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Transport equations for particles and energy can be derived when the fluctuations

conserve adiabatic invariants. The transport equations determine both stationary

density and pressure profiles and the direction of the turbulence-driven fluxes which

can be inward or outward. An inward turbulent pinch is predicted which creates

stationary profiles and reverses direction depending on the density and temperature

gradients. The transport fluxes are independent of the underlying drive that leads

to plasma turbulence. For low frequency turbulence the formulation remains correct

when the collisional time scale is faster than the confinement time scale.
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Self-consistent estimates of transport driven by turbulence usually require computer-

intensive non-linear calculations. However, for broadband low frequency turbulence, a cross-

field flow proportional to the fluctuation intensity can be derived following the ergodic hy-

pothesis1 (also known as turbulent equipartiton) when the fluctuations conserve constants

of motion2–5. The resulting transport equations determine stationary density and pressure

profiles and the direction of the associated turbulence-driven fluxes. When the wave-particle

interaction is independent of pitch angle, the kinetic transport equations become identical

to the MHD quasi-linear transport equations6. The experimental observation of station-

ary profiles thus can serve as an indicator that turbulence-driven cross-field transport is

broadband and of sufficient level to dominate transport processes.

For plasma confined by a strong magnetic dipole, both pressure driven MHD modes and

low frequency “entropy modes” conserve the adiabatic invariants µ and J with µ the mag-

netic moment , µ = v2⊥/2B, and J the longitudinal invariant, J =
∮
v‖d`. In the Levitated

Dipole Experiment (LDX)8 a superconducting magnet is levitated in a large vacuum cham-

ber so as to avoid plasma losses parallel to the magnetic field lines. When the dipole coil is

levitated (as opposed to being mechanically supported) plasma confinement is observed to

improve markedly9,10, centrally-peaked density profiles result, and we observe a strong in-

ward particle pinch that is consistent with the measured fluctuation level11,12. The observed

density profiles are usually close to the stationary profiles as derived from MHD6 or from

turbulent equipartiton n7. When the magnet is supported rather than levitated, the pinch is

not observed. Observations of trapped particles in the earth’s magnetosphere show similar

inward fluxes driven by the random electric and magnetic fields that result from a variable

solar wind13.

Consider a turbulent spectrum of fluctuations in a collisionless plasma that satisfies Ωcj �

ωbj � ω with Ωcj, ωbj, ω respectively the cyclotron frequency and bounce frequency for

species j and the wave frequency. Under these conditions the adiabatic invariants µ and J are

conserved2. The flux function, ψ, an approximation for the canonical angular momentum,

is conjugate with the toroidal angle φ. In the absence of fluctuations ψ is conserved. The

toroidal curvature drift is ωd and in the presence of fluctuations for which ω ∼ ωd, ψ is no

longer conserved. Under this circumstance we can write a Lagrangian collisionless kinetic
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equation for f = f(µ, J, ψ, t)13,17–19 (ignoring density and heating sources) as follows:

∂f

∂t
=

∂

∂ψ

∣∣∣∣
J,µ

Dψ ∂f

∂ψ

∣∣∣∣
J,µ

(1)

Where we have assumed that the turbulent transport dynamics can be parametrized by a

turbulent diffusion coefficient, Dψ(µ, J, ψ) acting in flux space7,20, Dψ = 2τcR
2E2

φ, and τc is

the correlation time of the broad-band drift-resonant fluctuations. The particle flux implied

by Eq. (1) is

Γ = −
∫∫

dµdJ Dψ ∂f

∂ψ

∣∣∣∣
J,µ

. (2)

In a tokamak the diffusion coefficient Dψ is a function of pitch angle and “passing”

particles have a weak response to the fluctuations. Furthermore, trapped particle modes

tend to localize on the outside of the torus and therefore deeply trapped particles are more

strongly diffused than shallowly trapped particles. When the diffusion coefficient depends

on pitch angle, the fluxes will depend on the details of this dependence7.

In a dipole there is no rotational transform and therefore no toroidally streaming “pass-

ing” particles. Furthermore it has been shown that both MHD22 and entropy modes are

flute-like23. Noting that
∫
dµdJ =

∮
d`/B

∫
d3v we can integrate Eq. (1) over µ and J taking

Dψ = D, independent of ψ for simplicity, and we obtain:

∂N

∂t
= D

∂2N

∂ψ2
(3)

with N ≡ n(ψ)U(ψ) and U ≡ dV/dψ =
∮
d`/B is the magnetic flux-tube specific volume.

Thus, in a collisionless plasma, low frequency turbulence will tend to drive N(ψ) towards

the stationary state N = constant when one boundary has a zero flux boundary condition.

In the usual limit of a large collision rate compared to the diffusion rate the distribution

function, f , must be taken as a local Maxwellian, fM = (m/2πT (ψ))3/2 n(ψ)exp(−ε/T (ψ)).

Following Ref.7, converting variables from (µ, J) to (µ, ε) using dJ = dε(∂J/∂ε)ψ and using

dε/dψ|J = −∂J/∂ψ|ε / ∂J/∂ε|ψ and

∂f

∂ψ

∣∣∣∣
J,µ

=
∂f

∂ψ

∣∣∣∣
ε,µ

+
∂f

∂ε

∣∣∣∣
ψ,µ

∂ε

∂ψ

∣∣∣∣
J,µ

(4)

we can obtain for both the particle and energy density (i.e. pressure) flux:

 Γ

ΓS

 = −
∫∫ 1

ε

Dψ

(
∂fM
∂ψ

∣∣∣∣
ε

∂J

∂ε

∣∣∣∣
ψ

− ∂fM
∂ε

∣∣∣∣
ψ

∂J

∂ψ

∣∣∣∣
ε

)
dεdµ. (5)
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Frequently Dψ = Dψ(λ), λ = µ/ε with λ = µ/ε the pitch angle related variable. For a

sufficiently broad fluctuation spectra all particles will satisfy ωd ≈ ω thus satisfying the

condition for randomizing the flux invariant21. In a dipole the plasma can become unstable

to entropy modes24, and the plasma response would become independent of pitch angle. As

a result Dψ will be independent of λ and we can then integrate Eq. (5) to again obtain

Γ = −Dψ ∂(nU)

∂ψ
, ΓS = −Dψ ∂(pUγ)

∂ψ
. (6)

with γ = 5/3. In MHD γ enters as the adiabatic constant. Γ can be written as the sum of

a diffusive term (∝ U∂n/∂ψ) and a pinch term (∝ n∂U/∂ψ).

Thus turbulent fluxes are produced by gradients in (N = nU) and S = pUγ and they

drive the plasma toward stationary states characterized by constant or linear values of N

and S (solutions with a linear ψ dependence give rise to a steady-state density or energy

flow which implies that an internal floating coil is either absorbing or emitting). Alter-

natively we can consider that the temperature (T ≡ p/n) approaches a stationary state,

TUγ−1 ≈ constant. Thus we obtain the same stationary state for collisionless plasmas, for

semi-collisional and for collisional (MHD) plasmas. It has been shown from a quasi-linear

development of MHD6,14 that low frequency fluctuations that satisfy a “random phase ap-

proximation” lead to transport that can be described as a diffusion in flux space6,13,14 identi-

cal to Eqs. (6). In the absense of particle and heating sources, the particle number within a

flux tube, N =
∮
ndl /B ≡ nU , and the entropy density parameter, S ≡ pUγ, are stationary

when they are uniform. Furthermore, in the absence of inflows, turbulence creates particle

and heat fluxes that flatten gradients and drive ∂N/∂ψ, ∂S/∂ψ → 0.

Since, in a dipole, U(ψ) ∼ ψ−4 ∼ R4, with R the major radius, U increases rapidly

with radius, and an initially uniform density will exhibit inwards transport producing a

particle “pinch”11,15. Thus, while collisions tend to reduce density gradients, turbulence

driven transport in strongly magnetized plasmas tend to reduce the gradients of the flux

tube content, N , leading to inwardly peaked stationary profiles. Although a particle pinch

has been observed in tokamaks16, the effect of the particle pinch is much more dominant in

a dipole because the dipole’s rapid magnetic field falloff.

Eqs. (6) can be combined to show the relationship between the direction of the particle

flux and the plasma profiles:

Γ =
ΓS/(TU

γ−1) + neD
ψ dU
dψ

(γ − 1− η)

(1 + η)
, (7)
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with η = d lnTe/d lnne. For strong internal heating the pressure gradient will drive MHD

instability when ΓS = ∂(pUγ)/∂ψ > 0 and it is expected that the pressure profile will be

clamped close to the marginal profile. At maginality ΓS ∝ ∂(pUγ)/∂ψ ≈ 0 and Eq. (7)

becomes:

Γ = neD
ψ dU

dψ

(
γ − 1− η

1 + η

)
. (8)

For η > γ− 1 the particle flux is negative and the flux is inwards whereas when η < γ− 1 it

is outwards. The term dU/dψ indicates that this is a strong effect for a dipole (in a dipole

|dU/dψ| ∝ R5) and a relatively weak effect for a tokamak-like confinement device. Thus

for peaked temperature and/or a flat density gradient the density flux is expected to be

inwards and vice versa. From Ref.24 we observe that, in a dipole, a low frequency instability

termed the entropy mode is unstable for η both above and below γ − 1 with a stable zone

around η ≈ γ − 1 = 2/3 when ∂(pUγ)/∂ψ . 0. The pressure flux (ΓS) term in Eq. (7) can

contribute to the density pinch. For a MHD stable device ΓS < 0 and the pinch is increased

(Eq. (7)). Similarly, for a stationary density profile ΓN ∝ ∂(neU)/∂ψ ≈ 0 ( equal particles

per unit flux), we obtain from Eq. (7):

ΓS = pUγ−1Dψ dU

dψ
(η − (γ − 1)), (9)

indicating an outflow of energy occurs when η > γ − 1 and vica versa.

Using a local approximation it has been shown25,26 from thermodynamics that,

Sign(−n′)(Q̂/T0η + 3/2 Γ̂(γ − 1− η)) > 0 (10)

with Γ̂ the particle flux, Γ̂ =
∫
〈vrδf〉d3v and Q̂ the energy flux, Q̂ = 1/2

∫
〈vrmv2δf〉d3v

(notice U does not appear). Thus, in the absence of thermal transport, thermodynamics

requires inward particle transport, (i.e. a pinch, Γ̂ < 0) when η > γ − 1 and vica versa.

In the absence of particle transport (Γ̂ ≈ 0) and for η > 0, thermal transport is always

outward. Inwards thermal transport in the small η limit, as implied by Eq. (9), requires

that the turbulent diffusion be externally driven.

Non-linear simulations of stability in a dipole have been carried out in both a dipole

and a Z-pinch configuration. These studies show the growth and non-linear saturation

of entropy modes27,28. These simulations show the presence of a pinch when the entropy

mode is linearly unstable. Furthermore the entropy mode is seen to change character at

η = 2/3 resulting in a change of the sign of the pinch29. In the approach described here we
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only assume the presence of a turbulent spectrum that conserves µ and J (in the Z-pinch

J = rv‖). It thus appears that the observed pinch is a generic consequence of low-frequency,

broad-band turbulence. The resulting stationary profiles are independent of the intensity of

the fluctuations and only depend on the magnetic field structure. On the contrary, tokamaks

observe “critical gradient driven turbulence”30. In a tokamak, ion temperature gradient

(ITG) driven instability relates the temperature profile to the density profile. If the density

profile flattens, the ITG turbulence level will rise to constrain the temperature profile to one

having marginal stability.

In magnetic geometries not stabilized by good curvature, the density and temperature

profiles are determined by the magnetic geometry. Once there is sufficient heating to create

stationary profiles, further heating will increase the level of turbulence leading to increased

power flows which can off-load the additional heat. The total stored energy and particle

content will only change if the changes in the scrape-off-layer flows modify the plasma pa-

rameters at the boundary12. For a sufficient level of heating, an inward particle pinch is

predicted when η > γ − 1, which is the usual condition for core heating and edge fueling in

laboratory fusion experiments. The special significance of η = γ − 1 comes about because

this value implies that when nU and pUγ are stationary (equal particles and entropy density

per unit flux), an exchange of flux tubes will not change the density and temperature pro-

files. These predictions only require low frequency turbulence which conserves the adiabatic

invariants µ and J and do not depend on the origin of turbulence. If the fluctuations are

driven by an external source, such as the random modulations of the solar wind pressure

exerted on the Earth’s magnetosphere, then both the density and pressure can pinch21 and

the density and pressure become centrally peaked with η ∼ γ − 1.

In the quasilinear approach a turbulence-driven evolution of the background variables

is obtained by assuming that cross-mode terms average out (the “random phase” approxi-

mation) while the growing modes act as a diffusive term on the background profiles. The

diffusive modification of the background gradients will reduce the growth rates of the unsta-

ble modes (the quasilinear effect) but the unstable modes may also be damped by non-linear

coupling to damped modes which was seen to be the dominant effect leading to saturation

of the growing modes in the MHD limit6,14. Kobayashi et al. also show that the turbulence-

driven pinch that derives from the entropy mode can be formulated from quasilinear theory29

and again the amplitude of the turbulent-driven diffusion requires nonlinear simulations.
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The recognition that, in the small gyro-radius limit, the motion of charged particles in a

dipole field can be defined by the conservation of µ, J and ψ lead to the formulation of Eq. 1

when rthe ψ invariant is broken. This formulation is shown to produce a diffusion driven

pinch which is directed so as to lead to stationary profiles of density and temperature.
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