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Abstract

The density blobs present in the plasma edge in magnetic fusion devices can scatter radio fre-

quency (RF) waves through refraction. Using the geometric optics approximation for the waves,

a Fokker-Planck equation for the scattering of rays by a random distribution of blobs is de-

rived. It is found that the scattering can diffuse the rays in space and in wave-vector space.

The diffusion in space can make the rays miss their intended target region, and the diffusion in

wave-vector space can broaden the wave spectrum and modify the wave damping profile. For

ITER-type plasmas the wave scattering can lead to the electron cyclotron beams missing their

intended target region of growing neoclassical tearing modes.

Introduction

In fusion plasmas RF waves in the electron cyclotron (EC) and lower hybrid (LH) range of

frequencies are commonly used to modify the current profile. In ITER, EC waves are expected

to stabilize the neoclassical tearing mode (NTM) by providing current in the island region. LH

waves could be used in ITER to modify the current profile closer to the edge of the plasma.

These RF waves propagate from the excitation structures to the core of the plasma through an

edge region which is characterized by turbulence − in particular, density fluctuations [1]. These

fluctuations, in the form of blobs [2], can modify the propagation properties of the waves by

refraction and diffraction [3]. In this paper we formulate the theory for scattering of geometric

optic rays by randomly distributed density blobs in the edge region. In an ITER-type of plasma

environment, we find that for EC waves spatial diffusion is important. Since the distance of

propagation from the edge to the core of the plasma is of the order of a meter, the EC waves

could be deflected away from the intended target region. The diffusion of EC waves in wave

vector space could lead to a reduction in the current drive efficiency.

Fokker-Planck model for RF interaction with density blobs

The Hamilton-Jacobi ray equations for the wave-vector k and spatial position r at time t are [4]

dk
dt

= −∇rω,
dr
dt

= ∇kω,
dω
dt

=
∂ω

∂t
(1)



where ω (r,k, t) is the frequency of the RF wave. If η = ck/ω is the refractive index with k = |k|,
and we allow for η to be function of the density alone, then

η = η
({
ω2

pα (nα (r))
}
, θ

)
, ω2

pα (nα (r)) =
q2
αnα (r)
ε0mα

, θ = cos−1
(
k · iz

k

)
(2)

where qα and mα are the charge and mass, respectively, of species α, and θ is the angle of

propagation relative to the direction of the magnetic field (along the z-direction iz). We have

assumed that the density blobs are localized in the edge region over radial distances that are

small compared to the scale length of the magnetic field. So the magnetic field across the blobs

is assumed to be uniform. The spatial dependence is only through the density fluctuations n (r)

in the plasma frequency ωpα. The density in the edge region is assumed to be a sum of a

uniform background density and a spatially fluctuating density corresponding to the blobs. The

magnitude of the fluctuating density is taken to be small compared to the background density

and used as an expansion parameter for the refractive index. Then, to first order

nα (r) ≈ nα0 + δnα (r) , η ≈ η0 +
1
ε0

∑

α

q2
α

mα

∂η0

∂ω2
pα0

δnα (r) (3)

The Hamilton-Jacobi ray equations become
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ε0η
2
0
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≡ ṙ ≈ ik
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dη0
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where l = ct is a measure of the distance along the ray, c is the speed of light, IT = I− ikik is

a dyadic with I being the unit tensor and ik being the unit vector along k. From these equa-

tions it is easy to derive the correlation functions
〈
k̇ (r;k) k̇ (r + isσ;k)

〉
,
〈
ṙ (r;k) ṙ (r + isσ;k)

〉
,〈

k̇ (r;k) ṙ (r + isσ;k)
〉
, and

〈
ṙ (r;k) k̇ (r + isσ;k)

〉
, along the ray path for a statistical ensemble of

blobs. Here is is the unit vector along the direction of the group velocity, and < ..... > is an

ensemble average over a distribution of blobs. We can then define diffusion tensor

D(X) =
1

∆s

∫ ∆s

9
ds

∫ ∆s−s

−s
dσ

〈
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〉
(6)

≈
∫ ∞

−∞
dσ
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Ẋ′ [r(s);k] Ẋ′ [r(s) + isσ;k]

〉
(7)

where X = (r,k) is a six-dimensional phase space vector and ∆s is the correlation length for the

blobs. The prime refers to the rate of change of the fluctuations and is given by

Ẋ′ =
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The evolution equation for a distribution of rays f (X, l) is

∂ f
∂l

+

ik +
1

η2
0 sinθ

(iz · IT)
dη0

dθ
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∂
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]
(9)

Ray scattering in the cold plasma approximation

The angle of propagation of an electromagnetic wave in a cold plasma is [5]

tan2 θ =
P
(
η2

0−L
) (
η2

0−R
)

(
LR−S η2

0

) (
η2

0−P
) (10)

where

P = 1−
∑
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ω2
pα

ω2 , R = 1−
∑

α

ω2
pα

ω (ω+ωcα)
, L = 1−

∑

α

ω2
pα

ω (ω−ωcα)
(11)

S = (R + L)/2, D = (R−L)/2, and ωcα is the cyclotron frequency.

For a ray defined initially as a delta function in k space, the RMS broadening of the three

components of k can be determined analytically for an isotropic turbulence in randomly dis-

tributed spherical blobs with random radii [3]. We find
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where the x and y directions are perpendicular to the z direction along the magnetic field, L0 is

the distance of propagation along the ray,
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4
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is the scalar diffusion coefficient, ν0 is a dimensionless random variable which is a measure of

the density fluctuation in a blob, δ0 is the standard deviation of the random density fluctuations,

V0 is a measure of the volume occupied by the blobs, ∆r is the characteristic size of a blob, and

α = cos−1


η2

0 cosθ+
dη0
dθ sinθ

√
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From Eq. (12) we note that there is an effective transverse (to the magnetic field) broadening

of the wave vector. This leads to an angular deflection of the ray by an angle ∆α relative to the



path of the unperturbed ray,

|∆α| =

∣∣∣∣∣∣∣∣∣
1 +η0

η0
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∂θ2 −2

(
∂η0
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)2
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For the extraordinary X-mode propagating across the magnetic field, η2 = RL/S , while for the

ordinary O-mode, η2 = P. Their respective deflections are
∣∣∣∣∣
∆α

∆θ

∣∣∣∣∣
X

=
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D2P
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∣∣∣∣∣
O

=

∣∣∣∣∣∣1−
(P−R) (P−L)√

P (RL−PS )

∣∣∣∣∣∣ (17)

We use the above results to study the diffusive effect of blob scattering on RF waves in ITER-

like plasmas. For an electron-deuterium plasma we assume an edge magnetic field of 4.13 T,

an edge electron density of 1019 m−3, and the ECRF frequency to be 170 GHz. We further

assume that the relative edge fluctuations are 20% of the edge density and the edge temperature

is 200 eV. Then the ion Larmor radius ρi is 0.5 mm. Experimental evidence [6] suggests that the

fluctuation spectrum peaks around ∆r/ρi ≈ 15−30, so that, at the edge, ∆r can be as large as 1.5

cm. The number of blobs in the flux surface along the poloidal direction is Nb = Lp/ (2∆r) where

Lp is the poloidal arc length. In the radial direction the number of blobs is Nr = ∆b/ (2∆r) where

∆b is a measure of the radial distance travelled by the blobs. Estimates based on experiments

suggest that ∆b is between 3 cm and 15 cm. There are roughly Np = Nb×Nr blobs in a poloidal

plane occupying a volume V0 = 4π (∆r)2 Np/3. Assuming L0 ≈ 0.2− 0.3 m, Lp ≈ 0.6 m, and

that 20-30% of the radial propagation distance in ITER is populated by blobs, we find that the

O-mode beam will be deflected between 5 mm to 15 mm per meter of ray propagation. The

X-mode beam will be deflected between 1.5 cm and 7 cm per meter of ray propagation. The

deflection increases as the edge density increases. It is possible that the deflection could be large

enough so that EC waves miss the NTM island.
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