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Resonant wave-particle interactions form the underlying mechanism of a variety of phenom-

ena occurring in nature as well as in technological applications and devices, where a plasma

or a particle beam interacts with electromagnetic waves. Among the most important applica-

tions is the interaction of rf radiation with tokamak plasmas in fusion devices for the electron

cyclotron resonant heating (ECRH) and current drive (CD) [1], and the electron beam interac-

tion with electromagnetic waves in gyrodevices for the high-power, high-frequency microwave

generation [2]. The presence of an electromagnetic (or electrostatic) wave results in perturba-

tion of the free particle motion, so that a test particle can either gain or lose energy, depending

drastically on its initial position and momentum. Its motion can become chaotic under certain

conditions where resonance overlap occur in the phase space of the system. The collective dy-

namical behavior of a large ensemble of such particles determines the state of the system as

well as the energy exchange between the wave and the particles and its study utilizes a kinetic

theory description [3]. In most cases the kinetic equation governing the evolution of the particle

distribution function is simplified, under certain assumptions, to a quasilinear diffusion equa-

tion (QDE) of the Fokker-Planck type [3]. The quasilinear diffusion equation, describing an

irreversible process corresponding to slow time diffusion of particles and respective wave ab-

sorption, is currently the main model for studying the interaction of electromagnetic waves with

plasmas. The standard derivation procedure [3] of the QDE utilizes a rather heuristic approach,

under which several assumptions come into play. However, the lack of a rigorous method for

deriving the QDE as a low order approximation of the original kinetic equation, results to the

difficulty of proceeding to a higher order approximation in a unified context and defining a

hierarchy of approximating equations, with corresponding domains of validity. The domain of

validity of the quasi-linear theory can be investigated in terms of the nonlinearity parameter

[1] defined asεNL = t f /τbE, wheret f andtbE are the particle flight time through a wavepacket

and the oscillation period of a particle trapped inside the wave, respectively. The limiting cases

εNL ¿ 1 andεNL À 1 correspond to the quasilinear and the adiabatic [1] case, respectively.

Considering thatεNL ∼ tanχ, [1]whereχ = tan−1(v⊥/v‖) is the pitch angle of particles, there

is always a cone in the velocity space that falls into the nonlinear regime.



The main aim of this work is to provide a unified context under which the collective particle

behavior interacting with an electromagnetic wave can be studied in terms of rigorously ob-

tained analytical approximations of phase averaged quantities and approximate diffusion equa-

tions. More importantly, the adopted method allows for extending these results to higher order:

It is shown that a third order canonical perturbation analysis allows for fourth order accurate

calculations of phase averaged quantities, in analogy with the Madey’s theorem, and can also

be used in the derivation of a higher order diffusion equation. The latter includes higher order

derivatives of the distribution function (than the QDE) and can be considered as a deterministic

analogue of a higher order expansion of the master equation of a stochastic process (chap. 9,

Ref. [4]).

We consider a wave electric field consisnting of multiple wavepackets and having the form

E = ∑
i

E(i)
0 (r)ℜ

[
f(i)F(i)(r)ei(k i ·r−ωit)

]
(1)

whereE(i)
0 (r) is the amplitude which is constant along the magnetic field (assumed to be uni-

form), f(i) ≡ E(i)/|E(i)| is the complex polarization vector,k i is the wave vector,ωi is the wave

frequency, and the functionF(i)(r) describes the electric field profile. A Cartesian coordinate

system(x,y,z) is used so thatB = ezB0 andk i = exk⊥,i + ezk‖,i , where(ex,ey,ez) are the cor-

responding unit vectors. In the following, it is assumed that the perpendicular scale ofE(i)
0 , f(i)

andF(i) is large compared to the particle gyration radius and the variation of the polarization

vector along the magnetic field is considered negligible, resulting toE(i)
0 = const, k i = const

andF(i)(r) = F(i)(z). A simplified Hamiltonian describing the particle motion under interaction

with the waves has the following form:

H = H0(J)+ εH1(J,θ , t) (2)

H0(J)=J2, H1(J,θ , t)=−1
2

E(2J)k0/2eik0θ g(t)+c.c. (3)

The parameterε is a dimensionless order-keeping parameter, which can be set equal to unity in

the final results. The effective strength of the perturbation introduced by each wave is directly

related to the nonlinearity parameterεNL as given in [1].(J,θ) are the action-angle variables

of the unperturbed systemH0(J) describing the free particle motion (under the absence of the

wave), with their relation to physical particle variables as in [7]. The functiong(t) provides the

total wave field determined by the profileF(i)(z) and the frequency mismatch (Ωi) with respect

to thek0 harmonic of the gyrofrequency, of each wavepacketg(t) = ∑i w
(i)
E F(i)(t)ei(k0θ−Ωit).

According to the method of Deprit [5], the old HamiltonianH, the new HamiltonianK and

the transformationT along with the Lie generatorw are expanded in power series ofε. The



equations providing the Lie generator function at ordern can be written in the general form

∂wn

∂ t
+[wn,H0] = ∑

m6=0

Pn,m(J, t)eimk0θ (4)

wheren is the order of perturbation andm is the harmonic number of the corresponding term.

Their solutions are given as

wn = ∑
m6=0

Fn,meimk0θ , Fn,m =
∫ t

t0
Pn,m(J,s)eimk0ω0(s−t)ds (5)

with ω0 = ∂H0/∂J.

For the specific Hamiltonian (2), up to third order, we have the nonzero terms

P1,1 =
1
2

E(2J)k0/2g(t) (6)

P2,2 = −ik0P2
1,1

∂
∂J

(
F1,1

P1,1

)
, P2,0 = ik0

∂
∂J

(F1,1P̄1,1) (7)

P3,1 =
ik0

2

[
2F1,1

∂
∂J

(P2,0 + P̄2,0)+
1

P̄1,1

∂
∂J

(
F2,2P̄2

1,1

)− 1
F̄1,1

∂
∂J

(
P2,2F̄2

1,1

)
]

(8)

P3,3 =
ik0

2

[
F3

1,1
∂
∂J

(
P2,2

F2
1,1

)
−P3

1,1
∂
∂J

(
F2,2

P2
1,1

)]
(9)

Therefore, the functionsFn,m are

F1,1 =
1
2

E(2J)k0/2e−ik0ω0t
∫ t

t0
g(s)eik0ω0sds (10)

F2,2 =
1
2

E2k2
0(2J)k0e−i2k0ω0t

∫ t

t0
g(s)eik0ω0s(∫ s

t0
(s′−s)×g(s′)eik0ω0s′ds′

)
ds (11)

up to secod order, while similarly we can calculate the nonzero third order termsF3,1 andF3,3.

[7].

Using the results of the Lie perturbation theory, the averaged variation of any function of the

actionG(J) from timet0 to t is given as

〈∆G〉(J0,θ0) =

〈{
k2

0

[
G′(|F1,1|2 + |F2,2|2)

]′
+

k2
0

3

[
ℜ(F̄1,1F3,1)G′

]′− k3
0

6

[
4ℑ

(
F2

1,1F̄2,2
)

G′′

+2
(
ℑ

(
F2

1,1F̄2,2
)

G′
)′ ]′

+
k4

0

12

[(
3
(
G′|F1,1|2

)′′−G′
(|F1,1|2

)′′)|F1,1|2
]′}

F(J0)

〉

J0

(12)

whereF(J0) is the initial action distribution. Note that if we keep second order terms we have

the well-known result of the Madey’s theorem. [6] Also, it is worth mentioning that there are

no third order terms, meaning that it is necessary to proceed to next order for increasing the

calculation accuracy. The remaining terms are all of orderO(ε4), so that they all have to be



taken into account in order to have consistent calculation of the averaged quantities. It is worth

mentioning that fourth order accurate calculation utilizes result from perturbation theory up to

third order (actually only the termF3,1 is involved).

Similarly we can obtain an evolution equation for the angle averaged distribution function

F(J) = 〈 f (J,θ)〉θ as follows

∂F
∂ t

= k2
0

∂
∂J

[(|F1,1|2+|F2,2|2
)

t

∂F
∂J

]
+

k2
0

3
∂
∂J

[
ℜ(F̄1,1F3,1)t

∂F
∂J

]

−k3
0

6
∂
∂J

[
4ℑ

(
F2

1,1F̄2,2
)

t

∂ 2F
∂J2 +2

∂
∂J

(
ℑ

(
F2

1,1F̄2
)

t

∂F
∂J

)]

+
k4

0

12
∂
∂J

[(
3

∂ 2

∂J2

(
|F1,1|2∂F

∂J

)
−∂ 2

(|F1,1|2
)

∂J2

∂F
∂J

)
|F1,1|2

]

t

(13)

where the operator(.)t denotes the partial derivative with respect tot acting only toFn,m. Equa-

tion (13) can be consider as a deterministic analogue of a higher order expansion of the master

equation of a stochastic process (chap. 9, Ref. [4]). It is important to emphasize the addition of

higher order derivatives of the distribution function. From a physical point of view, higher-order

terms are proportional to the third and fourth power of the wave amplitudes, and are related

to nonlinear cyclotron resonances between particles and the beats of more than one spectral

components of the waves. These terms describe the effect of nonlinear coupling between the

different wave components on the evolution of the particle distribution function.
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