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Kinetic Theory for Distribution Functions of
non-Markovian Wave-Particle Interactions in Plasmas

Y. Kominis,1 A.K. Ram,2 and K. Hizanidis1

1School of Electrical and Computer Engineering, National Technical University of Athens,
Association EURATOM-Hellenic Republic, Zographou GR-15773, Greece

2Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

The evolution of a charged particle distribution function under the influence of coherent electromagnetic
waves in a plasma is determined from kinetic theory. For coherent waves, the dynamical phase space of
particles is an inhomogeneous mix of chaotic and regular orbits. The persistence of long time correlations
between the particle motion and the phase of the waves invalidates any simplifying Markovian or statistical
assumptions – the basis for usual quasilinear theories. The generalized formalism in this paper leads to a
hierarchy of evolution equations for the reduced distribution function. The evolution operators, in contrast
to the quasilinear theories, are time dependent and non-singular and include the rich phase space dynamics
of particles interacting with coherent waves.

PACS numbers: 52.25.Dg, 52.65.Ff, 52.65.Vv, 05.45.-a

The presence of coherent electromagnetic waves and
their interaction with charged particles are ubiquitous phe-
nomena in magnetized plasmas that are encountered in
space plasmas and in laboratory fusion devices. The pres-
ence of waves modifies the distribution functions of the
charged particles which, in turn, through Maxwell’s equa-
tions, modify the electromagnetic fields. The wave-particle
interactions can, for example, saturate the growth of an in-
stability in space plasmas, or change the current profile in
a fusion device.

The evolution of the particle distribution function, when
interacting with coherent waves, is usually described by
the quasilinear theory [1]. The theory leads to a velocity
(action) diffusion equation in which the wave-particle in-
teractions are included through a diffusion operator. It is
assumed that the electromagnetic waves continuously act
on the particles and that their motion is randomized, with
respect to the phase of the wave, after one interaction with
the wave. This is akin to the Markovian assumption used,
for example, in studying Brownian motion. The motion is
then characterized by completely uncorrelated particle or-
bits, phase-mixing, loss of memory, and ergodicity. These
statistical properties lead to an important advantage - the
long time behavior of particle dynamics is the same as that
after one interaction time with the wave. However, there
is one significant drawback. The diffusion coefficient is
singular, with a Dirac delta function singularity [1], and is
not amenable to implementation in numerical codes. More
importantly, the Markovian assumption is contrary to the
dynamical behavior of particles interacting with coherent
waves [2]. The phase space of the particles is a mix of
chaotic and coherent motion with islands of coherent mo-
tion embedded within chaotic regions. Furthermore,the
phase space is bounded with the effect of the wave being
limited to particles having a resonant interaction with the
waves. Near the boundaries of the bounded phase space,
or near islands, particles can get stuck and undergo coher-

ent, correlated, motion for times very much longer than the
interaction time. Even when the amplitude of the waves is
assumed to be impractically large so that the entire phase
is chaotic, as in the standard map, the quasilinear theory
fails to give an appropriate description of the evolution of
the distribution function [3]. The persistence of long time
correlations invalidates the Markovian assumption [4–6].

An additional complexity is related to the fact that, in
practice, particles do not continuously interact with the
same spectrum of waves. For example, in tokamaks, where
radio frequency waves are used for heating and current
drive, the waves fields are spatially confined. Any given
particle, during its toroidal excursion, will interact with the
fields over a short fraction of its single transit path length.
On its next transit, it will most likely have drifted, due to
the inhomogeneity of the magnetic field, away from the lo-
cation where the previous interaction took place. Thus the
interaction of particles with electromagnetic waves encom-
passes interesting and complex physics, which in most of
the realistic cases are not within the domain of validity of
the commonly used statistical assumptions.

We derive a hierarchy of functional mappings for the
evolution of distribution functions of particles interacting
with coherent electromagnetic waves under without resort-
ing to any statistical assumptions or phenomenological ar-
guments. The effect of the electromagnetic waves is as-
sumed to be perturbative. The unperturbed motion being
determined by the equilibrium magnetic field confining the
plasma [7]. The canonical perturbation theory is utilized
so that all the essential features of particle dynamics and
the corresponding inhomogeneous phase space are incor-
porated in the operators defining the functional mappings.
Under certain conditions, the mapping equations reduce to
the conventional Fokker-Planck action diffusion equation.
[2]

The Hamiltonian for the particle dynamics

H(J, θ, t) = H0(J) + εH1(J, θ, t) (1)
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consists of two parts: the integrable part H0(J) that is a
function of the constants of the motion J of a particle mov-
ing in a prescribed equilibrium field [7, 8], and

H1(J, θ, t) =
∑
m6=0

Am(J)ei(m·θ−ωmt) (2)

which includes the effect of electromagnetic waves and
other perturbations in the equilibrium field. z = (J, θ) is a
vector composed of the action (J)-angle (θ) variables, for
H0. In the guiding center approximation for an axisym-
metric system (tokamak), the three actions correspond to
the magnetic moment, the canonical angular momentum
and the toroidal flux enclosed by a drift surface. The re-
spective conjugate angles correspond to the gyrophase, az-
imuthal and poloidal angle [7]. ε is an ordering parameter
indicating that the effect of H1 is perturbative.

The time evolution of any well-behaved function f(z, t)
of z(t) and time t from time t0 to time t is given by
f (z(t; t0), t) = SH(t; t0)f (z0, t0) where SH(t; t0) is
the time evolution operator. The derivation of SH(t; t0)
is equivalent to solving the equations of motion. An appro-
priate way to determine SH(t; t0) is to transform to a new
set of canonical variables z′ = (J′, θ′) using an operator
T (z, t). The transformation is such that the new Hamil-
tonian K(z′) leads to a time evolution operator SK(t; t0)
that can be readily determined. A particularly useful trans-
formation is one for which K is a function of the ac-
tions J′ only. Then J′ are constants of the motion and
SK(t; t0) evolves the angles θ′ so that f (z′(t; t0), t) =
SK(t; t0)f (z′0, t0) = f(J′0, θ

′
0 + ∆θ′) where ∆θ′ =∫ t

t0
ωK(J′0, s)ds and ωK(J′0, t) = ∇J′0K(J′0, t).

The operator T (z, t) is determined using the Lie trans-
form theory: T = e−L where Lf = [w, f ]. The Poisson
bracket is defined as [a, b] = ∇θa · ∇Jb − ∇Ja · ∇θb.
The function w(z) is the Lie generator. The Lie transform
theory generates canonical transformations such the opera-
tor T commutes with any function of z [9]. This important
property implies that the evolution of f(z, t) can be eval-
uated by transforming to z′, applying the time evolution
operator SK(t; t0) to the transformed function, and then
transforming back to z. Thus [9],
f (z(t; t0), t) = T (z0, t0)SK(t; t0)T−1(z0, t0)f (z0, t0)

(3)
where T−1 = eL is the inverse operator.

For physical systems of interest described by (2), it is
unlikely that T can be completely determined. However,
for nearly integrable systems, the Lie transform theory can
be applied to determine T perturbatively as a power series
in ε [9].

The old Hamiltonian H , the new Hamiltonian K,
the transformation operator T , and the Lie generator w
are expressed as a power series in ε: X(z, t, ε) =∑∞

n=0 εnXn(z, t) where X represents any of the variables
H, K, T, L,w [9]. Here w0 is chosen so that T0 is the iden-
tity transformation. Through second order, the transforma-
tions T and T−1 are T0 = I, T1 = −L1, T2 = − 1

2
L2 +

1
2
L2

1 and T−1
0 = I, T−1

1 = L1, T
−1
2 = 1

2
L2 + 1

2
L2

1, re-
spectively. The generating functions are given by

∂wn

∂t
+[wn,H0] = n(Kn−Hn)−

n−1∑
m=1

Ln−mKm−mT−1
n−mHm

(4)
The left hand side of Eq. (4) is the total time derivative of
wn along the unperturbed orbits obtained from H0. Then
wn is determined by integrating along these orbits. In order
to eliminate the dependence of the new Hamiltonian on θ,
we impose the condition that Kn’s are either functions of
the new actions only or constants. Then,

w1 = −
∑
m6=0

Am(J)ei(m·(θ−ω0(J))t) e
iΩm(J)t − eiΩm(J)t0

iΩm(J)
(5)

where we have set K1 = 0 and we have defined Ωm(J) =
m·ω0(J)−ωm with ω0(J) = ∇JH0 being the frequency
vector of the unperturbed system. Similarly, we can set
K2 = 0 and derive an equation for w2.

The Lie generators in the finite time interval [t0, t] lead
to wn(z0, t0) = 0 and, consequently, T (z0, t0) = I . Since
Kn = 0, (n = 1, 2), the evolution operator SK is the
evolution in time along the unperturbed orbits given by H0.
Thus, SK = SK0 = SH0 . We can now determine the
evolution of f (z, t) in Eq. (3) from t = t1 to t = t2.

f(z)t2 = T−1(zt1 + ∆z, t2)f(z)t1 (6)

where f(z)t = f(z(t)) with ∆z being evaluated along
unperturbed orbits. Equation (6) is a functional mapping
which maps f at time t = t1 to f at time t = t2. If we
choose f = z, i.e., f is the set composed of the dynamical
variables, the mapping (6) gives a near-symplectic map-
ping for the evolution of z [10]. When f(z) is chosen to
be the particle distribution function, Eq. (6) is an approx-
imation to the original Vlasov (Liouville) equation to the
same order as the operator T−1. Equation (6) is an iterative
scheme for the time evolution of f in the same way as sym-
plectic [11], or near-symplectic [10], mappings are for the
evolutions of particle orbits. The accuracy of the mapping
depends on an effective perturbation strength which is pro-
portional to ε as well as to the time step ∆t = t2− t1 [11].
Thus, Eq. (6) applies to any perturbation strength provided
that the time step has been chosen sufficiently small to con-
trol the accuracy of the mapping.

For a particle distribution function f(J, θ), let us define
a function F (J, θs) where θs is a subset of θ. F is ob-
tained from f by averaging over the angles θ̄ which are not
in the set θs, i.e., θ̄ = θ − θs. Then, from (6)

F (J,θs)t2 =
〈
T−1(J, θs + ∆θs, t2)

〉
θ̄
F (J, θs)t1 (7)

where 〈· · · · ·〉θ̄ denotes averaging over θ̄. Here the opera-
tor T−1(z, t), averaged over θ̄, acts on a function of J and
θs.
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From the second order expansion, and the fact that all
functional dependencies on θ are periodic with respect to
θ, (6) we obtain

F (z̃, t2) = ∇z̃ [D(z̃, t2)∇z̃F (z̃, t1)]+C(z̃, t2)∇z̃F (z̃, t1)
(8)

with z̃ = (J, θs),

D(z̃, t) =
1
2




〈
(∇θw1)

2
〉

θ̄
−〈(∇Jw1) (∇θw1)〉θ̄

−〈(∇Jw1) (∇θw1)〉θ̄
〈
(∇Jw1)

2
〉

θ̄




(9)
and

C(z̃, t) = (〈∇θ (w1 + (1/2)w2)〉θ̄ , 〈∇J (w1 + (1/2)w2)〉θ̄)
(10)

The Lie generating functions wn are calculated in the inter-
val [t1, t2]. If we set t1 = t0 as the initial time and t2 = t
as the running time, differentiating (8) gives

∂F (z̃, t)
∂t

= ∇z̃ [Dt(z̃, t)∇z̃F (z̃, t0)]+Ct(z̃, t)∇z̃F (z̃, t0)
(11)

where Dt = ∂D/∂t, Ct = ∂C/∂t. Since, on the right
hand side, F depends on the initial time t0, Eq. (11) is not
a Fokker-Planck type of equation.

Substituting f = z in Eq. (6) gives

Ct = lim
∆t→0

〈(∆z)〉θ̄
∆t

, Dt = lim
∆t→0

〈(∆z)(∆z)〉θ̄
2∆t

(12)
where (∆z) is the variation of z. This form of Ct and
Dt is similar to the usual quasilinear diffusion coefficients
[13].

The Lie transform technique can be carried out to higher
orders in ε. However, the higher order corrections to parti-
cle dynamics lead to higher order derivatives of F appear-
ing on the right hand side of Eqs. (8) and (11) [12]. This is
analogous to the Kramers-Moyal expansion of the master
equation in stochastic processes [13].

Since Lie operators acting on any function of the dy-
namical variables can be commuted through the function
to act directly on the dynamical variables, the evolution of
the particle distribution function is directly related to sin-
gle particle dynamics. This is evident from (8) and (11).
Consequently, the Lie generating functions in D in (9) are
directly related to approximate invariants of the particle dy-
namics. When the infinite time interval is extended to in-
finity, the solutions to (4) give the approximate invariants
of the motion. So all the essential information for the reso-
nant structure of the dynamical phase space is included [2].
The inhomogeneity of the phase space due to the existence
of resonant islands is included in the quasilinear tensor D
through wn. The kinetic equation (11) includes the topol-
ogy of all phase space.

If we do not average over any of the angles, Eq. (11)
is the evolution equation for the full distribution function.

The sequential averaging of one angle at a time gener-
ates a hierarchy of evolution equations for the appropri-
ately angle-averaged distribution function. As the evolu-
tion is averaged over each angle, the dimension of the phase
space for the distribution function is correspondingly re-
duced. While each angle variable varies more rapidly than
its canonically conjugate action variable, they may not nec-
essarily evolve faster than the time for wave-particle inter-
actions. For example in a tokamak plasma the particle gy-
ration angle is averaged over since it corresponds to the
fastest time scale. However, the poloidal or toroidal angles
of the particle vary more slowly and can be included in the
hierarchical description [8]. The averaging process does
not affect the accuracy of the perturbation theory. The ele-
ments of D in (9) can be analytically evaluated even when
we include all the canonical angles. Then the effect of the
physics associated with averaging over one or more angles
can be directly determined by the change in each element
of D.

When all the angles have been averaged over, the result-
ing evolution equation (11) is for a distribution function
that is a function of the actions only. Then C = Ct = 0,
and D and Dt are completely determined by w1 in Eq.
(5). So the second order, in ε, time evolution equation for
the action distribution function is determined by first or-
der effects in the particle dynamics. This result is akin
to Madey’s theorem for wave-particle interactions in mi-
crowave sources [14]. Our procedure provides a relation
between the diffusion tensor and the friction vector in the
evolution equation for any Hamiltonian system with arbi-
trary number of degrees of freedom [15]. In action space,

D(J;∆t) =
∑
m 6=0

mm |Am(J)|2 1− cos (Ωm(J)∆t)
Ωm(J)2

(13)
and

Dt(J, t) =
∑
m6=0

mm |Am(J)|2 sin (Ωm(J)t)
Ωm(J)

(14)

where mm is a dyadic. Then Eq. (11), with Dt in (14),
reduces to a Fokker-Planck equation when

∇JF (J, t) ' ∇JF (J, t0) (15)

which relates the distribution at time t0 with that at time
t on both sides of Eq. (11). Physically, this implies that
we consider evolution over times that are smaller than the
relaxation time trel for F . We obtain a Fokker-Planck
equation with a time-dependent tensor Dt (14). In the
vicinity of the resonances given by Ωm = 0, the tensor
is continuous and non-singular. The resonance width de-
creases with time. The time-dependent diffusion tensor
Dt is similar to the “running diffusion tensor” discussed
by Balescu [16]. However, there is one signficant differ-
ence. The Dt obtained above depends on the dynamical
actions and includes inhomogeneous resonant structure of
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the phase space. Balescu’s tensor is independent of actions
and applies to a Markovian-type chaotic phase space.

The step size in time tper for integrating Eq. (11) is de-
termined, in first order perturbation theory, by the effec-
tive magnitude of H1. Shorter time steps are required near
resonances where Ωm = 0. Longer time steps are pos-
sible when the autocorrelation time tac for the waves is
smaller than the trapping time ttr in the waves [5]. This
is the premise for weak turbulence theory where either the
amplitudes of the waves are small, or the wave spectrum
broad enough. In the limit t → ∞, Eq. (14) gives the
time-independent quasilinear diffusion tensor

Dql(J) =
∑
m6=0

mm |Am(J)|2 δ (Ωm(J)) (16)

where δ is Dirac’s delta function. The long time limit in the
evaluation of w1 is justified only for statistically random
processes, such as a Markovian process, in which there is
phase mixing and rapid decorrelation of the particle orbits
[2]. The singular delta function is difficult to implement
numerically and, more importantly, excludes the short time
transient effects. Furthermore, the asymptotic time limit
results in a time-irreversible Fokker-Planck equation, while
the time-dependent Dt in (14), being an odd-function of
time, results in a time-reversible process.

In conclusion, we have derived a time-reversible evolu-
tion equation for the distribution function of particles inter-
acting with coherent waves in a plasma. From this master
equation, we derive a hierarchy of evolution equations for
dimensionally reduced distribution functions. The particle
dynamics or the wave spectra are not subject to any Marko-
vian, or statistical, assumptions which form the basis of
standard quasilinear theories. For particles interacting with
coherent plasma waves, long-time correlations exist even
in the chaotic parts of phase space [2]. These correlations
and the inhomogeneity of the dynamical phase space are
implemented in our evolution equations. The correspond-
ing time evolution operators are non-singular and time de-
pendent, an are capable of describing both transient and
asymptotic collective particle behavior. The appropriate
time steps for evolution depend on the effective strength
of the perturbating wave fields and the structure of the dy-
namical phase space.
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