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The observed propagation of cosmic rays in the interplanetary space cannot be explained

unless there is diffusion of the energetic particles across the interplanetary magnetic field [1].

The cross-field diffusion of cosmic rays is assumed to be due to the chaotic nature of the in-

terplanetary/intergalactic magnetic fields. Among the classic works on this subject have been

those of Parker [2] and Jokipii [3]. Parker considered the passage of cosmic ray particles and

energetic solar particles in a large scale magnetic field containing small scale irregularities. In

the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added

on to a uniform magnetic field, to study the spatial transport of particles. In these studies the

irregular component of the magnetic field is prescribed in anad hocfashion. In contrast, we con-

sider asymmetric, nonlinear, steady-state magnetic fields, in three spatial dimensions, generated

by currents flowing in circular loops and straight lines [4]. From this fully three-dimensional

analysis we show that a particle moving in the static magnetic fields of such current systems,

or in combination with a superimposed uniform magnetic field, can undergo cross-field trans-

port. An important fact that emerges from our calculations is that the motion of a particle in a

three-dimensional chaotic magnetic field is not necessarily chaotic and, thus, cannot undergo

cross-field diffusion. However, in a variety of cases the particle motion can be chaotic, leading

to spatial diffusion across the magnetic field. For cross-field diffusion it is necessary that the

magnetic field lines be three dimensional.

Magnetic Fields of a Current Loop and a Current Wire

For a circular current loop with its center located at the origin of a cartesian coordinate system

(x,y,z) and lying in the x-y plane the vector potential, in spherical coordinates, is

Aφ (r,θ) =
µ0IL
2π

a
(
a2 + r2 +2arsinθ

)1/2
F(k) (1)

whereµ0 is the free space permeability,IL is the current in the loop,r is the radial coordinate,

θ is the zenith angle, andφ is the azimuthal angle. The vector potential has only the azimuthal



component,F(k) =
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)
, and

K(k) andE(k) are the complete elliptic integrals of the first and second kind, respectively. The

magnetic field components are obtained from
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For a current carrying straight wire along thez-direction, the vector potential has just the

z-component

Az(r) =
µ0IW
2π

ln(r) (3)

whereIW is the current in the wire andr =
√

x2 +y2 is the radial distance from the wire. The

magnetic field is along the azimuthal angle

Bφ = − ∂
∂ r

Az =
µ0IW
2π

1
r

(4)

The equations, in spherical coordinates, for the magnetic field lines~B =
(
Br ,Bθ ,Bφ

)
are

dr
Br

=
rdθ
Bθ

=
r sinθ dφ

Bφ
=

ds

|~B| (5)

wheres is the path length along the field line.

There are two particular current systems we have been studying: a current loop combined

with a straight current wire, and two current loops. In either case the geometrical setup is as

follows. A reference current loop is assumed to be lying in thex−y plane with the center of the

loop located at the origin of the coordinate system.

In the first current system which includes a straight wire, we will assume that the wire inter-

sects the plane of the reference current loop. The point of intersection in thex−y plane could

be displaced relative to the center of the loop. In the second system we assume that the center

of the second current loop is on thez-axis We assume that the center is displaced relative to the

reference system and that the plane of the second loop is inclined relative to the plane of the

first loop. The angle of inclination is measured relative to thez-axis.

Current Loop and a Straight Current Wire

The loop-wire system is an interesting example to study since it provides an understanding of

the more complicated loop-loop system. Figure 1a shows the Poincaré surface-of-section, in the

x−zplane, of magnetic flux surfaces for the loop-wire system where the wire is passing through

the center of the loop. The ratio of the currents areIL/IW = 5. The distances are normalized to

the radiusa of the loop. The flux surfaces are similar to those one would expect for a dipolar

field.



Figure 1b shows the flux surfaces, in the surface-of-section plot, when the wire is displaced by

∆r/a = 0.001relative to the origin. The wire is still parallel to thez-axis. The initial conditions

for the magnetic field lines in this figure are the same as in Fig. 1(a) and the color scheme is

identical. The inner two surfaces are still well defined as in Fig. 1(a) but the outer surfaces have

broken up into islands. The order of the islands increases as the field lines move away from the

outer edge of the current loop. The formation of islands is indicative of the fact that the field

lines are no longer confined to a surface but occupy a finite volume in space.

Figure 2a is the same as Figs. 1 except that∆r/a = 0.01. Here we see that the inner most

flux surface is still well preserved but the outer flux surfaces have disintegrated to occupy large

volumes of space. The outer magnetic field lines are chaotic.
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Figure 1: (a) In this surface-of-section plot the current loop intersects the surface atx/a= 1 and

z/a = 1. The current wire is along thez-axis. (b) Surface-of-section when the wire is displaced

by a distance0.001a relative to the center of the loop.

Charge Particle Orbit in the Loop-Wire System

Figure 2b shows the orbit of a charge particle in three-dimensions in the case corresponding

to Fig. 2a. The particle is started off in the red region at a location where the magnetic field line

is chaotic. It is evident that the particle orbit is periodic.

Two Current Loops

The limitations on the length of this paper limit our subsequent discussion. For a system

consisting of two current loops, if the plane of the second loop is tilted relative to that of the first

loop, the magnetic field lines are three-dimensional and chaotic in space. The particle motion

in such a field is also chaotic which leads to spatial transport.

Current Loop in an Ambient Uniform Magnetic Field

If we assume a circular current loop in an uniform background magnetic field, the motion of
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Figure 2: (a) The wire is displaced by a distance0.01a relative to the center of the loop. (b)

Charged particle orbit in three spatial dimensions. The initial location of the particle is in the

red zone of (a).

a particle interacting with the combined fields can, for certain conditions, undergo cross-field

diffusion. Suppose the background field is pointed in they-direction. If the plane of the loop

lies in thex−y plane, or is perpendicular to they-direction, there is no cross-field transport [4].

However, if the plane of the loop is in any other direction relative to they-axis, the magnetic

field lines near the center of the loop acquire a three-dimensional character, leading to cross-

field diffusion of the particles.

In conclusion, we have shown that not all chaotic magnetic fields lead to chaotic particle

motion. There are certain requirements for the fields in order to induce chaotic particle motion

and cross-field transport. However, importantly, it is possible to have cross-field transport of

cosmic rays without invokingad hocfluctuating magnetic fields.
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