

* Consorzio RFX, Euratom-ENEA Association, Padova, Italy

Plasma Science and Fusion Center
Massachusetts Institute of Technology

Cambridge MA 02139 USA

This work was supported by the U.S. Department of Energy, Grant No. DE-FC02-
99ER54512. Reproduction, translation, publication, use and disposal, in whole or in part,
by or for the United States government is permitted.

PSFC/JA-09-07

MDSplus Objects – Python Implementation

Fredian, T.W., Stillerman, J.A., Manduchi, G*

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78059617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MDSplus Objects – Python Implementation

T. Fredian ¹⁾*, J. Stillerman ¹⁾, G. Manduchi ²⁾

1) Massachusetts Institute of Technology, 175 Albany Street, Cambridge, MA 02139, USA

2) Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, Padova 35127, Italy

Abstract

MDSplus is a data acquisition and analysis software package used widely throughout the international fusion research

community. During the past year, an important set of enhancements were designed under the project name of “MDSobjects”

which would provide a common, powerful application programming interface (API) to MDSplus in programming languages with

object oriented capabilities. This paper will discuss the Python language implementation of this API and some of the capabilities

that this implementation provides for data storage and retrieval using the MDSplus system. We have implemented a new

MDSplus Python module which exposes the MDSplus objects features to the language. The internal MDSplus programming

language, TDI, has also been enhanced to be able to invoke Python commands from the TDI language. Now that Python is aware

of the complex data structures in MDSplus such as Signals, the language becomes a very good candidate for applications ranging

from data acquisition device support to analysis and visualization.

This work was supported by the U.S. Department of Energy, Cooperative Grant No.

DE-FC02-99ER54512 and by the European Communities under the contract or Association

between EURATOM/ENEA.

*
 Corresponding author. Tel: (617) 253-7623; fax: (617) 253-0627

E-mail address: twf@psfc.mit.edu.

1. Introduction

MDSplus
1,2,3

 is a data acquisition, data handling and

analysis system used widely in the fusion community. It

provides numerous powerful capabilities to simplify the

process of storing measurements or analysis results in

archives and to enable scientists to retrieve these data using

a wide variety of programming languages and data

manipulation tools. It provides a powerful expression

evaluator which can be used to manipulate the data on

retrieval and expressions can be stored in the archive to

define new data items which are computed when retrieved.

MDSplus also provides a remote data access capability

enabling scientists to access data from anywhere on the

Internet. The MDSplus system runs on many computing

platforms including Windows, MacOS, Linux and several

other variants of UNIX. It is used at over 30 fusion

experiment or modeling sites worldwide.

When MDSplus was designed in the late 1980‟s, it

included many object oriented features such as complex

data items which are essentially objects with named

properties and methods for operating on the objects.

However the application programming interfaces (API)

developed for MDSplus did not expose these features since

the primary API‟s were developed for non-object oriented

languages. The only method for accessing these feature was

the internal MDSplus expression evaluator language, TDI,

which has somewhat limited capability as a programming

language.

In 2008 a project was initiated by the authors to provide

an object oriented API to MDSplus. This project, named

“MDSobjects” is discussed in more detail in another paper

presented at this same IAEA Topical Meeting. One of the

programming languages targeted for an object oriented

interface to MDSplus was Python
4
. This paper will describe

some of the features of the Python MDSplus objected

oriented API and some ways it can be used to extend the

capabilities of the MDSplus system.

2. MDSplus Objects API

The MDSplus objects API consists of numerous classes

of objects. The three main super classes are the Tree class,

the TreeNode class and the Data class. The Tree class

corresponds to an MDSplus data storage set of files

containing a hierarchical structure of nodes which may

contain data. Establishing an instance of a Tree class opens

the MDSplus tree for access. The Tree class provides

methods for finding nodes in the tree structure.

The TreeNode class represents a single node of an

MDSplus tree. The TreeNode class has numerous properties

and methods which permit access to information such as

when data was stored in the node, the length of the data, the

data type of the data stored. Some of the methods enable the

programmer to easily retrieve or store data in a tree node.

The Data class is the super class of any data that can be

stored in an MDSplus TreeNode. It provides a long list of

methods and operator overrides for manipulating MDSplus

data. Numerous subclasses of the Data class are available

which represent the entire set of MDSplus data types. These

include arrays and scalars of basic data types such as

various sized integers, floats and textual data. More

complex subclasses of Data are available to represent some

of the more complex data types used in MDSplus such as

Signal, Functions, Dimensions, Ranges and many more.

3. Python Implementation

The Python implementation of the MDSplus objects

consists of a single Python package called “MDSplus”. This

package will be made available as part of the normal

MDSplus software downloads from the MDSplus web site,

http://www.mdsplus.org/ . Updates to the package will be

available using the easy_install capabilities provided by the

Python setuptools package which uses the Python Package

Index
5
 web site. The MDSplus package is written entirely in

Python. It uses a package called ctypes
6
 to call into the

MDSplus libraries. The MDSplus Python package does

require that the full MDSplus installation kit be installed on

the system before it can be used. The MDSplus package also

uses the NumPy
7
 package which provides efficient

manipulation of numeric and textual scalars and arrays.

The MDSplus Python package is still under

development but most of the commonly used functions are

complete and functional. The package has been installed on

tested with Python versions 2.4 and 2.5 on both Windows

and Linux platforms. The package contains some test

modules for testing before installing. These test modules

http://www.mdsplus.org/

will be expanded to test as many of the MDSplus

capabilities.

4. Sample Python session

The MDSplus package makes it very easy to utilize the

capabilities of the MDSplus system. Included below are

some simple examples which demonstrate how easy it is to

use.

>>> from MDSplus import *

>>> tree=Tree(‘cmod’, 1080326005)

>>> ip=tree.getNode(‘\\IP’)

>>> print ip
 \MAGNETICS::IP

>>> print ip.dtype_str
 DTYPE_SIGNAL

>>> ip_data=ip.record

>>> print ip_data
 Build_Signal(Build_With_Units(…

>>> print type(ip_data)
 <class 'MDSplus.compound.Signal'>

>>> print ip_data.data()
 [-1248.51367188 -1246.48620605 -935.371521 ...

This example demonstrates the opening of an MDSplus tree

and the referencing of the plasma current node called \IP.

That node is stored as an MDSplus signal in the C-Mod

experiment tree. In the example above the tree variable

becomes an instance of the Tree class, the ip variable an

instance of a TreeNode class and the ip_data variable an

instance of the Signal class which is a subclass of the Data

class.

5. Calling Python from TDI

The built in expression evaluator language in MDSplus

called TDI has been enhanced to enable the execution of

Python statements during expression evaluation. A simple

PY function has been added which takes a single argument

of the text of a Python statement. Data can be passed to and

from the Python environment to the TDI environment using

TDI variables. There is a method of the Python Data class to

set or get the values of these TDI variables. With the

capability to call into Python from the MDSPlus expression

evaluator one can utilize the powerful programming

capabilities provided by the Python language within the

context of the MDSplus expression evaluator.

6. New MDSplus Data Types

Two new MDSplus data types have been added to

complement the capabilities of Python; DTYPE_LIST and

DTYPE_DICTIONARY. These two types correspond to the

MDSplus Data classes of Dictionary and List in Python

which are subclasses of the Python dict and list classes.

Dictionaries and list are used frequently in programming

with the Python language. A Python list is simply an object

which lets you collect heterogeneous objects in an ordered

list. A Python dict is an object that lets you collect

heterogeneous objects and provide them with indexes so

you can reference these objects using a key value. The

easiest way to explain this concept is to use a simple python

example:

>>> mydict = {‘a’:42,’b’:”This is a string”}

>>> print mydict[‘a’]

 42

>>> print mydict[‘b’]

 This is a string

In this example we construct a dict object by assigning

string keys (a and b) to data objects (42 and „This is a

string‟). Then objects contained in the dict object can be

referenced by indexing the object using the keys.

Adding these data types to MDSplus enables the user to

store lists and dictionaries in an MDSplus tree and then

retrieve them and index into the lists or dictionaries.

MDSplus already had the concept of lists heterogeneous

objects implemented in its internals using a data structure

called an APD which is an array of descriptors.

Unfortunately there was no support in the TDI data

language for constructing or manipulating this feature. This

data structure was ideal for storing the new list and

dictionary data types.

With the Dictionary class it is possible to store arbitrary

structures of data in an MDSplus data file. To illustrate how

this might be done we have included a simple example.

Construct a Dictionary instance with nested Dictionaries and

store the data in the ‘MYNODE’ node of an MDSplus tree.

Note that simply assigning the data item to the node’s record

property results in writing the data to the MDSplus tree.:

>>> from MDSplus import *

>>> s1=Dictionary({‘signal’:Signal(sig1val,None,sig1dim),

 ‘comment’:’this is a comment’})

>>> s2=Dictionary({‘signal’:Signal(sig2val,None,sig2dim),

 ‘comment’,’this is another comment’}

>>> mydata=Dictionary({‘sig1’:s1,’sig2’:s2})

>>> tree=Tree(‘mytree’,shot)

>>> mynode=tree.getNode(‘\\TOP.DATA:MYNODE’)

>>> mynode.record=mydata

Retrieve the Dictionary data in the ‘MYNODE’ node and

access parts of the Dictionary instance using keys:

>>> from MDSplus import *

>>> tree=Tree(‘mytree’,shot)

>>> mynode=tree.getNode(‘\\TOP.DATA:MYNODE’)

>>> mydata=mynode.record

>>> s1sig=mydata[‘sig1’][‘signal’]

>>> s1com=mydata[‘sig1’][‘comment’]

Currently only the Python MDSplus package can be used to

easily manipulate these new data types. We will explore

adding TDI functions for accessing these data types as well

as adding these data classes to MDSplus object

implementations in other languages.

7. Remote Access with MDSplus Objects

In the current design and implementation of MDSplus

objects there are no provisions for explicitly connecting to a

remote MDSplus server to access data. Until this capability

is added you are advised to use other packages which

implement the thin client capabilities (mdsconnect,

mdsopen, mdsvalue, etc.) such as the pmds
8
 Python

package. One can still use the MDSplus „distributed client‟

mode to access remote data by specifying a server in the tree

path definitions which tell MDSplus where to locate the

MDSplus trees. The thin client connection is available

through the TDI expression language however which is in

turn accessible via the MDSplus objects. In fact, some

remote fetch and remote store functionality is being

explored utilizing the TDI thin client functions and the

Dictionary and List classes of the Python MDSplus objects.

Using this capability it is possible to construct a list of

expressions to be evaluated on a remote host and to return

the answers to those evaluations in a single transaction.

Similarly it is possible to construct of dictionary of node

names and data to send to a remote host in one transaction

and then stored in MDSplus trees on the remote host. With

this capability one could imagine much more efficient

transmission of data especially when transfer data over high

latency long distance Internet connections.

8. Python MDSplus Device Support

The MDSplus data acquisition system is very

extensible. There are mechanisms for adding support for

new data acquisition devices which require specialized code

for configuring the devices and reading or write data from

the devices and storing the results in the MDSplus trees.

Prior to this MDSplus Python Objects work, there were two

methods for implementing specialized device support;

compiling and linking code into shared libraries or writing

the support code in the MDSplus TDI programming

language. During the implementation of the Python

MDSplus objects package it was discovered that it would

relatively simple to add the capability of developing device

support written in Python. This capability was added to the

MDSplus system so now one can develop device support

using only the Python programming language. Since the

MDSplus Python package lets you construct MDSplus data

types natively using the Python language this provides a

very powerful platform for developing the specialized code

for supporting new data acquisition hardware. A tutorial on

how to develop device support using the Python

programming language is provided on the MDSplus web

site.

9. Future Directions

It is anticipated that work will continue to enhance the

MDSplus Objects implementation adding feature such as

tree editing and perhaps some form of thin client methods or

objects. It is hoped that the MDSplus Object API will be

consistent across all of the object oriented languages that

will be supported. As these implementations are performed

it is expected that additional capabilities will be added to

take advantage of some of the features of the different

languages. If appropriate, these capabilities will then be

adopted in the existing implementations.

10. Conclusions

The “MDSobjects” project was very successful. Initial

experiences with interfacing MDSplus with object oriented

languages have been quite positive and there appears to be a

much more natural programming interaction with MDSplus

using an object oriented approach. The object oriented

characteristics designed into MDSplus over 20 years ago are

finally exposed to languages that can take full advantage of

them.

11. Acknowledgements

We have received numerous suggestions from MDSplus

users worldwide which continue to lead us in directions to

improve the system making it more useful for a wider

variety of applications. We like to thank Tom Osborne from

San Diego for his work on the original Python interface to

MDSplus. We would also like to thank Brian Nelson from

the University of Washington for his suggestions on the

Python implementation.

1 T.W. Fredian, J.A. Stillerman, M. Greenwald, “Data acquisition

system for Alcator C-Mod”, Rev. Sci. Inst., January 1997,

68(1), pp 935-938.
2 T. W. Fredian and J. A. Stillerman, "MDSplus: Current

Developments and Future Directions", Fus. Eng. Des., 60,

(2002), 229
3
 http://www.mdsplus.org/

4
 Python Programming Language, http://www.python.org/

5
 Python Package Index, http://pypi.python.org/

6
 Ctypes Python Package,

 http://python.net/crew/theller/ctypes/
7
 NumPy Package – http://numpy.scipy.org

8
 Pmds Python Package developed by Tom Osborne,

 http://diii-d.gat.com/~osborne/python

http://python.net/crew/theller/ctypes/

	psfc-report-cover2
	09ja007_full.pdf
	Introduction
	MDSplus Objects API
	Python Implementation
	Sample Python session
	Calling Python from TDI
	New MDSplus Data Types
	Remote Access with MDSplus Objects
	Python MDSplus Device Support
	Future Directions
	Conclusions
	Acknowledgements

