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The retention of fuel in plasma facing components (PFCs) is an important issue for 

the viability of fusion – both in terms of economics and safety. The results of this study show 

that a single, un-mitigated, disruption can remove >30x that retained in a single, 1s, C-Mod 

discharge with molybdenum and tungsten PFCs.  The fuel is recovered due to heating of the 

near-surface (~ 100 microns) during the thermal and current quench periods of the disruption. 

A regression analysis of full current disruptions in a dataset of 3200 discharges leads to a 

scaling of fuel recovered approximately proportional to WTH
1xWMAG

2 where WTH and WMAG 

are the thermal and poloidal magnetic energy inside the vessel respectively. Scaling by 

surface area and disruption time scales to ITER indicate 5-10 MA plasmas with low thermal 

energy (e.g. during current rampdown) may be ideal for removing fuel from plasma-wetted 

surfaces. 
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1. Introduction 

Fuel retention in the many tokamaks operating with carbon PFCs is typically above levels 

consistent with what is required for ITER and beyond [1, 2]. This has engendered 

considerable effort to develop hydrogen removal techniques which range from oxidation of C 

layers [3, 4, 1, 2] to heating and ablation of such layers (lasers [3, 4, 1, 2] and mitigated 

disruptions [5] where the plasma thermal energy is converted to radiation.  

A recent study of D retention in Alcator C-Mod [6] found that retention in molybdenum and 

tungsten PFC surfaces during non-disruptive discharges was 1-2% of the incident fluence to 

divertor plates, not saturating over sequential discharges. In contrast to such high levels, post-

campaign analysis of a divertor tile gave retention fractions that were negligible compared to 

that for a single discharge (1000x lower). Based on a study of all disruptions occurring during 

a period of 3200 discharges it appears that the large difference between single-discharge and 

campaign-integrated retention could be explained by normally-occurring disruptions; the 

roughly 15% of all discharges ending in full current disruptions lead to, on average, fuel 
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release commensurate with the average amount of fuel retained in a given non-disruptive 

discharge.  

2. Diagnostics 

For these experiments we relied on simplistic integration of the gas pumped from the torus 

following the disruption to determine the gas recovered. Barotron gauges, which provide an 

absolutely-calibrated pressure, P, were digitized for a minimum of 5 minutes after each 

discharge. The pumping speed, S, was calibrated as a function of pressure. The resultant 

integral of gas removed (=SxP) is somewhat uncertain (10-20%) due mainly to uncertainties 

in the pumping speed. But for the large amounts of fuel recovered in this study that 

uncertainty was a small concern. 

Magnetics measurements were also required for this study. Both the thermal energy of the 

plasma and the plasma equilibrium are determined from flux loops and coil currents and 

analyzed using EFIT [7]. From the equilibrium the poloidal magnetic energy can be derived. 

3. Characterization of disruptions 

In a previous study it was found that the average amount of fuel recovered in disruptions 

roughly balanced the average retention during non-disruptive discharges [6]. Here we repeat 

the summary of that dataset in the form of Figure 1 as a starting point for the analysis and 

discussion that follows. Approximately 15% of the plasma discharges ended with a full-

current disruption. The corresponding D0 released in those disruptions, on average, was the 

equivalent to that retained in 6-7 non-disruptive discharges, thus giving a rough balance over 

the run period. We examined the residual gas analysis (RGA) of a small fraction of those 

disruptions where the RGA diagnostic worked properly through the disruption. We find that 

99% of the gas released is in the form D, D2 and D3 when it reaches the RGA. 
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To illustrate the strong effect of disruptions for high-Z PFCs we have used a model of the 

transport of D in the molybdenum lattice as a function of temperature and time [8]. Figure 2 

displays the amount of gas released from the first 50 microns of a Mo surface vs the 

temperature that layer is raised to for a 1ms pulse; the temperature for the first 50 microns is 

stepped up at the beginning of the heat pulse and then instantly dropped back down at the end 

of the pulse. During that period the various processes of detrapping of D0 in the lattice, 

diffusion through the lattice, and recombination from the surface [9] are all greatly enhanced 

(orders of magnitude). This allows the D0 to be liberated from the potential wells in the lattice 

(1.4 eV energy traps, typically due to imperfections) and quickly diffuse to the surface. The 

potentially limiting rate of surface recombination of D0 into D2 is ignored. If we assume, as 

measured in a previous studies [6, 9], that the D0 density in the lattice is approaching 1% 

concentration in the Mo then ~ 3.4x1022 D0/m2 are in that region and could be released. Thus 

for ΔT~ 1200K and 0.5 m2 of divertor area approximately 2x1022 D0 could be released, a 

value certainly within the range of that observed [6]. 

Having given some background on how disruptions can lead to temperature rises which then 

release gas we now return to the database of disruptions described earlier. The fuel recovered 

in all disruptions was fit to a model of the form Ane
αIP

βWTH
γ where the pre-diruptive values 

of density (ne), plasma current (IP) and plasma thermal energy (WTH) are the dependent 

variables. There was no dependence on density. Figure 3 displays the fuel recovered vs the 

prediction of the regression where we have substituted the total poloidal magnetic energy 

which is proportional to the square of the plasma current, 0.5LIp
2. The total inductance, L, is 

given for the simple circular plasma case: 

L = μ0R ln(8R /a) − 2 + 0.5li{ } (1) 

where li is the plasma internal inductance. As expected the energy available to flow to PFC 
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surfaces is linked to the fuel recovered. Figure 3 shows that the amount of fuel recovered can 

be 30-50x that retained in a single, non-disruptive discharge. The derived scaling captures the 

general trend of the data but not accurately. The large scatter is not surprising given that the 

history of the surface (conditioning, prior disruptions and the locations they heated, prior 

surface temperature) is very important.  

As both a test of the scaling relation derived above and an illustration of the effect of history 

on the fuel recovery we have applied the scaling to a set of sequential disruptive discharges. 

Figure 4a displays the fuel recovered for each of 10 discharges. Note that the second 

discharge did not end in a disruption, which is shown as a very slight negative recovery 

(retention) for that discharge. The plasma current and stored energy varied during that 

sequence is displayed in Fig. 4b. The model (Fig. 4c) does fairly well in reproducing the 

magnitude and trends in the data although the dependence on WMAG is only varied slightly 

and so not significantly tested. We also note that the disruption following a non-disruptive 

discharge, #3, leads to much more recovered than the model predicts. This is a good example 

of how history can have a strong effect on fuel recovery; the PFCs were ‘refilled’ to a small 

extent with D0 during discharge #2 leading the model to underestimate the fuel recovered. 

The model appears to overestimate the trend in fuel retention for discharges 4-10, presumably 

because the surfaces did not refill with D0 to the level of what the average disruption 

encountered in the database. We note that the depth into the C-mod PFC surface fuel reaches 

during a discharge ( ~10 microns) is significantly shorter than the depth heated by a 1 ms 

heat pulse (~100 microns). That would imply that discharges would be required to ‘refill’ the 

Mo lattice. Clearly a full non-disruptive discharge implants more D0 into the PFCs than the 

current rise and beginning of the full current period of disruptive discharges. 

It is not unexpected that there is a non-linear dependence of fuel retention on stored energy. 

While the surface temperature rise should be linear in the amount of energy reaching the 
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surface, all the rates for de-trapping, diffusion and surface recombination of D0 into D2 non-

linearly increase with temperature. One question is why there is a stronger scaling in WMAG 

than in WTH. While these are not independent (e.g. WTH ∝ IP
2 and WTH ∝ IP based on energy 

confinement scaling) it is possible that as the total energy available in disruptions increases at 

higher currents (dominated by WMAG) the plasma will be hotter and a smaller fraction of the 

conversion of magnetic to plasma energy will be transferred to PFCS by radiation. That 

would lead to a larger fraction of energy flowing to surfaces. 

4. Role of poloidal magnetic energy 

Given the strong dependence of recovered fuel on poloidal magnetic energy we examine the 

question of how much of the poloidal magnetic energy is really available to be converted to 

plasma energy and then flow to surfaces (as opposed to leaving the plasma volume through 

isotropic radiation). Figure 5 displays the radiated energy vs the sum of thermal plasma, WTH, 

and poloidal magnetic energy inside the vessel, WPMI, as part of a study of mitigated 

disruptions with the different gases shown [10]. We define WPMI as the integral of the 

poloidal magnetic field energy, BPOL,P
2/2μ0, over the vessel volume. The radiated energy from 

mitigated disruptions with medium- to high-Z gases roughly account for all of the available 

poloidal magnetic energy defined in this way. The use of He leads to effectively the same 

behavior as un-mitigated disruptions and will be considered un-mitigated herein. Assuming 

that the full transfer of WPMI to the plasma through Ohmic heating occurs irregardless of the 

type of disruption then, for non-mitigated plasmas, roughly 50% of (WTH + WPMI) is carried 

by the plasma to the PFCs – the subject of this paper. For the disruptions of Figure 5 WPMI is 

~ 75% (± 6%) of the total poloidal magnetic energy (0.5LIp
2) and can reach >5xWTH. 

5. Scaling to ITER 
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Given that disruptions lead to such high levels of fuel recovery in C-Mod we have explored 

what levels (magnetic and thermal stored energy) of disruptions would lead to the same level 

of temperature rises in an all-tungsten ITER divertor - thus opening the possibility of using 

low plasma energy disruptions of L-mode plasmas envisioned for the typical ITER current 

rampdown, to remove fuel from wetted surfaces where we expect the majority of fuel is 

stored in a single discharge. Use of the rampdown phase would mean that dedicated, full-

current, discharge time would not be needed for tritium removal. 

Let us first address how various energies, size, and times scale to ITER. We know that 

surface area, A, scales as R2 and the stored energy scales as R3 (assuming the same energy 

density in the plasma). Assuming that both the discharge length, τSHOT, and τCQ for ITER are ~ 

80x that for C-Mod (so scaling like R2) we can write the following: 

ΔT ∝
W /A
τ

τ1/ 2 =
W /A
τ1/ 2

∝
R

R
=1

ddiffusion ∝τSHOT
1/ 2 ∝ R2[ ]1/ 2 ∝ R

dheat ∝τCQ
1/ 2 ∝ R2[ ]1/ 2 ∝ R

 (2) 

 where ddiffusion and dheat are the depths of D0 diffusion into the PFCs over τSHOT and depth of 

heating during τCQ respectively. The implication of Eq. 2 is that the surface temperature rise 

in ITER could easily be the same as C-Mod and that the relative depths of heating and T 

diffusion are the same. We note we have ignored de-trapping but we do not think that is a 

limiting process. 

To scale from C-Mod to ITER we assume the following parameters stay constant from: a) the 

fraction of poloidal magnetic energy that is inside the vessel; b) the fraction of magnetic 

energy converted to plasma energy which then flows to surfaces; and c) the fractional area of 

the machine impacted by the disruptive heat load. Furthermore, while the thermal and current 

quench times in C-Mod are ~ 100 microseconds and 2 ms respectively, we have chosen 1 ms 
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and 40 ms for ITER [11]. We compute the temperature rise of the surface to the thermal and 

current quench heat pulses which, using the simplifying assumption, which is not strictly 

correct, that those 2 sequential heat pulses (thermal and current quench) can be treated as 

additive, by: 

ΔTSURF ~
2

ASURF πρcpκ
τTH
0.5WTH

τTH
+ τCQ

0.5 WCQ

τCQ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (3) 

where ρ, cp and κ are the density, specific heat and thermal conductivity respectively and the 

subscripts ‘TH’ and ‘CQ’ corresponding to the thermal and current quench. Lastly the 

thermal stored energy in ITER is calculated as a function of current (1-15 MA), density 

(0.45xnGreenwald) and input power (5-73 MW) for plasma elongation of 1.75 using the ITER 

H89 scaling [12]. The poloidal magnetic energy is calculated using equation 1 but adjusted 

for an effective minor radius using the plasma elongation. Figure 6a displays the power 

required, limited to 73 MW, to achieve enough WTH and surface temperature rise equivalent 

to a C-Mod disruption. Figure 6b demonstrates that 73 MW is not enough power at low 

currents and of order 6-7 MA are required in ITER to achieve the same temperature rise as a 

fairly robust C-Mod discharge (WTH =150 kJ, Ip = 1.5 MA). Note that all 73 MW are 

available; neutral beam shine-through prevents the beams from being used below ~6MA 

[13].  

6. Summary and discussion 

The fuel recovered in C-Mod disruptions can be large relative to that retained in a single, 

non-disruptive discharge. The amount recovered is dependent on both thermal and magnetic 

stored energies as well as the history of the material surfaces. The C-Mod experience raises 

the possibility that ITER might want to actively utilize un-mitigated disruptions during 

current rampdown of standard plasmas after the transition back to L-mode. The results of the 
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scaling used imply that it is worth pursuing for ITER as the heating engendered by the 

disruption would target surfaces where the highest fuel implantation occurs. 

There are reasons to be uncertain as to whether this technique will work for ITER. The power 

density (current density ~B/R) and impurity Z care the determining factors in how hot the 

plasma gets during disruptions and thus the relative split of plasma power losses between 

radiation and flow to PFCs. ITER has lower current density than C-Mod and so radiation may 

dominate. This is the general experience of JET, a large major radius machine with carbon 

PFCs [14] although the use of Be PFCs lowered radiation [15].  
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Fig. 1: Disruptions statistics showing when, during a plasma discharge, the disruptions 

occur. Full current disruptions occur in ~ 15% of discharges. 
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Fig. 2: Model calculation of the amount of the fraction of D0 removed from a thin surface 

region in a short heat pulse. 
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Fig. 3: Fuel recovered in disruptions vs the scaling derived from the data. WMAGNETIC is the 

total poloidal magnetic energy 
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Fig. 4: Fuel recovered in a sequence of disruptions. There is one non-disruptive discharge in 

the sequence. a) the actual amount recovered. b) the plasma current and thermal energy for 

each discharge; c) the prediction of the scaling from Fig. 3.  
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Fig. 5: The energy radiated during disruptions for different mitigation gases. The disruption 

is not mitigated for He gas cases. WMAGNETIC is the total poloidal magnetic energy inside the 

vessel. 
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Fig. 6: a) The input power required to achieve the desired thermal energy and surface 

temperature rise for each plasma current; b) The fraction of the C-Mod surface temperature 


	11JA015 cover sheet.pdf
	11ja015_full_word2008

