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Abstract

Ohmic energy confinement saturation is found to be closely related to core toroidal
rotation reversals in Alcator C-Mod tokamak plasmas. Rotation reversals occur at a
critical density, depending on the plasma current and toroidal magnetic field, which
coincides with the density separating the linear Ohmic confinement regime from the
saturated Ohmic confinement regime. The rotation is directed co-current at low den-
sity and abruptly changes direction to counter-current when the energy confinement
saturates as the density is increased. Since there is a bifurcation in the direction of the
rotation at this critical density, toroidal rotation reversal is a very sensitive indicator
in the determination of the regime change. The reversal and confinement saturation
results can be unified since these processes occur at a particular value of the collision-
ality.
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I. Introduction

It has been widely observed that Ohmic energy confinement in tokamaks increases
linearly with electron density, and then saturates at a critical density [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15]. An example of this behavior is shown in Fig.1, which
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Figure 1: The energy confinement time (from kinetic profiles)as a function of average
electron density for a series of 5.2 T, 0.81 MA Ohmic discharges. The dotted vertical
line indicates the boundary between the LOC and SOC regimes.The dashed line is
the neo-Alcator scaling, the solid line is the best fit to the low density points and the
dash-dot line is the ITER-89P L-mode scaling.

was obtained from a shot by shot scan of the electron density in 5.2 T, 0.81 MA (q95 =
4.3) plasmas from Alcator C-Mod [13]. The energy confinementtime was determined
from the kinetic profiles during the steady state portion of each discharge. The verti-
cal dotted line indicates the separation between the linearOhmic confinement (LOC)
and saturated Ohmic confinement (SOC) regimes, at a line-averaged electron density
around 0.8×1020/m3 for these conditions. The dashed line represents the neo-Alcator
scaling [16],τnA(ms) = 70 ne q

√
κ a R2, with a and R in m and ne in 1020/m3. This

line is fairly close to the low density data points. For thesedischarges, the elongation,
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κ, was 1.6, with a = 0.22 m and R = 0.68 m. This particular scalingwas developed for
circular plasmas (with anad hoc

√
κ added) and doesn’t include contemporary devices.

For comparison, the solid line indicates the best linear fit to the low density points. At
high density, in the saturated regime, the data points are well represented by the ITER-
89P L-mode confinement time scaling [17],τ89P (ms) = 48 I0.85 R1.2 a0.3 κ0.5 B0.2

A0.5 ne
−0.1 P−0.5 (with I in MA, B in T and A, the atomic mass of the background

ion, in AMU), shown by the dash-dot line. For these deuteriumdischarges the Ohmic
input power, P, was around 0.9 MW, and the agreement between the scaling and the
observations is quite good.

The behavior in the LOC regime is not well understood theoretically. The com-
monly acceptedansatz is that at low density, electron turbulence regulates the confine-
ment, while in the saturated regime, ion temperature gradient (ITG) modes dominate
[8, 11, 18]. In fact measured turbulence changes at the LOC/SOC transition are in
agreement with this concept [19, 20, 11, 21, 14, 15]. It should be noted that this tran-
sition is somewhat abrupt. Following the discovery of H-mode, very little effort has
gone into the understanding of these Ohmic confinement regimes. The recent results
associating Ohmic energy confinement saturation with core toroidal rotation reversals
[14, 15] have shed new light on this old problem.

The outline of this paper is as follows: the experimental setup is briefly described in
section II. The connection between the LOC/SOC transition and core toroidal rotation
reversals, unification of observations with collisionality and a comparison of results
from many different devices is shown in section III. Additional rotation reversal obser-
vations is presented in section IV, followed by discussion,including the results from
gyro-kinetic code simulations, and conclusions in sectionV.

II. Experimental Setup

These experiments were performed on the Alcator C-Mod tokamak [22], a compact
(R0 = 0.67 m, a∼ 0.21 m), high magnetic field (B≤ 8 T) device with strong shaping
capabilities. For the observations presented here, the plasma current was in the range
from 0.4 to 1.2 MA, the toroidal magnetic field was between 2.8and 8 T and the elon-
gation ranged from 1.5 to 1.7. Systematic density scans wereperformed shot by shot
from 0.3 to 2.0×1020/m3. Electron density and temperature profiles were measured
using Thomson scattering [23], Zeff was determined from visiblebremsstrahlung [23]
and core toroidal rotation and ion temperatures were measured with a high resolution
imaging x-ray spectrometer system [24]. The energy confinement time was evaluated
both from magnetics measurements [23] and from complete density and temperature
profiles. All observations presented here were from diverted Ohmic L-mode plasmas,
and the results are all averaged over sawtooth oscillations.

III. Ohmic Confinement Saturation and Rotation Reversals

The correlation between the LOC/SOC transition and rotation reversals is demon-
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strated in Fig.2, from electron density scans at 5.2 T, for two different plasma cur-
rents. For 0.62 MA discharges (q95=5.0), the critical density for rotation reversal was
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Figure 2: The energy confinement times from magnetics (top) and the core toroidal
rotation velocities (bottom) as a function of line averagedelectron density for 5.2 T
discharges with plasma currents of 0.62 MA (left) and 1.0 MA (right). The vertical
dashed lines indicate the locations of the co- to counter-current rotation and LOC/SOC
boundaries.

0.59×1020/m3 (bottom left), very close to the break in slope of the energy confine-
ment time [14, 15] (top left). Below this density the rotation is directed co-current
while above the threshold the rotation is in the counter-current direction (indicated by
negative values). Here the confinement time was determined from magnetics measure-
ments since full kinetic profiles were not available for all of the discharges. For the
1.0 MA plasmas (q95=3.2), the density for rotation reversal (bottom right) andcon-
finement saturation (top right) also coincide, but in this case at 0.96×1020/m3. From a
series of density scans at different plasma currents and fixed magnetic field (5.2 T), the
LOC/SOC transition density has been determined (from shot by shot density scans of
the energy confinement time) as a function of Ip, and is shown in the top panel of Fig.3.
This linear increase of the confinement saturation density with plasma current has also
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current for fixed magnetic field. The dotted lines have the same slope. The dashed line
is an empirical scaling [3].
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been observed in JFT-2M discharges [3]. The dashed curve represents an empirical
scaling, ncrit = 0.65

√
A B/R q [3], derived from four JAERI tokamaks. Shown for

comparison in the bottom panel of Fig.3 is the rotation reversal density, which has the
same dependence (and slope) as for the confinement saturation [14, 15], indicating the
close relationship between the two phenomena. The dotted line in the botom frame is
the best fit to the data points; the dotted line in the top frameis the same line as shown
in the bottom frame. There are many more points for the rotation reversals, since the
critical density can be determined in a single discharge from a slight density ramp, and
a change in sign of the rotation velocity is quite easy to detect [25, 26, 27, 14, 15].
To find the confinement saturation density, a complete shot byshot density scan is re-
quired, which can take the better part of a single run day. Also, the exact density where
the change in slope of the energy confinement time between LOCand SOC occurs is
not as precise as the reversal density (see Figs.1 and 2).

Shot by shot scans of other relevant parameters, the electron and ion temperatures,
Zeff and R/Ln (evaluated at r/a = 0.6), for the 0.62 MA, 5.2 T discharges of Fig.2 are
shown in Fig.4. The temperatures and Zeff vary monotonically with density. At the
LOC/SOC transition, the value of Te/Ti was∼1.35 [14]; this is close to Te/Ti ∼1.5
observed in ASDEX Upgrade at the LOC/SOC transition [18]. Incontrast, there is
an abrupt change in slope of the density gradient scale length (bottom frame) at the
transition density. In the LOC regime, as the density increases, the electron density
profile becomes more peaked. In the saturated regime, the density profile maintains its
shape. Similar behavior has been observed in ASDEX Upgrade plasmas as well [18];
at the LOC-SOC transition the value of R/Ln at the mid radius was∼5.5, the same as
for C-Mod in Fig.4.

In an attempt to unify the rotation reversal and confinement saturation observations,
and in order to understand why the processes occur at a different electron density for
different plasma currents, the collisionality has been examined. Shown in Fig.5 are
the central rotation velocities as a function of effective collisionality in the core for the
density scans at 0.62 and 1.0 MA. Hereνeff is the ratio between the collision frequency
and the curvature drift frequency, given byνeff ≈ R Zeff ne/Te

2, with R in m, ne in
1020/m3 and Te in keV. The reversals occur for similar values ofνeff , 0.32 for the lower
current and 0.42 for the higher current plasmas. These numbers are somewhat similar
in magnitude toνeff = 0.9 where the turbulence propagation (measured by Doppler
reflectometry) changed sign in ASDEX Upgrade plasmas [21]. The rotation reversals
also coincide (for the same scans) using the collisionalityν∗, the ratio of collision
frequency to the bounce frequency (ν∗ ≡ 0.0118 q R Zeff ne/Te

2 ǫ1.5) as shown in
Fig.6. For this plot,ν∗ was evaluated at the q=3/2 surface, which is the radius inside
of which the rotation reversal occurs [14]. For the 0.62 MA and 1.0 MA discharges,
the q=3/2 surfaces were located at r/a∼ 0.5 and 0.7, respectively. In this case theν∗

values for the reversals are very close, 0.41 for 0.62 MA and 0.45 for 1.0 MA. This
agreement may be fortuitious sinceν∗ is very sensitive to the electron temperature; at
other radial locations the agreement may not be so good. These values are also very
close to the numberν∗ = 0.35 evaluated at r/a=0.7, where the turbulence propagation
reversals were observed at ASDEX Upgrade [21].

Since the density for rotation reversal and confinement saturation is proportional to
plasma current (ncrit ∝ Ip ∝ q−1), it’s not surprising that this occurs atν∗ ∝ nq = const.
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function of electron density for 0.62 MA, 5.2 T discharges. The dotted vertical line
indicates the LOC/SOC transition density.
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Figure 5: The core toroidal rotation velocities as a function of νeff for plasma currents
of 0.62 MA (top) and 1.0 MA (bottom). Vertical lines indicatethe co- to counter-
current rotation boundary.
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This speculation can be further supported by comparing confinement saturation results
from several devices referenced in the Introduction. Shownin Fig.7 is the density of the
LOC/SOC transition at fixed q (between 2.8 and 3.8) as a function of major radius for
various tokamaks. These results are consistent with a 1/R scaling. The point from TCV
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Figure 7: The transition density from LOC to SOC as a functionof major radius for
different devices at fixed values of q. The solid curve represents 1/R.

[25] and those from C-Mod without error bars are from rotation reversals. For ITER
plasmas, the boundary density between LOC and SOC is expected to be≤1×1019/m3,
based on an extrapolation of Fig.7. These results suggest that confinement saturation
may occur at a fixed value of collisionality, withν∗ ∝ nRq = const. The C-Mod and
AUG results are consistent with a valueν∗ ≃ 0.4 for r/a∼ 0.7.

There is a factor of Zeff /Te
2 in the expressions for the collisionality. It turns out that

this is a weakly varying function of density near the transition point, as can be seen in
Fig.8, which was derived from Fig.4. The ratio is about 0.8 atthe revesal density, and
only changes by∼20% over this density range, thus contributing to the collisionality
variation only slightly.
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IV. Rotation Reversal Characteristics

In the previous section, rotation reversals were obtained by changing the electron
density, either by means of dynamic ramps or during shot to shot scans. Reversals
can also be induced by changing the plasma current, as is demonstrated in Fig.9. The
plasma current was ramped down in steps for this 6.3 T discharge, while the density
was held fixed. As the plasma current was reduced, the rotation reversed direction and
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Figure 9: The electron density (top), plasma current (middle) and core rotation velocity
(bottom) for a 6.3 T discharge with downward current ramps.

incremented in the counter-current direction. There was a delay in the response of the
rotation to the current ramps. This delay is between the momentum confinement time
(∼30ms) [28] and the current relaxation time. The dependence of the core toroidal ro-
tation velocity on plasma current is shown in Fig.10, from a shot by shot scan at fixed
magnetic field (5.2 T) and electron density (0.8-1.2×1020/m3). There is a linear in-
crease in the velocity with plasma current [29, 30], trending in the co-current direction.
The velocity reverses direction at around 0.9 MA for this range of density, consistent
with the density ramp results at fixed current [14]. This trend with plasma current in
L-mode plasmas is the inverse of the current dependence in H-mode, I-mode and other
enhanced confinement regimes, where the toroidal rotation velocity was found to scale
∝1/Ip [31, 32, 33].

Rotation reversals have also been observed with magnetic field ramps at fixed den-
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sity [14]. Shown in Fig.11 are the parameter time histories in a 0.8 MA discharge
with a downward magnetic field ramp. As the magnetic field was decreased, the core
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Figure 11: Time histories of the electron density (top), toroidal magnetic field (middle)
and core rotation velocity (bottom) in a 0.8 MA plasma with a downward magnetic
field ramp.

toroidal rotation velocity incremented in the co-current direction and eventually re-
versed. In general, with increasing magnetic field, the rotation velocity becomes more
counter-current [29, 34]. Shown in Fig.12 is the core rotation velocity as a function of
magnetic field at fixed plasma current (1.0 MA) and electron density (1.17×1020/m3)
from a shot by shot scan. Although the rotation velocity did not reverse in this scan, it
would be expected to change direction around 6 T, consistentwith other observations
[14]. Unlike the density dependence, where an abrupt rotation reversal is seen for a
small change in ne, there is a continuous dependence on plasma current and magnetic
field at fixed density, with weaker bifurcation. This may explain the lack of hysteresis
seen with magnetic field ramps [14]. Regardless of the dynamics, these trends with
plasma current and magnetic field are consistent with the notion that reversals occur at
fixed collisionality, withν∗ ∝ nq = const.

An important clue to the underlying cause for the rotation reversals and the LOC-
SOC transition can be found by examining associated changesin the core turbulence
characteristics. At low density, in the LOC regime, a feature in the spectra of density
fluctuations (measured with the phase contrast imaging diagnostic) extending up to and
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above kθ ∼ 10 cm−1 is present [14, 15], which disappears abruptly as the density is
raised and the rotation reverses direction. An example of the fluctuation spectrum S(k,f)
for a 5.2 T, 1.0 MA discharge is shown in Fig.13. This dispersion plot is the difference
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Figure 13: The density fluctuation spectrum S(k,f) of the difference between dispersion
plots taken at two times during a 5.2 T, 1.0 MA discharge.

between spectra obtained at electron densities of 0.98×1020/m3 (co-current rotation,
LOC regime) and 1.07×1020/m3 (counter-current rotation, SOC regime). These den-
sity fluctuations from the core of the plasma, which are only present below the critical
reversal density (LOC regime), have kθ between 2 and 11 cm−1 and kθρs between 0.15
and 0.7, consistent in nature with trapped electron modes (TEMs) [15], at least for the
higher k values. The slope of the features in Fig.13 indicates a phase velocity of around
3 km/s.

V. Discussion and Conclusions

The connection among rotation reversals, the transition between the LOC and SOC
regimes and changes in turbulence is well established. These observations can be uni-
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fied with the followingansatz [35]: at low collisionality, the core toroidal rotation is
directed co-current, the turbulence is dominated by TEMs, and Ohmic energy confine-
ment and density profile peaking increase with increasing collisionality. At a critical
value of the collisionality (ν∗ ∼ 0.4), the density profile peaking stops, TEMs abruptly
disappear, ion temperature gradient (ITG) modes dominate,the rotation switches to the
counter-current direction and Ohmic energy confinement saturates. Unfortunately for
the present observations, there are no direct measurementsverifying the dominance of
ITG modes at high densities following the reversal.

In order to test this concept, simulations have been performed using the gyro-
kinetic code GYRO [36]. Shown in Fig.14 are contour plots of the linear growth rates
of the most unstable modes with 0.25< kθρs < 0.75 in the a/Ln-a/LT plane. The solid
lines going from the bottom left to top right in both figures separate the regions of TEM
and ITG dominance. Depicted by the+ in the plot on the right is the operational point
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Figure 14: Contour plots of the linear growth rates (in unitsof cs/a) of the most unstable
modes (with 0.25< kθρs < 0.75) in the a/Ln-a/LT plane. The+ signs indicate the
location of discharges with ne = 0.3×1020/m3 (left) and 1.2×1020/m3 (right).

for a 0.62 MA discharge (q95 = 5.6) with an electron density of 1.2×1020/m3, which
indicates that the most unstable mode is ITG. Lowering the density (collisionality) a
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factor of 4 moves the operational point to the TEM branch, as shown on the left. This
is in qualitative agreement with the observations and the scenario described above.

Some open questions which remain regard why the LOC/SOC transition appears to
occur nearν∗ = 0.4 and for Te/Ti ∼ 1.4.

In summary, the close connection between rotation reversaland Ohmic energy con-
finement saturation has been demonstrated. Concomitant changes in the nature of den-
sity fluctuations and electron density profile peaking are also observed. These phenom-
ena occur at a very specific value of the electron density, which increases with plasma
current. A comparison of Ohmic confinement saturation on a large number of devices
indicates that this critial density scales with the inverseof the device major radius. The
last two points suggest that these processes occur at a fixed value of the collisionality.
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