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Abstract

We report measurements of intense magnetron oscillations in pulsed,

field-emission diodes (-350 kV, 30 nsec) subjected to crossed externally

applied magnetic fields (<16 kG). The oscillations set in as soon as the

magnetic field exceeds the critical field necessary for cutting off the

diode current. The oscillations are diagnosed by the microwave emission

which is studied in the range from 7 to 40 GHz. The radiation is emitted

in broad frequency bands, it is strongly polarized, and can be tuned by

the magnetic field; the power levels are typically 1 to 5kW. The obser-

vations are consistent with the onset of the slipping stream instability

in the Brillouin space charge flow of the electron cloud.
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1. INTRODUCTION

The smooth-bore magnetron diode comprises a cylindrical anode of

radius r enclosing a coaxial cylindrical cathode of radius r as is ii-
c

lustrated in Fig. 1. The electrons emitted by the cathode are subjected

simultaneously to two steady, or quasi-steady fields acting at right

angles to one another: a uniform, axial magnetic field B produced by,

say, a solenoid, and a radial electric field-E r(r) generated by applying

voltage V between the two electrodes.

In conventional magnetron diodes1-3 voltages of a few volts to

several kilovolts are applied between the anode and a thermionically

emitting cathode. Typical currents that can be furnished by the cathode

range from milliamperes to a few tens of amperes. This article is con-

cerned with a magnetron diode having the conventional geometry described

above. However, it differs in that the electrons are generated by field

emission from a cold graphite cathode, and currents of 50 to 100 kA can

thus be drawn across millimeter wide vacuum gaps. The applied voltages

of 200-400 kV are pulsed and have a duration of 30 nsec. As is des-

cribed in detail elsewhere4,5 the requisite power is generated by the

high voltage facility "NEREUS" capable of supplying l.3kJ of beam energy

at 600 kV to a matched 4 ohm load.

We note that in order to obtain significant field emission the anode-

cathode gap d=(r a-r c) is necessarily small. This has the consequence that

in our studies the quantity (r a-r C)/ra is much less than unity (it lies

typically in the range from 0.1 to 0.2) and the geometry approaches that

6
of the so-called "planar magnetron" diode. On the other hand, conven-

tional low voltage, low current diodes operate in the regime 0.5<(r a-r c)/r a

In this paper we shall be concerned with magnetron oscillations which

set in as soon as the magentron field Bz exceeds a critical field B* char-
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acterized by the requirement that the gyro-rAdius of an electron emitted

from the cathode equals the gap width d - (ra-rc). This "Hull cutoff"

7
condition is given by the formula

B* = (m c/ede)[Y2 - 1]1/2 Tesla (1)

with

YO E 1 + (eV/m c )

where V is the voltage across the gap d = ra-r , e and m are the elec-

2 2
tron charge and rest mass, respectively, and d = (r-r )/2r is the ef-

e a c a

fective gap width. We note that Eq. (1) can be derived from a single

particle calculation;7, 8 however, it is also obtained from a fully rela-

tivistic magnetohydrodynamic computation which allows for electric space

9
charge and self-magnetic fields of the electron cloud. Figure 2 illu-

strates that a sharp cutoff at B z=B* is indeed achieved in our field-

emission, relativistic electron beam diodes.

In the regime of magnetic fields defined by B z<B* the current-voltage

4
characteristics of the diode are well represented by the Child-Langmuir

3/2 2 10
space charge limited flow ICL V /d modified . by two effects. The

first is caused by the fact that the electron trajectories are curved by

the magnetic field B which raises their transit time. The Child-
z

Langmuir current then falls slightly as Bz is increased from zero towards

B*, because the "slowed" electrons provide increased space charge shield-

ing near the cathode against the anode potential. However, a more im-

portant departure from conventional Child-Langmuir operation in our large

current diodes is caused.by the strong azimuthal self-magnetic field

B =P I /2wr generated by axial current I flowing along the. cathode and the
0oz z

steel shank which attaches the latter electrode to the NEREUS generator

(this effect is negligible in conventional diodes where I is small).
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Approximate calculations5 show that now the current flowing across the

gap is given by

21Tr B* B 21/2

I a [ -a [ 1  B <B*
0 L (2)

-0 B >B*
z

a result which is compared with measurements in Fig. 3. It is seen that

the experiments are in quite satisfactory agreement with calculations

for the regime B z<B*. However, there are serious discrepancies for

B z>B*, where small but by no means negligible ilows of current across

the gap persist (typically 2 to 5% of maximum current). This fact is

clearly seen in Fig. 4 in which we plot on a linear scale the diode cur-

rent and voltage as a function of magnetic field, for fields both smaller

and larger than B*. Even when Bz is twice as great as B*, approximately

IkA of current flows. It may be thought that because of end effects

(the electrodes are after all of finite length), magnetic field inhomo-

geneity, and misalignments of the diode, some electrons may flow along

the magnetic field lines and be collected. To ensure that none of these

currents are received by our measuring probe, and that I is indeed the

radially flowing current, shields5 are provided to protect the current

measuring probe from the unwanted signals.

It is appropriate at this point to note the meaning of the Hull cut-

off condition given by Eq. (1). It states that subject to the assumption

of zero initial electron velocities and no time variation in any field

quantities, there can be no current to the anode if the magnetic field

8
is greater than the cutoff field B*. This is independent of the degree

of space charge at the cathode or, for that matter, the detailed nature

of the steady space-charge state. Thus, ideally, the diode is "magnet-

ically insulated."
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Under conditions of perfect magnetic insulation, (if this state were

ever to exist) a steady state can occur in which the electrons within the

space charge cloud follow paths which are independent of time. The

actual form of the steady state has been the subject of much investigation.

In geneial the state is not unique because one must make assumptions about

the initial electron distribution in the space charge cloud. There are

two classes of solution that have attracted the most attention. They are

(a) the "double-stream" state in which the electrons make cycloidal orbits

which commence and finish on the cathode surface;11-18 and (b) the "single-

stream" state1 9-2 3 in which the electrons move parallel to the electrode

surfaces, with drift velocities given by v = ExB/JBJ . The electron motion

corresponding to this state is also known as "Brillouin flow" or "parapo-

1119 ,21
tential flow, the latter signifying that the electrons move along

equipotentials rather than along field lines, as is customary. In this

model the space charge extends from the cathode r=rc to some radius r=r

but there are no electrons within the space between r=r and the surface

of the anode at r=ra. The thickness of the space charge cloud (r -r c) is

a function of magnetic field, and varies approximately as (B*/Bz) . The

space charge drift speed vO=Er/Bz is strongly sheared: it is zero at the

cathode surface r=rc and rises rapidly with r, reaching maximum velocity

at the surface of the space charge cloud at r=r . The velocity of the

surface layer has been calculated for the case of the "planar magnetron

diode" (that is for (r a-r C)/r a<<l) and the results of the calculations

are shown in Fig. 5. We see that velocities of relativistic magnitudes

are readily achieved in our type of field emission diodes. And, whereas,

no current flow to the anode can occur, there is a large circulating

current in the azimuthal direction. At B - B*, the magnitude of this

22"Brillouin" current is given by
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I = (m c/ed)(L/y )(Yo-l)cosh (Yo) Amp. (3)

2
where y 1 : + (eV/m c ) and L is the length of the cathode as measured

along the z axis. As Bz increases, I falls because the space charge

cloud becomes thinner. This variation with Bz is shown plotted in Fig.

6.

The opinion is that Brillouin flow is the more likely state into

which the system will settle initially provided that the risetime of the

voltage pulse is slow compared with the cyclotron period, so that adia-

baticity can be invoked in the equations of motion. This view is rein-

forced by computer calculations24 of the electron trajectories showing

the unmistakable evolution of the Brillouin state. Furthermore, it was

proved,25 for nonrelativistic cylindrical diodes at least, that the

Brillouin single stream state is the only one possible whenever r /r
o C

< R=2 where r is the radius of the cathode and r is the radius of the
c o

outer boundary of the space charge cloud. The parameter R is approxi-

mately equal to 2, but its magnitude varies somewhat with the value of

the current associated with the Brillouin ExB flow. The above inequality

is well satisfied in all our experiments where l<R<1.2.

It is generally accepted that a manifestation of currest flow across

the vacuum gap is due to a breakdown of the steady state assumption; namely,

time varying, organized, electric and magnetic field oscillations (i.e. in-

stabilities) develop resulting in the destruction of the steady state flow

and creation of large amplitude electromagnetic oscillations. And, it is

these oscillations that are the subject matter of section 3 below. It is

worth noting that the degree of organization of the oscillatory fields is

greatly enhanced by piercing the anode with a chain of coupled cavity res-

onators, a procedure one adopts in the practical magnetron devices. This

will be the subject of a subsequent paper (II) (see also ref. 26) where we

I
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shall show that, using our relativistic electron, field-emission cathode,

microwave oscillations in the gigawatt range of powers can be achieved.

2. THE EXPERIMENTAL ARRANGEMENT

The outer stainless steel anode is a cylinder 4.4 cm in diameter and

It is polished and has rounded edges to minimize local

field enhgncement and arcing.

dense, fine-grained graphite.

ing between 3.36 cm to 3.98 cm

with spacings d ranging from 2

via a stainless steel shank to

coaxial capacitor which serves

NEREUS high voltage facility.

rent viewing probe (see above)

The inner coaxial cathodeis machined from

A number of cathodes with diameters vary-

is used, thus providing diodes having gaps

.3 mm to 5.4 mm. The cathode is connected

the inner conductor of the water filled

as the transmission line of the 4 ohm

The anode is connected via a shielded cur-

to the outer, grounded wall of the capaci-

tor. The system is continuously pumped by means' of a diffusion pump to

pressures of approximately 5x10-5 Torr.

The axial magnetic field B acting on the diode is generated in a

solenoid energized by a capacitor bank whose rise time is approximately

6 msec. The discharging of this bank is timed in such a way that B

reaches its peak value when NEREUS fires. Thus, the magnetic field is

virtually constant in time over the duration of the 30 nsec voltage pulse

applied across the diode. The thin-walled, stainless steel construction

of the diode ensures good penetration of the pulsed magnetic field into

the diode interior. A magnetic field as high as 16 kG can be generated.

The diode current is measured with a rapidly resqonding, low-induc-

tance current viewing probe; its output is displayed on a fast oscillo-

scope. The diode voltage is obtained from the signa.L delivered by a

calibrated copper-sulphate voltage divider network and is corrected for

inductance effects.4,5

4.0 cm long.4 ,5
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The magnetron oscillations are diagnosed by monitoring the micro-

wave radiation emitted by the diode in an arrangement illustrated sche-

matically in Fig. 7. The waves emanate from the diode via a low loss

polystyrene window and are received by a microwave horn. The received

power is first attenuated to suitable levels by means of a precision at-

tenuator and then measured with a calibrated crystal detector connected

to a fastoscilloscope. Thus, the power P r(R,0,0) received at a given

point in space distant R from the diode, and at an angular position

(6,0) with respect to the diode axis is found with good accuracy. The

distance -R is sufficiently large so as to ensuie that the transmitting

magnetron diode and the receiving horn are in each others radiation

fields; that is R>2D 2A where D is the characteristic size of the trans-

mitter or receiver, whichever is the larger, and A is the wavelength.

With this choice of R, the power P emitted by the magnetron diode is re-

lated to the power received Pr, through the well -known radar formula
2 7

eP r[16 2R R2 /GGr A2 (4)

where Ge is the gain of the transmitting diode and Cr the gain of the re-

ceiving horn. The receiving antenna is a standard horn and its gain Gr

is known. The gain of the emitter Ge is obtained by making an angular

scan of the transmitted power, and then deriving C from the relation-

ship2 7

4wP (0,4)

r-e fp (6,4)sinO d~d4)

Using the measured values of Pr (6,0), allows one to carry out numerically

the integration demanded in the denominator of Eq. (5).

From the foregoing procedure, the power emitted by the magnetron

diode is determined. The measurements are made over frequencies ranging

from 7 to 40 GHz with suitable microwave plumbing used for each of the
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four frequency bands needed to explore this large range: X-band (7-12.4

GHz), Ku band (12.4-18 GHz), K band (18-26.5 GHz) and Ka band (26.5-40

GHz). No measurements were attempted at lower frequencies because the

outer cylindrical anode acts as a waveguide beyond cutoff. It cuts off

the lowest TE1 1 mode at 4 GHz and the TE0 1 mode of interest here (see

below) at 8.3 GHz. The X-band receiver cuts off at 7.2 GHz.

The spectral distribution of the emitted radiation is determined by

interposing a length k of dispersive line between the receiving horn and

the crystal detector. The time delay t suffered by the signal relative

to the time (t=0) of the arrival of undispersed signal (see Fig. 7) al-

lows one to decompose the measurements into the various frequency com-

ponents, using the relationship that k = v -(w)t, where v (w) is the group
g g

velocity. The group velocity is obtained fron knowledge of the disper-

sion characteristics of the waveguide used in our experiments with the

result that the frequency w of the dispersed signal is given in terms of

the waveguide cutoff frequency wc by

O c[1 - (£/ct)2 -1/2 (6)

We use 155 meters of waveguide. Since only X-band waveguide of such

lengths is available to us, all our spectral frequency measurements are

made in the regime from -7 to -12 GHz.

3. MEASUREMENTS

The measurements fall into three categories. A study of the rf emis-

sion as a function of the externally applied magnetic field BZ; determin-

ation of the frequency characteristics; and a determination of the rf

electric field configuration, namely its polarization. We begin with a

discussion of the magnetic field dependence.
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(a) Magnetic Field Characteristics of the Emitted Radiation

In our experiments we adopt the following procedure. We arrange

the microwave instrumentation for the desired band (X, K, K, Ka)' We

set the externally applied magnetic field B -to a given value and charge

NEREUS to a fixed constant voltage. We then measure the total microwave

power Pr received by a small horn placed in the radiation zone of the

transmitting diode (Fig. 7), together with the diode current I and the

diode voltage V. With the same charging voltage we change the magnetic

field to a new value and repeat the measurements of P r, I and V. Note

that although the charging voltage is maintained the same throughout a

run, the voltage V across the magnetron diode varies somewhat with

changing Bz (see Fig. 4) because of changes in the diode impedance.

A series of successive shots like those described are then assembled

to yield Pr as a function magnetic field, at roughly constant diode volt-

age. The measurements are then repeated for all the remaining microwave

bands.

By scanning the magnetic field from B Z 0 to B = 16 kG we verifyz z

that within the sensitivity of our microwave detection system, no signi-

ficant radiation-occurs at any frequency until the magnetic field is

close to, or exceeds, the critical field B*. A further increase in the mag-

netic field causes the emission to rise sharply, reach a peak value at

some value Bz z (max), and then fall rapidly. This "resonant" behavior

is illustrated in Fig. 8 which shows plots of the radiation intensity in

two different frequency bands (X and K ) as a function of B . Measure-a z

ments made in other frequency bands show similar characteristics. These

can be summarized as follows. First, the radiation sets in at a certain

value of B near B - B* and the onset is the same at all frequencies.z z

Secondly, the peak in the microwave radiation occurs at a definite value
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of the applied magnetic field B - B (max): the value of B (max) is dif-
z z z

ferent depending on the frequency band under investigation, as is clearly

seen from Fig. 8. Thirdly, the total power outputs P (obtained from
e

radiation pattern measurements and use of Eqs. 4 and 5) are approximately

the same in all four frequency bands examined. Figure 9 illustrates both

the power and the tuning characteristics of the diode. In each of the

four microwave bands the total emitted power is typically 1 to 5 kW. And,

the higher the externally applied magnetic field, the higher is the fre-

quency of the microwaves received. The "tuning" relationship is approxi-

mately linear and is of the form

f = 3.4xlO 9(B z-B*) Hz (7)

where B is in kG.

(b) Frequency Characteristics

The shape of the curves shown in Fig. 8 and the tuning characteris-

tics illustrated in Fig. 9 point to the fact that we are dealing here with

multiple resonance behavior. Spectral measurements in which we observe

one, two, and even several resonances bear this out. The measurements are

carried out (for fixed Bz and diode voltage V) by means of the dispersive

line described in Section 2. Figure 10 is typical of such observations.

It shows that at a given magnetic field (which.we have chosen in the

figure to be that corresponding to maximum emission at X-band) there are

two fairly wide (<l GHz) resonances. As the magnetic field is varied,

the frequency positions of the resonances and their separation remain un-

changed even when the magnetic field is varied by as mch as a factor of

two. However, their amplitudes vary strongly with Bz and reach maximum

values only for a certain fixed B =B z(max). New resonances may appear at

widely different magnetic fields but usually there is only one very strong

resonance flanked by one or more rather weak ones.
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Are the above resonances inherent to the emission process of the

radiating electrons such as cyclotron or plasma oscillations, and are

they therefore governed by the dispersion characteristics of the electron

gas? The answer is no. The resonances are system resonances that are

there even in the absence of the electrons. This has been verified in

"cold tests" of the diode. A low level microwave signal of variable

frequency, is injected into the diode and a small probing antenna measures

the response. One then finds resonances having identical frequencies

and Q's as in the operating diode. A second test is used to verify that

the resonances are simply system resonances of what is after all a

fairly complicated cylindrical resonant cavity. We vary the gap width d

and find no change in the emission spectrum, despite the fact that the

Brillouin space charge flow is a sensitive function of d.

Thus, the following picture emerges concerning the spectral character-

istics of the radiation. Copious emission, exceeding expected thermal

levels by many orders in magnitude, is generated by the rotating electron

space charge cloud. The cloud is unstable resulting in the production of

intense rf electric field fluctuations which exist over a fairly broad

frequency spectrum. As a result of system resonances, the electromagnet-

ic radiation ultimately emanating from the diode is enhanced at those

particular frequencies which correspond to certain resonant frequencies

of the "cold" resonator system. In other words, the emission "locks onto"

one or another of the many possible cavity modes. The resonances can be

tuned with magnetic field and are observed in one of two ways: from the

frequency spectrum, at constant Bz (Fig. 10); or by sweeping B , keeping

the observation frequency fixed constant over the discrete frequency bands,

X, Kua, K, K (Figs. 8 and 9).
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(c) Polarization

The radiation emanating from the polystyrene window is strongly

polarized, with electric field lines forming predominantly concentric

circles about the diode axis. This is verified by placing two receiving

horns in the radiation zone at fixed and equal distances R from the diode

and scanning in angles e or *. The horns are rotated at right angles to

one another and are thus sensitive to orthogonal electric field polariza-

tions. In addition to the strongly polarized field, there is evidence of

a weak background of randomly polarized radiation.

The strongly polarized component is consistent with the emission from

a circular waveguide excited in the TE01 mode (or possibly in a higher

TE mode). The accompanying radiation pattern obtained by sweeping the

angle 0 at constant R and $ is illustrated in Fig. 11 for Ka band frequen-

cies. The "butterfly shaped" pattern with two well-pronounced wings, and

a minimum in intensity at 0=$=0 is typical28 of'the TE01 mode of excita-

tion. (The same type of radiation pattern is also seen at X, Ku, and K

band frequencies.) As additional verification, we point out that no emis-

sion from the diode is ever observed at a frequency below approximately

8.2GHz (see Fig. 10). Nowthe cutoff frequency of a cyclindrical wave-

guide oscillating in the TE01 mode is given by fc = 0.610(c/a) where a

is the radius. With a = 2.22cm, fc = 8.3 Giz, a result which is in good

agreement with observations. We note in passing that the TE mode is

not the lowest (or fundamental) mode of a circular pipe. The lowest mode

is the TE1 1 mode which has a cutoff frequency (for our radius of pipe)

equal to 4.0 GHz.

4. DISCUSSION

The intensity of the rf electric field fluctuations associated with
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observed microwave power output must, indeed, be quite substantial. Take

a power output of 5kW and assume a 10 percent efficiency of converting

electromagnetic energy within the 3.4mm cathode-anode gap into transverse

electromagnetic wave energy outside the diode. It then follows from

Poynting's flux that the- peak electric fields in the gap are typically

9 kV/cm, or approximately equal to 1 percent of the dc radial electric

field applied across the anode-cathode gap. This agrees with earlier

estimates made for conventional magnetrons in which fluctuations as high

as 10 percent of the dc value have been reported.2 9

That fluctua:ions set in at the critical magnetic field BZ=B* points

to the fact that the instability is associated with the Brillouin space

charge flow which sets in precisely at this critical field. As noted in

Section 1, the azimuthal flow is sheared which can result in the so-called

slipping stream30 or diochotron instability. It is a space charge insta-

bility in which the surface of the Brillouin cloud becomes rippled in the

azimuth; associated with this rippling is an azimuthal rf electric field.

This field has the correct polarization to excite a TE mode in the

circular diode. The fact that the observed emission is principally in

the TE01 mode lends credence to our belief that we are in fact dealing

here with a manifestation of the slipping stream instability. In parti-

cular, we think that it is a slipping stream mode effected by resistive

wall effects.30 The latter makes the instability "go" at frequencies less

than the cyclotron frequency, as observed by us. To verify this, however,

would require a measurement of the wavelength of the instability and com-

parison with the theoretically predicted dispersion equation. Unfortu-

nately, the measurement of the wavelength of the space charge fluctuations

is difficult if not impossible in our pulsed d-iode.

Other instabilities come to mind, particularly those at frequencies
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corresponding to the electron-cyclotron and electron-plasma frequencies.

The first can be ruled out on the grounds that all our measurements show

(Fig. 9) that the emission is broad band and occurs well-below the rela-

tivistic cyclotron frequency wc = eB/my. The second is ruled out for the

same reason, since for space charge limited flow, the plasma frequency w
p

equals the cyclotron frequency wc.

The presence of ions (due to anode and/or cathode plasma formation)

can lead to ion type of instabilities which have sometimes been seen 31in

conventional magnetrons. However, these instabilities result in low fre-

quency fluctuations in the range of tens of megahertz. If they are pres-

ent in our diode, they could not be observed by our measureing technique.

In conclusion, then, we have shown that a strong correlation exists

between the observed anomalous current flow across the relativistic mag-

netron diode when B z>B*, and the intense microwave emission emanating

from it. We believe that the origin of the emission is a form of the

slipping instability in the Brillouin space charge flow. A full electro-

magnetic and relativistic r,0 particle simulation code is under develop-

32
ment with whose aid we hope to be able to answer this question. In

particular, we expect that the code will yield information about the de-

pendence of the diode current on magnetic field (see Fig. 4), a problem

that has so far defied detailed theoretical understanding (but see

Mouthaan and Siisskind of Ref. 30).- Needless to say, the smooth-bore mag-

netron has little or no application as a device forgnerating microwaves.

It has poor efficiency, and the emission spectrum is broad and not readily

controlled. But, it is, so to speak, the basic building block of real

magnetron devices which differ from the smooth-bore in that the anode

block is pierced by a series of coupled resonators. The oscillations

seen in the smooth-bore diode are believed to come close to the startup
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conditions of the real device. Thus, in the initial state (often referred

to as the "preoscillation stage") the interaction is predominantly quasi-

electrostatic in character: the electrons interact collectively with longi-

tudinal space charge electric fields generated in the bulk and near the

surface of the space charge cloud. The associated Poynting flux is rela-

tively small. This differs from the fully developed oscillating stage of

the magnetron device which is characterized by strong energy exchange be-

tween the electrons and the transverse electromagnetic fields which exist

outside the main space-charge cloud, that is, between the anode and the

space charge bouindary. The strong interaction is the consequence of elec-

tromagnetic modes that are in phase synchronism with the rotating Brillouin

cloud. Now the Poynting flux becomes enormous, but this is the subject

matter of a subsequent report (paper II).
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FIGURE CAPTIONS

Fig.- 1. Geometry of the smooth-bore magnetron.

Fig. 2. Diode perveance as a function of the normalized magnetic field

B /B*, for different gap widths d. The perveance is determined
z

at a time during the 30 nsec pulse when maximum current is

drawn to the anode. The curves for the different gap widths

are displaced vertically with respect to one another by a fixed

interval, for easier visual presentation. Absolute magnitudes

of the perveance, at Bz=0, for each of the four gaps, are re-

spectively: 1052 (1149); 589 (522); 329 (310); 202 (205) PAV-3/2

where the values in parentheses are from the Child-Langmuir

theory.

Fig. 3. Normalized electron current I/IL as a function of the normalized

magnetic field Bz /1*. CL is the Child-Langmuir current in

the limit, B +0. The "hot tial" at B >B* has been omitted fromz z

this figure for the sake of clarity. The various points are ex-

perimental values obtained for different gap widths: 0 0, d

2.3 mm; S 0, d = 3.4 mm; X X, d = 4.4 mm; A A, d = 5.4 mm.

The solid line is from theory5,10 for a planar diode in a

uniform magnetic field. The dashed curve is from Eq. (2).

Fig. 4. Diode current and diode voltage as a function of magnetic field,

for a gap width d = 3.4 mm. The current (and voltage) are mea-

sured at a time during the pulse corresponding to maximum current

flow. The critical magnetic field B* - 5.5 kG.

Fig. 5. Brillouin drift velocity of the outermost space charge layer of

a planar diode, as a function of magneitc field, calculated for

different diode voltages V.
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Fig. 6. The azimuthal Brillouin current calculated in the limit

(r a-r c)/r a<<1 of a plasma magentron diode, as a function of

magnetic field. The value of current at B =B* shown by the
z

heavy dot is given by Eq. 3. Only part of this current appears

across the diode when magnetic insulation breaks down, but pre-

cisely what fraction depends on the spectrum and amplitude of

the turbulent rf fields, and is a largely unsolved problem (but

see Mouthaan and SUsskind of Ref. 30).

Fig. 7. Experimental arrangement used in studying microwave emission

from the diode.

Fig. 8. Total microwave power emitted in two frequency bands, as a

function of magnetic field; d = 3.4mm.

Fig. 9. Frequency and power of emitted radiation as a function of mag-

netic field. In each frequency band the magnetic field

BZ = B Z(max) is adjusted to give maximum power output (see Fig. 8).

Fig. 10. Spectrum of emitted radiation in the X-band range of frequencies;

f is the cutoff frequency of the TE01 mode.

Fig. 11. Observed radiation pattern (i.e. a polar plot of intensity as a

function of angle e) in the Ka band range of frequencies (26-40

GHz). The fact that the intensity does not go exactly to zero

on axis (0=90*) is partly due to the finite size of the receiving

horn and partly due to the presence of a weak component of ran-

domly polarized radiation.
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