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Abstract

Charged particle interaction with localized wave packets in a magnetic field is formulated using

the canonical perturbation theory and the Lie transform theory. An electrostatic wave packet

characterized by a wide range of group and phase velocities as well as spatial extent along and across

the magnetic field is considered. The averaged changes in the momentum along the magnetic field,

the angular momentum, and the guiding center position for an ensemble of particles due to their

interaction with the wave packet are determined analytically. Both resonant and ponderomotive

effects are included. For the case of a Gaussian wave packet, closed-form expressions include

the dependency of the ensemble averaged particle momenta and gc position variations on wave

packet parameters and particle initial conditions. These expressions elucidate the physics of the

interaction which is markedly different from the well known case of particle interaction with plane

waves and are relevant to a variety of applications ranging from space and astrophysical plasmas

to laboratory and fusion plasmas as well as accelerators and microwave devices.
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I. INTRODUCTION

The interaction of charged particles with electromagnetic waves under the presence of a

magnetic field is a ubiquitous phenomenon in a variety of natural and technological systems.

The wave-particle interactions are common occurrence in astrophysical and space plasmas,

and also have useful applications in beam physics and accelerators [1] as well as in laboratory

and fusion plasmas [2–4]. The charged particles, through their interaction, can collectively

exchange energy and momentum with the waves. In accelerators particles gain energy from

the electromagnetic fields, while in microwave sources and amplifiers energetic electrons give

up some fraction of their energy to waves [5]. In fusion plasmas, radio frequency waves are

used to heat the plasma, and also to generate currents in plasmas by imparting momentum

to particles. In addition to electromagnetic waves, lower hybrid (LH) electrostatic modes can

also be used for heating and especially for current drive in fusion plasmas [6]. In general, the

waves – either electromagnetic or electrostatic – are not in the form of plane waves. Rather,

they are wave packets that are localized in space and could also be of finite duration in time.

This is commonly the case in fusion plasmas where the externally applied rf waves have a

finite spatial extent as well as in space plasmas where LH solitary structures occur [7]. The

spatial or temporal extent of the wave pulses could be as small as a few cycles or even sub-

cycles, differing significantly from ordinary adiabatically modulated wave packets. So the

wave-particle interaction is a finite transit-time interaction which is qualitatively different

from the continuous interaction in the case of a plane wave.

In a uniform, static magnetic field, there are two basic mechanisms by which particles

exchange energy and momentum with wave packets – resonant and non-resonant. Consider a

Fourier component of a wave packet representing one plane wave of frequency ω and parallel

wave vector k‖. By parallel or perpendicular we mean the components of a vector parallel

or perpendicular, respectively, to the direction of the imposed magnetic field. For resonant

interactions, the parallel velocity of the particle has to be such v‖ = (ω − nΩc)/k‖ where

n is an integer and Ωc is the cyclotron frequency of the particle. Since a wave packet is

composed of many plane waves, the resonant interaction occurs only for those particles in

the distribution function that satisfy the above condition for any plane wave. On the other

hand, the non-resonant interaction is between particles and the envelope of the wave packet

and is referred to as the ponderomotive force [8]. The resonant and non-resonant interactions
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are clearly different. The condition for resonant interaction is satisfied in a restricted domain

of the dynamical phase space of the particle. The nonlinear ponderomotive effect depends

on the average force seen by a charged particle as it traverses the wave packet, and depends

on the particle velocity and the spatial profile of electric field of the wave packet [9]. The

bulk of the particles is affected by the ponderomotive force due to their interaction with the

spatially localized wave packet.

Since wave-particle interactions are of fundamental importance in physics and a paradigm

for dynamical chaos in Hamiltonian systems [9], the interaction with spatially or temporar-

ily modulated waves has been studied for many different, and special,cases. The motion of

particles in the presence of adiabatically varying waves has been studied in [10]. The inter-

action of particles, moving along the magnetic field, with periodic, spatially localized, static,

coherent, electrostatic wave packets has been studied in [11] while the single-pass interaction

was discussed in [12, 13]. The energy transfer between particles and wave packets has been

analytically formulated, in the Born approximation, in [14] as well as in [15]. An extensive

study of the ponderomotive force on particles has been carried out, for the adiabatic case,

by Cary and Kaufman [8], and, for the non-adiabatic, by Dodin [16].

In this paper, we study the dynamics of charged particles, in a uniform magnetic field,

interacting with an electrostatic field localized in space and time. The realm of validity of

the widely used electrostatic approximation is that of short-wavelength plasma modes; for

example LH waves fall into that category. The form of the field is assumed to be quite

general with no restrictions on the phase and group velocities of the wave packet. The

temporal and spatial extent of the wave packet is arbitrary, except for the requirement that

the perpendicular width of the wave packet is much larger than the Larmor radius of the

particle. Since we make no adiabatic approximations, the wave packets can range from

ordinary slowly modulated wave packets to wave fields that either span few cycles or are

sub-cycle. The main aim of this paper is the study of the finite transit-time interaction

effects on the collective particle dynamical behavior.

Our approach is based on a Hamiltonian action-angle formulation with the canonical

perturbation method [9] and Lie transform techniques [17] being utilized for the calculation

of angle averaged variations of the actions corresponding to the particle parallel and angular

momentum as well as its guiding center position. The method naturally couples analytical

information on single particle dynamics to the collective particle behavior as described by the
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aforementioned averaged action variations. The analytical results focus on the dynamical

aspects of the finite transit-time interaction and on the dependence of the particle collective

behavior on both particle and wave packet characteristics. Therefore, taking advantage of

the generality of the results, rather than specifying a particular plasma mode we present

characteristic cases of qualitatively different particle collective behavior. Depending on

the specific application aiming either to parallel or angular momentum or guiding center

position variation (or a mixture of them), the wave packet characteristics can be chosen

appropriately in order to optimize the desired effect. For the case of plasma particles the

wave packet parameters are obtained from a self-consistent plasma dispersion relation such

as that of LH waves exhibiting a wide range of phase and group velocity values. On the

other hand, for the case of a particle beam in the vacuum, as in accelerators or microwave

devices, the wave packet parameters are determined simply by the geometry and the wave

launching conditions.

II. HAMILTONIAN FORMULATION FOR THE PARTICLE DYNAMICS

The Hamiltonian of a particle with charge q and mass M , moving in a homogeneous,

static, magnetic field B = B0ẑ is

H0 =
1

2M

∣∣∣p− q

c
A0

∣∣∣
2

(1)

where A0(r) = −B0yx̂ is the vector potential corresponding to the prescribed magnetic field,

p = (px, py, pz) is the momentum of the particle with its components written out in Cartesian

geometry, and c is the speed of light. The canonical momenta are px = Mvx −MΩcy, py =

Mvy, and pz = Mvz, where v = (vx, vy, vz) is the velocity of the particle. The Hamiltonian

H0 describes the motion of a gyrating particle with cyclotron frequency Ωc = qB0/Mc. We

transform to the guiding center variables (gc) using the generating function

F1 = MΩc

[
1

2
(y − Y )2 cot φ− xY

]
(2)

The transformed Hamiltonian is

H0 =
P 2

z

2M
+ PφΩc (3)

where (Pz, z), (Pφ, φ) and (MΩcX, Y ) are the new pairs of canonical coordinates. (X, Y, z)

are the appropriate Cartesian components of the guiding center position vector. Pz is the
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component of the gc momentum along B, Pφ = Mv2
⊥/2Ωc = (Mc/q)µ = MΩcρ

2/2 is the

magnitude of the gc angular momentum, µ = Mv2
⊥/2|B| and ρ = v⊥/Ωc are the magnetic

moment and Larmor radius, respectively, of the particle, and φ = tan−1(vx/vy) is its gyration

angle. If we perform another canonical transformation using the generating function F1 =

(1/2)MΩcY
2 cot θ, the Hamiltonian H0 in Eq. (3) remains the same, but the gc position,

in the plane perpendicular to B, is expressed in terms of polar canonical coordinates θ =

tan−1(Y/X) and Pθ = (MΩc/2)R2
gc with R2

gc = X2 +Y 2. Finally, the dynamical phase space

of the particle is spanned by a set of canonically conjugate coordinates z = (J,θ), where

J = (Pz, Pφ, Pθ) and θ = (z, φ, θ) are the canonical momenta or actions, and positions or

angles, respectively. The actions Pz and Pφ correspond to momentum-like variables while

the action Pθ corresponds to a space-like variable.

We consider the interaction of the charged particle with a spatially localized wave packet

described by an electrostatic potential of the form

Φ = Φ0(r−Vt; t) sin (kr− ωt) (4)

where V is the group velocity of the wave packet. The fast variation within the wave

packet is given in terms of the angular frequency ω and the wave vector k. Without loss

of generality we can assume that k = k⊥ŷ + k‖ẑ is in the y − z plane. In the form for Φ0,

the argument r−Vt gives the spatial modulation while the argument t gives the temporal

modulation of the wave packet. This form implies that no significant spreading of the wave

packet takes place. The important consequences of spreading wave packets have long been

identified experimentally and theoretically [18]. However, the interaction of the particles

with the wave packet depends on the transit time of the particles through the wave packet.

For a large variety of applications it is realistic to assume that this time is small compared

to the characteristic time for the spreading of the wave packet.

The Hamiltonian, in gc coordinates, that includes the interaction of the particle with the

electrostatic potential is

H = H0 + H1 (5)

where

H1 =

(
1

2i

)
qΦ0 (r−Vt; t) ei(k‖z−ωt)e−ik⊥Rgc sin θeik⊥ρ sin φ + c.c. (6)
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Since H1 is a periodic function of φ, a Fourier expansion leads to

H1 =

(
1

2i

)
qΦ0 (r−Vt; t) ei(k‖z−ωt)e−ik⊥Rgc sin θ

+∞∑
m=−∞

(−1)mJm(k⊥ρ)e−imφ + c.c. (7)

The Hamiltonian H in Eq. (5) with H0 given in Eq. (3) and H1 in Eq. (7) is quite general

since we have not specified either the profile of the electrostatic potential or the group

velocity of the wave packet. The Hamiltonian H is, in general, non-integrable and so it

is difficult to analytically determine the effect of the wave packet on particles interacting

with it. In order to proceed analytically, we study the effect of the wave packet on particles

perturbatively with the wave amplitude being the perturbation parameter. We consider

the general case where the wave packet propagates obliquely with respect to the magnetic

field. In general, the wave packet characteristics, for example, its phase velocity, group

velocity, spatial and temporal extent, and amplitude, are given by linear and nonlinear

plasma processes. The linear characteristics are governed by the dispersion relation for

prescribed plasma parameters. We will calculate the average change in the momentum and

transverse gc position of an ensemble of particles due to their interaction with the wave

packet. The particle ensemble is assumed to be a distributed set of initial conditions. We

further assume that the Larmor radius of any particle is small compared to the spatial width

of the wave packet across B. We do not impose any other restrictions on the form of the

wave packet, so that our model applies not only to ordinary wave packets but also to few

cycles and sub-cycle wave packets.

III. CANONICAL PERTURBATION THEORY

We rewrite the Hamiltonian in Eq. (5) as

H = H0 + εH1 (8)

where ε is a dimensionless ordering parameter. We assume that the wave packet acts pertur-

batively on the motion of a particle, so ε is used as a perturbation (order-keeping) parameter

which, eventually, is set to unity.

The unperturbed particle motion is described by the zero-order Hamiltonian H0 given

in Eq. (3). The canonical momenta, or actions, Pz and Pφ are invariants of the motion,

so that the corresponding canonical angles z and φ, respectively, evolve linearly with time.
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The third set of canonically conjugate variables (Pθ, θ), corresponding to the transverse gc

coordinates, do not appear in H0. So they are both constants of the unperturbed motion.

The effect of the wave packet on particles is included in the perturbed Hamiltonian H1

which is a function of all the canonical actions and angles and of time. For an arbitrary

wave packet, the complete H is not integrable.

We use the canonical perturbation theory to perturbatively study the effect of the wave

packet on the motion of particles interacting with it [9]. The ordering parameter is ε,

and the general strategy is to construct near-identity canonical transformations T so that,

order by order, we can determine the invariants that describe the particle motion. At any

order of ε, the transformation T leads to a new Hamiltonian K which is a function of the

new canonical momenta only. These canonical momenta are the approximate invariants

of the motion. The Lie canonical transform formulation results in an explicit form for

the generating function. This is in contrast to the mixed-variable generating functions

which result in implicit relations between the old and the new canonical variables. The Lie

transformations are defined in terms of the operators T = e−L where Lf = [w, f ], w is the

Lie generating function, and [ , ] denotes the Poisson bracket.

In the Lie canonical perturbation scheme, the old Hamiltonian H, the new Hamiltonian

K, the transformation operator T , and the Lie generator w are each expressed as a power

series in ε

X(z, t, ε) =
∞∑

n=0

εnXn(z, t) (9)

where X represents any of the variables {H, K, T, L, w} [17]. We choose w0 such that T0 is

the identity transformation I. Then, to second order in ε, T and T−1 are

T = I − εL1 +
ε2

2
(L2

1 − L2) (10)

and

T−1 = I + εL1 +
ε2

2
(L2

1 + L2) (11)

The corresponding generating functions w1,2 are obtained from

∂w1

∂t
+ [w1, H0] = K1 −H1 (12)

∂w2

∂t
+ [w2, H0] = 2K2 − L1(K1 + H1) (13)
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The left hand sides of Eqs. (12),(13) are the total time derivatives of w1 and w2 along the

unperturbed orbits given by H0. Consequently, they are determined by integrating the right

hand sides along these orbits H0. The new Hamiltonians K1 and K2 are arbitrary and can

be chosen to be either functions of the new actions or constants. Clearly, the latter is a

convenient choice. Thus, in Eq. (12), we set K1 = 0 and solve for w1

w1 = −
∫ t

H1 (J,θ, s) ds (14)

with the integral being along the unperturbed orbits

J = const. (15)

θ = θ0 + ωt (16)

where ω = ∂H0/∂J = (Pz/M, Ωc, 0) is a vector composed of the unperturbed frequencies

for the three degrees of freedom. At second order in ε, we can also set K2 = 0 in Eq. (13),

and, similarly, solve for w2. However, as we show below, there is no need to have an explicit

form for w2 in our calculations.

IV. AVERAGED ACTION VARIATIONS

The time evolution, from an initial time t0 to time t, of any well-behaved function of

phase space coordinates f(z) is given by f (z(t; t0)) = SH(t; t0)f (z0) where z0 = z(t0; t0)

and SH(t; t0) is the time evolution operator corresponding to H. The derivation of SH(t; t0)

is equivalent to solving the equations of motion which, in general, is not possible for the non-

integrable system in Eq. (8). However, the Lie perturbation theory can be used to determine

a transformation to a new set of canonical variables z′ = (J′,θ′) with the corresponding

Hamiltonian K having a simpler evolution operator SK(t; t0). This is the case when K is

chosen to be a function of the new actions J′ only. Then J′ are constants of the motion and

SK(t; t0) evolves the angles θ′ such that

f (z′(t; t0)) = SK(t; t0)f (z′0) = f ((J′0,θ
′
0 + ωK(J′0)(t− t0)) (17)

where ωK(J′0) = ∇J′0K(J′0). In other words, the evolution of f(z) can be obtained by

transforming to the new canonical variables z′, applying the time evolution operator SK(t; t0)
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to the transformed function, and then transforming back to the original canonical variables

z. Then [17],

f (z(t; t0)) = T (z0, t0)SK(t; t0)T
−1(z0, t0)f (z0) (18)

where we have used the property that T commutes with any function of z [17]. The Lie

generators are determined for the finite time interval [t0, t] using the fact that w1(z0, t0) = 0

and w2(z0, t0) = 0, so that T (z0, t0) = I. The evolution of f (z) in Eq. (18) from t = t1 to

t = t2 is

f(J,θ)t2 = T−1(Jt1 ,θt1 + ωK(Jt1)(t2 − t1), t2)f(J,θ)t1 (19)

where f(z)t = f(z(t)).

The three components of the action vector J = (Pz, Pφ, Pθ) represent, respectively, the

linear momentum, the angular momentum, and the transverse gc position of the particles.

Then, setting f = P` in Eq. (19), where ` = z, φ, or θ, we obtain the variations of the

actions

δP`(t2) ≡ P`(t2)− P`(t1) =

(
L1 +

1

2
L2 +

1

2
L2

1

)
P`(t1) (20)

We define the ensemble average of any dynamical variable ζ as

〈ζ〉 =
1

(2π)2Lz

∫ ∞

−∞
dz

∫ 2π

0

dθ

∫ 2π

0

dφ ζ (21)

where the initial conditions of the particles are uniformly distributed in z, θ, and φ over

the ranges indicated by the limits of the integrals, and Lz is a normalizing length along the

z direction which will be determined later. From Eqs. (7), (12), and (13) we find, upon

integrating by parts, that

〈LnP`〉 = 〈[wn, P`]〉 = 0, n = 1, 2 (22)

This follows from the fact that w1,2 are periodic in φ and θ, and vanish as z → ±∞. Thus,

upon ensemble averaging, only the third term in the right hand side of Eq. (20) is non-zero,

so that

〈δP`〉 =
1

2

∂

∂P`

〈(
∂w1

∂`

)2
〉

(23)

The averaged variation of the actions of the particles, due to a complete interaction with

the wave packet, is obtained from Eq. (23) in the limit w1(t1 → −∞, t2 → +∞) ≡ w∞
1 .

The averaged variations are accurate to second order in ε even though w1 is accurate to first

order in ε. This is consistent with Madey’s theorem and its generalizations [19].
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V. ANALYTICAL RESULTS FOR A GAUSSIAN WAVE PROFILE

We apply the general formalism developed above to study the interaction of particles

with a Gaussian wave packet

Φ0(x, y, z; t) = Fe
−

(
x2+y2

a2
⊥

+ z2

a2
‖

)

e
− t2

a2
t (24)

where a⊥ and a‖ are the perpendicular and parallel spatial widths, respectively, at is a

measure of the temporal duration of the wave packet, and F is its maximum amplitude.

Substituting Eq. (24) in Eq. (7), and using Eq. (14) we obtain,

w1 = −qFτ

√
π

2i
e
− τ2|R|2

a2
t e−τ2|R×T−1|2e−i(k⊥Rgc sin θ−k‖z)

∑
m

Gm(t)Jm(k⊥ρ)e−
τ2Ω2

m
4 eiτ2ΩmR·T−1

e−imφ+c.c.

(25)

where:

R =

(
Rgc cos θ

a⊥
,
Rgc sin θ

a⊥
,

z

a‖

)
(26)

is the normalized gc position,

T−1 =

(
Vx

a⊥
,
Vy

a⊥
,
Vz − Pz/M

a‖

)
(27)

and V = (Vx, Vy, Vz) is the group velocity of the wave packet. The components of T−1

correspond to the inverse transit times of the particle through the wave packet along each

direction. The transit time vector T is not to be confused with the Lie operator T . τ , the

autocorrelation time of the wave packet as seen by the particles, is given by

τ−2 = |T−1|2 + a−2
t (28)

τ is a measure of the effective interaction time which takes into account both the transit

time of the particle through the wave packet and the finite duration of the wave packet. We

have also defined

Ωm = k‖Pz/M − ω −mΩc (29)

and

Gm(t) =
1

2

[
1 + erf

(
t

τ
− τ

2

(
2R ·T−1 + iΩm

))]
(30)

For Ωm = 0, Eq. (29) gives the resonance condition between the particle and the fast

oscillations within the packet. Equation (30) is the time dependence of the transient particle

dynamics during its interaction with the wave packet. Note that limt→+∞ Gm(t) = 1.
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The first exponential term in Eq. (25) depends on the finite time duration of the wave

packet. It approaches unity for wave packets which persist for long times (at → ∞). Its

effect is increased as at decreases, revealing the fact that particles with small |R| will have a

significant interaction with the wave packet during the time that its amplitude is non-zero.

The second exponential term in Eq. (25) reflects the dependence of the interaction on the

angle between the group velocity of the wave packet and the particle gc position, as it is

to be expected for scattering-like interaction. The dependence on the angle is given by a

Gaussian with its width being determined by the effective duration of the interaction τ .

The third exponential term Eq. (25) depends on Ωm and signifies the resonant character of

the interaction. When k‖ 6= 0, the effect of the interaction is localized in phase space to

regions around Ωm(Pz) = 0. These are the Doppler-shifted resonances with harmonics of

Ωc. The width of the area in phase space depends on τ . The limit as τ goes to infinity

corresponds to an interaction with plane waves having discrete spectra. The exponential

terms are then replaced, as expected, by the Dirac delta functions. We must emphasize that

the interaction with wave packets of finite spatial and temporal extent properly accounts for

the finite transit time interaction and, furthermore, removes singularities in the vicinity of

gyro resonances which plague the interaction with plane waves. The first order generating

function w1 includes all the essential information about the interaction of particles with

wave packets.

By substituting w1, as given from Eq. (25), in Eq. (23), we obtain quantitative results

for the averaged momentum variations < δP` > (` = z, φ or θ) which are accurate to second

order in ε. Averaging over z according to Eq. (21) involves integrating the first and second

exponential terms of Eq. (25) which have a Gaussian dependence on z. This results in the

appearance of a scaling factor related to the width in z of this Gaussian which can be chosen

as the normalization length Lz in Eq. (21)

Lz =
1

τ

√
∂2

∂z2

(
|R|2
a2

t
+ |R×T−1|2

) =
a‖√

2τ
√

V 2
x +V 2

y

a2
⊥

+ 1
a2

t

(31)

This normalization length directly reflects the physical fact that only a finite portion of the

particles with initial positions along the z direction actually interact with the localized wave

packet due to either its finite time duration (at 6= ∞) or its nonzero perpendicular group

velocity (Vx, Vy 6= 0).

11



Before discussing the results obtained from our perturbation analysis, it is useful to

relate our theory to previous studies on nonlinear wave-particle interactions. The case of

a plane wave corresponds to a wave packet having infinite time duration (at) and spatial

width (a⊥, a‖) and has been studied for perpendicular (k‖ = 0) and for oblique propagation

(k‖ 6= 0) of the electrostatic wave [2]. The cases of perpendicular and oblique propagation

correspond to qualitatively different dynamics since, for the former, the resonance condition

does not depend on the particle momentum. This corresponds to an intrinsic degeneracy

of the Hamiltonian system [9]. When k‖ 6= 0, the phase space of those particles is strongly

affected by the wave for which the resonance condition is fulfilled. For a multiple number

of plane waves, forming a wave packet with a discrete spectrum, the analysis is similar to

that of one plane wave [3] with the spectral components of the wave packet determining

the resonant parts of phase space. For parallel propagation (k⊥ = 0) of the wave, the

interaction with a particle is along the direction of the magnetic field and independent of

the gyration of the particle. The resonance condition is given by vz = ω/k‖ and the wave

strongly affects those particles whose velocities are equal to the phase velocity of the wave

along the magnetic field. For this case, particle interaction with a spatially localized wave

packet has been studied [13]. Localized wave packets with a compact support, so that

lim|r|→±∞ Φ0 = 0, have a continuous spectrum which is centered around the wave vector k

and the resonance condition does not lead to a discrete set of momenta in the dynamical

phase space. The collective effects of transit-time interactions on the wave-particle energy

and momentum transfer have been studied analytically for a particular set of wave packets

that have continuous spectra [14, 15]. These studies are special cases of the more general

particle interaction with wave packets described in this paper.

In the following, we investigate the dependence of the averaged variations of particle

transverse position (Pθ), parallel momentum (Pz), and the angular momentum (Pφ), on

parameters describing the wave packet. We normalize the various parameters as follows:

time is expressed in units of 1/Ωc, distances in units of 1/|k|, speeds in units of Ωc/|k|, and

the amplitude of the wave potential F in units of q|k|2/(MΩ2
c). We assume that, initially,

all particles have Pθ = 1 so that they can actually be approached by the wave packet. For

larger values of Pθ, from the first and the second exponential term in Eq. (25), the strength

of the particle interaction with the wave packet is weaker. We are primarily interested in

the effect of a spatially localized wave packet so we consider long duration times and set
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at = 105. In all cases, for a complete interaction of the particles with the wave packet,

the limit w∞
1 ≡ limt→∞ w1 is applied to Eq. (25) and substituted in Eq. (23). From these

equations it is evident that all variations are proportional to the square of (Fτ), which has

the dimensions of an action (energy × time), so that the normalized variations are defined

as

∆P` ≡ 〈δP`〉
(Fτ)2

, ` = z, φ, θ (32)

Moreover, the amplitude F of the wave packet is normalized with respect to its spatial extent

as F = (π3/2a2
⊥a1

‖)
−1.

For k⊥ = 0, i.e., a wave packet with just a parallel phase velocity, ∆Pφ = 0. In Figs. 1(a)

and 1(b) we plot ∆Pz as a function of Pz for various parameters. The variation of ∆Pz is

significant around Pz = 1, which corresponds to the resonance condition Ω0 = k‖Pz/M−ω =

0. The width in Pz around Pz = 1 where the variation is significant, depends on the spatial

width of the wave packet along the magnetic field (a‖). Comparing Fig. 1(a) and 1(b), we

note that a smaller a‖ leads to a broader interaction region in Pz. However, as the parallel

group velocity Vz is increased the magnitude of the variation in ∆Pz increases. For narrower

wave packets, with a‖ being small, the profile of ∆Pz is asymmetric with respect to the exact

resonance value Pz = 1. Narrow wave packets have a few periods of the oscillating wave.

The asymmetry with respect to Pz = 1 indicates that the interaction between particles with

parallel velocities greater than the phase velocity of the wave packet is different from that

of particles with parallel velocities smaller than the phase velocity. From Eqs. (28) and (27)

we note that for larger a‖, the dependence on Vz − Pz/M weakens. So that in Eq. (25), the

exponential term exp(−τ 2Ω2
m/4) depends on Pz through Ωm only. This gives a symmetric

profile around Pz = 1. In contrast, for a narrower wave packet the dependence on Pz through

Vz−Pz/M in Eq. (28) cannot be ignored. Then the exponential term depends on Pz through

both Ωm and τ leading to an asymmetry around Pz = 1.

Figures 2(a) and 2(b) show the variation ∆Pθ as a function of Pz. Since Pθ = (MΩc/2)R2
gc,

the ensemble averaged transverse position of the gc, Rgc, can be deduced from these figures.

The transverse drift of the gc requires that the perpendicular group velocity of the wave

packet be non-zero. In comparison with ∆Pz (as shown in Fig. 1), for the same wave packet

parameters, ∆Pθ is smaller by at least two orders of magnitude. This is due to the fact

that the underlying mechanisms of the two variations are essentially different: The parallel

momentum variation, when k‖ is nonzero, corresponds to a resonant effect that would take
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place whether the wave is localized or not, while the gc position variation effect depends on

the transverse localization of the wave packet and increases with decreasing a⊥.

The variations ∆Pφ, ∆Pz, and ∆Pθ as functions of Pz for a wave packet with k‖ = 0 are

shown in Fig. 3. The resonance condition Ωm = ω + mΩc = 0 is independent of Pz. So

the variation of ∆Pφ, ∆Pz, and ∆Pθ with Pz is through the first and second exponential

terms in Eq. (25) taking into account and depending strongly on the finite spatial width and

temporal duration of the wave packet. Note that these variations would be independent of

Pz for the case of an infinite wave spatial extent, as in the case of a plane wave. While for a

wave packet with phase velocity along the magnetic field we have ∆Pφ = 0, the variation in

∆Pφ for a wave packet with perpendicular phase velocity is due to the cyclotron resonance.

On the other hand, the variation in ∆Pz is a result of the ponderomotive force, and it would

be zero for the case of a plane wave. Figures 3(a), 3(b), and 3(c) correspond to the case

where the frequency of the wave packet is not exactly resonant with the cyclotron frequency

(ω 6= 1). Comparing these with the results shown in Figs. 3(d), 3(e), and 3(f) for the exactly

resonant wave frequency, we note that, apart from some form differences in the variations of

∆Pφ and ∆Pθ with Pz, the most significant differences are between the parallel momentum

variations ∆Pz (Figs. 3(b) and (e)). As the wave frequency becomes closer to the exact

resonant value ∆Pz becomes higher and narrower in Pz due to the exponential dependence

on Pz provided by the term exp(−τ 2Ω2
m/4) in Eq. (25). In this case the mismatch between

the wave frequency and the gyrofrequency determines the range of Pz for which the variation

∆Pz is significant. The maximum values of ∆Pz in the resonant case decrease rapidly with

increasing perpendicular group velocity and/or parallel spatial width of the wave packet.

All three variations in the resonance and off-resonance cases depend on the initial values

of Pφ (related to the Larmor radius) for the particles, which is the common case whenever

k⊥ 6= 0.

The interaction of particles with a wave packet having an oblique direction of phase

velocity is shown in Fig. 4. The variations in ∆Pφ, ∆Pz, and ∆Pθ are localized in the

vicinity of the resonances Ωm(Pz) = 0. The various peaks correspond to different integers

m. For broad wave packets with large a‖, the resonances in Pz are well separated and well

localized as seen in Figs. 4(a), 4(b), and 4(c). Also, the variation of ∆Pφ, ∆Pz, and ∆Pθ

with Pz is sensitive to the initial value of Pφ of the particles. For narrower wave packets,

the neighboring resonances can overlap leading to a broader profile. This is evident in Figs.
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4(d), 4(e), and 4(f). In all cases, very narrow resonance appears in the vicinity of Pz = 0

(shown out of scale in the plots in Fig. 4). Figure 5 shows the variation of ∆Pφ, ∆Pz,

and ∆Pθ with Pz in a narrow range around Pz = 0. The interesting behavior and the large

amplitude variations in the narrow range of Pz displayed in Fig. 5, show the strength of

the fundamental interaction between particles and wave packets when the velocity of the

particles matches the group velocity of the wave packet, i.e., particles are stationary in the

frame moving with the group velocity Pz = MVz. Such particles interact with the wave

packet for the duration time at. The third exponential term in Eq. (25) is maximum when

k‖Vz − ω − mΩc = 0 so that these particles feel a wave that has constant amplitude and

phase. This type of interaction is important not only due to the large values of parallel

momentum variation ∆Pz (two orders of magnitude larger than the other resonances shown

in Fig. 4(b)) but also due to its strong localization with respect to particle initial parallel

momentum Pz. However, in a given distribution function, the density of such particles is

usually small.

VI. SUMMARY AND CONCLUSIONS

We have developed a general formulation for the interaction of charged particles with an

electrostatic wave packet in a magnetic field. The magnetic field is assumed to be uniform

and stationary and the wave packet propagates at any arbitrary angle to the magnetic

field. The Larmor radius of the particles is assumed to be small compared to the spatial

dimensions of the wave packet. The change in ensemble averaged transverse guiding center

position, parallel momentum, and angular momentum of the particles is determined using Lie

transform canonical perturbation theory. The formalism includes resonant and non-resonant

wave-particle interactions. The resonant interaction is between harmonics of the cyclotron

frequency of the particles and the Doppler-shifted frequency of the rapid oscillations within

the wave packet. The non-resonant interaction is due to the ponderomotive force which

arises from the finite spatial extent of the wave packet. The general formalism allows for

wave packets with a wide range of phase and group velocities as well as spatial widths.

The formalism is applied to a Gaussian wave packet in order to provide closed-form

expressions elucidating the physics of the interaction. These expressions include all the

essential features of the interaction in terms of the ensemble averaged particle momenta and

15



gc position variations as well as their dependencies on wave packet parameters and particle

initial conditions. The effect of the finite spatial and temporal width of the wave packets are

taken into account through parameters such as the effective duration of the interaction. The

latter corresponds to the autocorrelation time of the wave packet as seen by the particles

and determines the width of the resonance in the momentum space. The effect of non-zero

group velocity of the wave packet is also included in these expressions taking into account

the scattering character of the interaction. Characteristic cases have been considered for the

study of particle momentum and spatial transport across the magnetic field showing marked

differences with the well known case of particle interaction with plane waves. The respective

results are relevant to a variety of plasmas ranging from laboratory fusion plasmas to space

and astrophysical plasmas as well as to applications related to accelerators and microwave

devices.
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FIG. 1: Parallel momentum variation for the case of a wave packet with phase velocity parallel to

the magnetic field (k⊥ = 0). The wave packet parameters are: k‖ = 1, ω = 1, Vx = Vy = 0, Vz = 0

(red, solid), 0.5 (green, dashed), a⊥ = 100, at = 105. (a) a‖ = 100, (b) a‖ = 10.
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FIG. 2: Guiding center position variation for the case of a wave packet with phase velocity parallel

to the magnetic field (k⊥ = 0). The wave packet parameters are: k‖ = 1, ω = 1, Vy = Vz = 0,

Vx = 0.1 (red, solid), 0.3 (green, dashed), a‖ = 100, at = 105. (a) a⊥ = 100, (b) a⊥ = 10.
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FIG. 3: Angular/parallel momentum and guiding center position variations for the case of a wave

packet with phase velocity perpendicular to the magnetic field (k‖ = 0) for particles having Pφ = 0.5

(red, solid) and 2 (green, dashed). The wave packet parameters are: k⊥ = 1, Vx = Vy = Vz = 0,

a‖ = 100, a⊥ = 100, at = 105. (a,b,c) ω = 1.1, (d,e,f) ω = 1.
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FIG. 4: Angular/parallel momentum and guiding center position variations for the case of a wave

packet with phase velocity oblique to the magnetic field for particles having Pφ = 0.5 (red, solid) and

1.5 (green, dashed). The wave packet parameters are: k‖ = 1, k⊥ = 1, ω = 1, Vx = Vy = Vz = 0,

a⊥ = 100, at = 105. (a,b,c) a‖ = 15, (d,e,f) a‖ = 5.

−1 −0.5 0 0.5 1
x 10

−4

0

0.05

0.1

0.15

0.2

Pz

φ

(a)

−1 −0.5 0 0.5 1
x 10

−4

−200

−100

0

100

200

Pz

Pz

(b)

−1 −0.5 0 0.5 1
x 10

−4

0

0.1

0.2

Pz

Pθ

(c)

FIG. 5: Angular/parallel momentum and guiding center position variations for the same case

depicted in Fig. 4(a),(b),(c) in a very narrow area around Pz = 0 (shown out of scale in Fig.

4(a)-(c)).
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