no conversion

into electromagnetic radiation as was the case under discussion in

Section II. In the frame of reference of the beam, the pump wave

stimulates the growth of two space charge waves (plasmons). One
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of these is a growing forward scattered wave, and the other a back-

ward scattered wave. The latter is doubly Doppler upshifted in

frequency and is the source of submillimeter wavelength plasmons.

The growth rate of the instability is calculated in the cold

plasma approximation using fluid equations. The beam is assumed

to be of infinite cross-sectional area thus reducing the problem

to one dimension, which is the z axis along which the beam propa-

gates. In the beam frame of reference in which the computa-

tions are performed (i.e. the prime frame), the relevant equations

are the particle and momentum conservation equations and Poisson's

equation, respectively:

an' av'+ N' = - (n'v') (5)

av' aEl v1a W)(6)m v (v')I

0

Here n' is the perturbed rf density, N' is the average density, v'

is the perturbed rf velocity; q and m are the charge and mass re-

spectively, and E' is the z-directed rf electric field. For con-

venience, all nonlinear terms have been relegated to the right-

hand sides of the equations. Eliminating the rf density n' from

these equations yields the nonlinear wave equation for the elec-

tric field

+ w E'= - + Iv' (8)

which is to be solved simultaneously with Eq. (6). [w =(Ne2/me )12

p 0

is the plasma frequency.] To this purpose we write E' and v' as
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the sum of three terms corresponding to the three interacting waves:

E' = - A (t')e + A*(t')e2 m m
m=1,2,3 (9)

jm ~ m
mv= IBm(t')e + B*(t')e

m=1,2,3

where Am and Bm are complex amplitudes that vary slowly with time,

and where $Pm is the phase given by

1  w =t' ± kmz' (m=1,2,3). (10)mm m

(The sign in front of km determines the propagation direction of

the wave in question).

To solve's Eqs. (6) and (8), we substitute Eqs. (9) in, say,

Eq. (8). We equate terms on the left-hand side of Eq. (6) that

are periodic in $1 to terms on the right-hand side that have the

same period $ 1 =* 2 +1P3 ; and similarly for $2 and $3. By proceeding

in this way we are invoking exact phase matching and this is syn-

onymous to the requirement that the selection rules

(11)

= +

be obeyed. The remaining terms that do not obey Eqs. (11) are

"nonresonant" and they do not contribute to the three-wave inter-

action process considered. Under the assumption of a constant am-

plitude pump wave (wave 1) the aforementioned manipulations result

in two coupled equations for the amplitude growth rates of the

forward and backward scattered waves (waves 2 and 3):
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3A
2

ytr = (3/4) (k,/wi) (q/m)AA*(t')

A 3  (12)

= (3/4) (k'/w') (q/m)A A*(t')

Thus, the two waves grow exponentially with a temporal growth rate

given by

rt' = (3/4) (k'/w') (q/m)E'

(13)
= (3/4) (q/m) (E' /v)

where E' is the amplitude of the pump wave. The second form of
oil

the equation comes from the fact that for the static pump wave,

w'=vX', with v as the beam velocity. In the cold plasma approxi-

mation, the oscillation frequency of both waves equals the plasma

frequency w', and on the basis of Eq. (11) it follows that
p

o= 2w' (14)

which specifies the frequency of the pump (note that the pump fre-

quency w' and the wavenumber k'=w'/v do not represent a normal

mode of the plasma). Transforming16 from the beam frame to the

laboratory frame, and then transforming the temporal growth rate

to a spatial growth rate, leads to the formulas listed in the

lower half of Table I.

In these calculations electron temperature and finite trans-

verse beam geometry are neglected. Consequently k' and k' of the

two scattered waves can take on any values as long as the momentum

conservation Eq. (11), k'=k'-k' is satisfied. In a more realistic

model, introduction of temperature eliminates the arbitrariness

in k' and k', and Landau damping further limits their values to

k'L;Sl, k2L; l(L; is the Debye length). A finite beam cross-
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section and the proximity of the conducting drift tube also elimin-

ate the arbitrariness in k' and kj. In this case the proper des-

cription of the space charge waves on the beam is given by the

Trivelpiece-Gould dispersion relations. 17.

One way to generate a static periodic electric field E is

by charging with alternate polarity a set of equally spaced metal

discs separated from one another by insulating spacers. Though

viable, this method is difficult in practice considering the fact

that E needs to be several hundred kilovolts per cm. A more

promising approach is once.again to ripple the wall on the drift

tube. Since rippling induces a density modulation, longitudinal

space charge fieldsare created. Crude estimates suggest that the

strength of this modulation can be made comparable with that shown

in Figs. 4 and 5 for transverse modulation.

IV. DISCUSSION

The notion of rippling the wall of a drift tube or charging

alternately a system of spaced discs for purposes of wave amplifi-

cation (or particles acceleration) is by no means new. He-re we

wish to discuss the similarities and differences of the various

works and compare them with the present proposals.

Nation,18 Kovalev,et al" and Carmel, et a12 0 performed ex-

periments in which intense, relativistic electron beams were al-

lowed to pass through corrugated metal drift tube structures. In-

tense microwave emission in the centimeter wavelength range was

reported. In these studies the experimenters exploited the fact

that a corrugated periodic waveguide can support a family of "slow'

electromagnetic modes21 whose phase velocity is less than c. By
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adjusting the beam velocity to come into approximate phase synchro-

nism.with the electromagnetic wave, energy is extracted from the

particles and the wave grows. This is a two-wave interaction pro-

cess involving the slow space charge wave on the beam and a back-

ward electromagnetic mode of the corrugated structure. The pro-

cess is quite unlike the one discussed in Section II which is a

three-wave interaction between the space-charge beam wave and two

fast, forward electromagnetic waves. Indeed, by making our wave-

guide of sufficiently small diameter, we hope to cut off the lower

frequency backward electromagnetic modes which participated in the

interactions described in Refs. 18, 19, and 20.

Birdsall 22 reports the operation of the so-called "Rippled

Wall Amplifier" in which a nonrelativistic beam (voltage -700V,

current -lOmA) passes through a corrugated drift tube like that

illustrated in Fig. 2. A wave launched at the input end emerges

amplified at the output end. The periodicity 2 is arranged so that

Z=rv/w P. The interaction is basically a parametric (i.e. three-

wave) process in which the pump frequency is twice the plasma fre-

quency. The interaction is very similar to that described in Sec-

tion III (cf Eq. (14) and Table I) and differs in one respect

only: since the beam is nonrelativistic (y+l), there is virtually

no Doppler shift and the frequency of the growing waves is low

and is given by w=7v/i [cf Table I].

In the experiments of Decker and Hirshfield 23 a tenuous, non-

relativistic electron beam (density -3x10 5 cm-3 , voltage ~10V) was

subjected to quasi-static (10-300MHz) periodic electric field E

produced by exciting a set of spaced, insulated, metal discs with

-a signal from an rf generator. Because of the tenuous nature of
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the beam, the Debye length L vth/w' was comparable with the wave-

length X' of the density modulation, and the pump wave interacted

"resonantly" with individual electrons within their velocity dis-

tribution.24 For that reason a Vlasov description of the inter-

action was mandatory, and the latter falls into the category of

Compton-like24 processes. This is unlike the collective mecha-

nism proposed in Section III where the pump wave interacts with

the velocity distribution of the dense electron beam as a whole

(L <<X') and where a fluid-mechanical description suffices (at

least to lowest order).

Smith and Purcell25 passed a tenuous relativistic electron

beam close to the surface of an optical diffraction grating and

produced light. The wavelength of the light depended on the

angle of emission and on the energy of the electron beam. In this

mechanism the electrons travel in near synchronism with one of the

slow surface harmonic waves (phase velocity<c) associated with the

grating periodicity, and interact strongly with the longitudinal

electric field component of the wave. The device is essentially a

traveling wave amplifier for light, and is quite unlike the three-

wave parametric systems described in this paper.

In conclusion, we have shown that the space charge of an in-

tense, unneutralized relativistic electron beam can furnish an in-

tense quasi-static electric pump for stimulated three-wave scat-

tering experiments. When the electric field is transverse to the

beam, the process is stimulated Raman scattering leading to emis-

sion of submillimeter electromagnetic radiation. When the elec-

tric field modulation is parallel to the beam, the three-wave pro-

cess yields submillimeter wavelength plasma oscillations (plas-

mons). The latter could be converted to photons by one of several
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processes. On the other hand, the short wavelength plasmons may

be used in plasma heating experiments in which the modulated beam

is injected into an ionized gas.

Wave studies with rippled drift tubes are about to begin.26

The electron beam is generated by a 1.5MeV, 20kA, 30nsec accelera-

tor (Physics International Pulserad 110A) and is confined by a

-10kG axial magnetic field. A 60cm long section of drift tube is

rippled and has parameters like those given in Table II. The ob-

servations will be compared with theoretical predictions.
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Table II. Parameters for a free-electron Raman laser for a peak-

to-peak pump modulation of 336kV/cm and a=b1 =0.5cm,

b 2/bi=1.5; Z is the pump periodicity, r the spatial

growth rate, P the power at saturation,and n the effi-

ciency at saturation.

z(cm) r(cm-1) P(GW) n(%)

X=500 1.3 .058 1.2 3.9

A=2mU 3. 9 .093 3.6 - 11.5
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FIGURE CAPTIONS

Fig. 1. Schematic drawing of static, periodic electric pump fields.

In the upper figure the electric field is polarized at

right angles to the direction of beam propagation. In the

lower figure it is polarized along the beam direction.

Fig. 2. Schematic drawing of a rippled drift tube.

Fig. 3. Beam current as a function of the normalized voltage Vb /V0
for several values of b/a. The calculations were made

from Eq. (20) of Ref. 12.

Fig. 4. The normalized peak-to-peak modulation amplitude and the

beam current, as a function of b2 /b,. The electron beam

fills the inner radius of the tube (a=b1 ), and the current

is the limiting current for the larger-sized tube, b2 '

Fig. 5. The maximum modulation amplitude (see Fig. 4) as a func-

tion of beam voltage, for the same conditions as those of

Fig. 4.
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