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Finite-Larmor-Radius Kinetic Theory of a Magnetized Plasma

in the Macroscopic Flow Reference Frame

J.J. Ramos

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge MA, U.S.A.

Abstract

A straightforward operator method is used to derive a form of the drift-kinetic equation for a col-

lisionless plasma species in the moving reference frame of its macroscopic flow. This equation is valid

for sonic time scales and flow velocities, with first-order finite-Larmor-radius (FLR) effects included.

It applies rigorously to far-from-Maxwellian distribution functions and to general space and time vari-

ations of the magnetic field. Its velocity moments are shown to reproduce exactly the corresponding

fluid equations obtained from moments of the full Vlasov equation.
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I. Introduction.

The drift-kinetic equation1−6, i.e. the dimensionally reduced kinetic equation for the gyrophase

average of the distribution function of a magnetized plasma species whose Larmor gyroradius is much

smaller than any other characteristic length, is a valuable and widely used research tool in theoretical

plasma physics. In particular, it provides the means of closing the set of fluid equations in collisionless

or low-collisionality regimes, thus allowing a consistent fluid-kinetic plasma description when the

conventional high-collisionality fluid closure7,8 does not apply. Closure of the fluid moment equations

for a collisionless or low-collisionality magnetized plasma species requires the kinetic evaluation of some

components of the gyrotropic or Chew-Goldberger-Low (CGL) pressure and/or heat flux tensors9:

PCGL
jk = p⊥δjk + (p‖ − p⊥)bjbk = p δjk + (p‖ − p⊥)(bjbk − δjk/3), (1)

and

QCGL
jkl = qT‖(δjkbl + δklbj + δljbk) + (2qB‖ − 3qT‖)bjbkbl , (2)

where bj are the Cartesian components of the magnetic unit vector, p⊥ and p‖ are respectively the

perpendicular and parallel pressures with the mean scalar pressure p = (2p⊥+p‖)/3; qT‖ is the parallel

flux of perpendicular heat and qB‖ is the parallel flux of parallel heat, with the total parallel heat

flux q‖ = qB‖ + qT‖. In a finite-but-small-gyroradius collisionless analysis, knowledge of the gyrotropic

variables is sufficient to close the fluid system because the remaining, non-gyrotropic or ”perpendicu-

lar” parts of the stress and heat flux tensors can then be deduced from fluid theory alone10,11. On the

other hand, the fluid evolution equation for any component of the CGL tensors always involves some

yet unknown higher-rank gyrotropic moments. Since these are moments of the gyrophase-averaged

part of the distribution function, the kinetic information needed for the fluid closure can be obtained

from the drift-kinetic equation. However, for a consistent closure scheme, it is important that such

drift-kinetic equation be compatible with the companion set of fluid equations, in the way that both

fulfill the same validity conditions and retain the same level of accuracy in the high gyrofrequency and

small gyroradius asymptotic expansion.

Recent advances in the fluid description of collisionless and low-collisionality magnetized plasmas,

based on the moments of the full Vlasov-Boltzmann kinetic equation11−13, provide improved sets of
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FLR fluid equations, especially with regard their applicability to general magnetic geometries, fully

electromagnetic nonlinear dynamics with large fluctuation amplitudes, arbitrary density and temper-

ature gradients and far-from-Maxwellian distribution functions with large pressure anisotropies and

parallel heat fluxes. The purpose of this work is to derive a drift-kinetic equation, compatible with such

general fluid systems, that can serve as the basis for their consistent closure. The proposed approach

is conceptually straightforward and affords an alternative to other recently derived FLR drift-kinetic

equations14,15. Like in these two related works, the collisionless case will be analyzed here, leaving the

collisional effects for future consideration.

The crucial observation is that the gyrotropic pressure and heat flux fluid variables are normally

defined relative to the macroscopic flow velocity of the species under consideration:

p = (m/3)
∫

d3v |v − u|2 f̄ , (3)

p‖ = m

∫
d3v [(v − u) · b]2 f̄ , (4)

q‖ = (m/2)
∫

d3v [(v − u) · b] |v − u|2 f̄ , (5)

qB‖ = (m/2)
∫

d3v [(v − u) · b]3 f̄ , (6)

where

u(x, t) = n−1
∫

d3v v f(v,x, t) , (7)

n(x, t) =
∫

d3v f(v,x, t) , (8)

and the barred distribution function f̄ represents its gyrophase average in the moving frame of the

species macroscopic flow, which is the only part that contributes to the moments defined in Eqs.(3-6).

Accordingly, it is deemed advantageous to express the drift-kinetic equation in the local reference

frame of the complete macroscopic flow velocity. In fact, the more traditional approach of deriving

the drift-kinetic equation either in the laboratory frame or in the frame of the electric drift velocity,

makes the task of taking the moments that yield the pressure and heat flux tensors cumbersome.

Another advantage of using the macroscopic flow velocity as reference is that, by guaranteeing a small

electric field in the working frame, it automatically makes possible to allow for the fast flows that
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are becoming increasingly important in plasma research. Our use of the full macroscopic velocity to

define the moving frame differs from the analyses of Refs.2,14-16 that use the frame of the electric

drift velocity in order to allow for the fast flows, leading to more awkward calculations of the pressures

and heat fluxes and to difficulty in reproducing the conventional fluid equations. The adoption of a

reference frame tied to the magnetic field lines in Ref.3 and the method followed in Ref.17 of adding

and subtracting a term in Vlasov’s equation instead of performing a change of reference frames, suffer

from those same drawbacks. Macroscopic flow reference frames were used in Refs.18,19 (a center of

mass frame in Ref.18), but these works assume weak temporal variations of the magnetic field and lin-

earized distribution functions near a Maxwellian, the transport analysis of Ref.19 being further limited

to axisymmetric configurations. In the present work, no simplifications will be made with regard the

temporal or spatial variation of the magnetic field, and the electric field will be eliminated algebraically

by means of the exact momentum conservation equation. The results to be shown will apply to gen-

eral nonlinear dynamical systems under collisionless conditions and, accordingly, far-from-Maxwellian

distribution functions with large pressure anisotropies and parallel heat fluxes will be allowed.

II. Derivation of the FLR drift-kinetic equation.

The starting point is the Vlasov kinetic equation for the distribution function f(v,x, t) of a colli-

sionless plasma species,

∂f

∂t
+ v · ∂f

∂x
+

e

m

(
E + v × B

)
· ∂f

∂v
= 0 , (9)

where E(x, t) and B(x, t) are the electric and magnetic fields, and m and e are the species mass and

electric charge respectively. The present collisionless analysis applies to each species independently

(without consideration of possibly small mass or charge ratios between species that might result in

additional simplifications) and the species index is omitted throughout.

Carrying out the space-time dependent Galilean transformation to moving reference frames with

local velocities u(x, t) relative to the laboratory18,19,

t = t , x = x , v = v′ + u(x, t) , (10)
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the kinetic equation (9) becomes

∂f(v′,x, t)
∂t

+ (v′ + u) · ∂f(v′,x, t)
∂x

+
[
Ωcv′ × b +

F
mn

− (v′ · ∇)u
]
· ∂f(v′,x, t)

∂v′ = 0 , (11)

where Ωc = eB/m is the cyclotron frequency, b = B/B is the magnetic unit vector and

F(x, t) = en(E + u × B) − mn
[∂u

∂t
+ (u · ∇)u

]
. (12)

Associated with this force density F, is the velocity

uF (x, t) =
F × b
mnΩc

, (13)

that will appear in the final form of our drift-kinetic equation.

As discusssed in the Introduction, our main interest is to take u(x, t) as the macroscopic flow

velocity of the plasma species under consideration. Throughout this section however, u(x, t) can be

taken as any velocity field provided only F/(mn) � Ωcvth, with vth the characteristic thermal speed,

so that, under strong magnetization conditions, (Ωcv′ × b) · ∂f/∂v′ is the dominant term in (11) .

Thus, three possible choices for u(x, t) and its associated F(x, t) and uF (x, t) are as follows:

1.) If the flow is subsonic, hence the electric field is E � vthB, one can carry out the analysis in the

laboratory frame as is most traditionally done1,4−6. In this case one just sets u = 0, F = enE and

uF = uE , the electric drift velocity.

2.) One can take u = uE = E× b/B as chosen in Refs.2,15,16 and (aside from an additional parallel

component) in Ref.14. In this case F = enE‖b − mn[∂uE/∂t + (uE · ∇)uE ] and uF = upolE , the

polarization drift velocity calculated with uE .

3.) Our preferred choice is to take u(x, t) as the complete macroscopic flow velocity (7). In this case,

by virtue of the momentum conservation equation, F = ∇ · P where P = PCGL + PGV is the full

stress tensor made of its gyrotropic (CGL) and non-gyrotropic (gyroviscous) parts and uF = −udia,

the negative of the diamagnetic drift velocity calculated with the full ∇ · P.

The next step is to perform the change of variables to cylindrical coordinate systems in velocity

space locally aligned with the magnetic field,

t = t , x = x , v′ = v′‖ b(x, t) + v′⊥ [cos α e1(x, t) + sinα e2(x, t)] , (14)
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where b(x, t), e1(x, t) and e2(x, t) form right-handed sets of mutually orthogonal unit vectors. A

possible intrinsic choice would be to take e1(x, t) and e2(x, t) in the directions of the principal normal

and the binormal of the magnetic field. As it turns out however, the results do not depend on the

choice of e1(x, t) and e2(x, t), the only requirement being that they be well defined and differentiable,

something which is always possible if the magnetic field is sufficiently smooth locally. After carrying

out this change of variables, the kinetic equation becomes of the form,

Ωc

∂f(v′‖, v
′
⊥, α,x, t)

∂α
=

2∑
l=−2

eilα
[
Λl f + λl

∂f

∂α

]
, (15)

where Λl(∂/∂v′‖, ∂/∂v′⊥, ∂/∂x, ∂/∂t, v′‖, v
′
⊥,x, t) = Λ∗

−l are gyrophase-independent operators and

λl(v′‖, v
′
⊥,x, t) = λ∗

−l are gyrophase-independent functions. Specifically,

Λ0 =
∂

∂t
+ (u + v′‖b) · ∂

∂x
+

{b · F
mn

− v′‖b · [(b · ∇)u] +
v
′2
⊥
2
∇ · b

} ∂

∂v′‖
+

+
v′⊥
2

{
b · [(b · ∇)u] −∇ · u − v′‖∇ · b

} ∂

∂v′⊥
, (16)

Λ1 =
v′⊥
2

(e1 − ie2) ·
∂

∂x
+

v′⊥
2

(e1 − ie2) ·
[∂b

∂t
+ (u · ∇)b − (b · ∇)u − b × ω + v′‖κ

] ∂

∂v′‖
+

+
1
2
(e1 − ie2) ·

{ F
mn

− v′‖
[∂b

∂t
+ (u · ∇)b + (b · ∇)u + v′‖κ

]} ∂

∂v′⊥
, (17)

Λ2 =
iv

′2
⊥
4

(e1 − ie2) ·
[
∇× (e1 − ie2)

] ∂

∂v′‖
−

− v′⊥
4

(e1 − ie2) ·
{
[(e1 − ie2) · ∇]u + iv′‖ ∇× (e1 − ie2)

} ∂

∂v′⊥
, (18)

λ0 =
1
2

{
e1 ·

[∂e2

∂t
+ (u · ∇)e2 + (e2 · ∇)u + v′‖(b · ∇)e2

]
−

− e2 ·
[∂e1

∂t
+ (u · ∇)e1 + (e1 · ∇)u + v′‖(b · ∇)e1

]
− v′‖b · (∇× b)

}
, (19)

λ1 =
i

2v′⊥
(e1 − ie2) ·

{ F
mn

− v′‖
[∂b

∂t
+ (u · ∇)b + (b · ∇)u + v′‖κ

]}
− v′⊥

2
b ·

[
∇× (e1 − ie2)

]
(20)
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and

λ2 = − i

4
(e1 − ie2) ·

{
[(e1 − ie2) · ∇]u + iv′‖ ∇× (e1 − ie2)

}
, (21)

with ω = ∇× u and κ = (b · ∇)b. In (17) and (20), the time derivative of the magnetic unit vector

∂b/∂t is evaluated using Faraday’s law, with the electric field eliminated algebraically in favor of F

after (12). The resulting expressions for Λ1 and λ1 are given in Appendix A.

A formal solution of Eq.(15) can be written as a Fourier series in harmonics of the gyrophase,

f(v′‖, v
′
⊥, α,x, t) =

∞∑
l=−∞

eilα fl(v′‖, v
′
⊥,x, t) , (22)

where the Fourier coefficients are determined by the following coupled system:

fl =
1

ilΩc

2∑
l′=−2

[
Λl′fl−l′ + i(l − l′)λl′fl−l′

]
for l �= 0 (23)

and
2∑

l=−2

(
Λlf−l − ilλlf−l

)
= 0 . (24)

The l = 0 Fourier coefficient, i.e. the gyrophase average of the distribution function, will also be

denoted as f0 = f̄ . All the expressions given until now are exact, no approximations having been

made yet.

At this point we introduce the drift-kinetic asymptotic expansion for strong magnetization, assum-

ing small ratios between the Larmor gyration period and any other characteristic time T , and between

the Larmor gyration radius ρ and any other characteristic length L. We will consider here dynamical

evolution on the sonic time scale, so that those two ratios can be taken as comparable and define one

basic expansion parameter:

δ ∼ 1
ΩcT

∼ ρ

L
=

vth

ΩcL
� 1 . (25)

Macroscopic flows as fast as sonic will be allowed and the analysis will be carried to the first FLR order

in δ, so that the dynamical effects on the diamagnetic scale are also included: ∂/∂t = O(δΩc)+O(δ2Ωc)
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and u = O(vth) + O(δvth). Under these orderings, a recursive asymptotic solution of (23,24) can be

constructed as

f0 = f
(0)
0 + f

(1)
0 + ... , f±1 = f

(1)
±1 + ... , f±2 = f

(1)
±2 + ... , ... , (26)

with f
(n)
l = O(δnf

(0)
0 ). In its lowest order, Eq.(24) yields

Λ0f
(0)
0 = 0 , (27)

which is the zero-Larmor-radius drift-kinetic equation. Then, Eq.(23) yields the first-order solutions

f
(1)
1 = f

(1)∗
−1 =

1
iΩc

Λ1f
(0)
0 (28)

and

f
(1)
2 = f

(1)∗
−2 =

1
2iΩc

Λ2f
(0)
0 . (29)

The first-order correction to the gyrophase-independent Fourier component, f
(1)
0 , is determined by

Eq.(24) in its first order:

(Λ−2 + 2iλ−2)f
(1)
2 + (Λ−1 + iλ−1)f

(1)
1 + Λ0f

(1)
0 + (Λ1 − iλ1)f

(1)
−1 + (Λ2 − 2iλ2)f

(1)
−2 = 0 (30)

which, after substituting the solutions (28,29) for f
(1)
±1 and f

(1)
±2 , becomes:

Λ0f
(1)
0 − 1

iΩc

{[
(Λ1 − iλ1)Λ−1 − (Λ−1 + iλ−1)Λ1

]
+

[
(
1
2
Λ2 − iλ2)Λ−2 − (

1
2
Λ−2 + iλ−2)Λ2

]
−

− v′⊥
2

[
(e1 − ie2) · ∇ lnB Λ−1 − (e1 + ie2) · ∇ lnB Λ1

]}
f

(0)
0 = 0 . (31)

This is the first-order contribution to our sought after FLR drift-kinetic equation. Here, only the

operator commutators defined by the three terms inside square brackets need to be evaluated. The

results are given in Appendix B and do not depend on (e1, e2), involving only the intrinsic geometry

of the magnetic field along with the velocity field u and the force density F. Adding (27) and (31)

and calling f̄ = f
(0)
0 + f

(1)
0 , collecting terms and using some standard vector identities, we obtain our

final drift-kinetic equation, accurate to the first order in the FLR asymptotic expansion:

∂f̄(v′‖, v
′
⊥,x, t)

∂t
+ ẋ · ∂f̄

∂x
+ v̇′‖

∂f̄

∂v′‖
+ v̇′⊥

∂f̄

∂v′⊥
= 0 , (32)

with the coefficient functions:

ẋ = u + uF + v′‖b +
v′2⊥
2
∇×

( b
Ωc

)
+

b
Ωc

×
[
2v′‖(b · ∇)u +

(
v′2‖ − v′2⊥

2

)
κ

]
, (33)
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v̇′‖ =
b · F
mn

− v′‖b ·
[
(b · ∇)(u + uF )

]
− v′2⊥

2
b · ∇ lnB +

v′2⊥
2
∇ ·

[ b
Ωc

× (ω × b + v′‖κ)
]

+

+
[ b
Ωc

× (ω × b)
]
·
[ F
mn

− 2v′‖(b · ∇)u − v′2‖ κ
]
− 2v′2‖

( b
Ωc

× κ
)
· [(b · ∇)u] − v′2⊥

2
σ , (34)

where σ(x, t) is the scalar defined in (B.4), and

v̇′⊥ =
v′⊥
2

{
b ·

[
(b · ∇)(u + uF )

]
−∇ · (u + uF ) + v′‖b · ∇ lnB − v′‖∇ ·

[ b
Ωc

×
(
2(b · ∇)u + v′‖κ

)]
+

+2
[ b
Ωc

× (ω × b)
]
·
[
(b · ∇)u + v′‖κ

]
+ 4v′‖

( b
Ωc

× κ
)
· [(b · ∇)u]

}
. (35)

This compact form of the FLR drift-kinetic coefficient functions exhibits clearly the phase-space con-

servation property:

∇ · ẋ +
∂v̇′‖
∂v′‖

+
1
v′⊥

∂(v′⊥v̇′⊥)
∂v′⊥

= 0 , (36)

where ∇· represents the divergence operator in 3-dimensional x-space. According to our derivation,

Eqs.(32-35) are valid for any velocity field u(x, t), upon substitution of the corresponding F(x, t) and

uF (x, t) defined in (12,13), provided F/(mn) � Ωcvth. In particular, the well known result6 that

applies to the case of subsonic flows with E � vthB can be recovered by setting u = 0, F = enE and

uF = uE as shown in Appendix C. For our present goal of calculating fluid moments including the

possibility of sonic macroscopic flows, we will choose to set u equal to the complete macroscopic flow

velocity.

III. Fluid moments of the FLR drift-kinetic equation.

In order to derive the fluid equations for the gyrotropic variables from the velocity moments of the

drift-kinetic equation, we find it most advantageous to work in the reference frame of the macroscopic

flow. So, in this section we will use u = n−1
∫

d3v v f , F = ∇·P and uF = (∇·P)×b/(mnΩc) = −udia.

The perpendicular components of F appear only in the first-order terms of the coefficient functions

(33-35), always divided by Ωc. Therefore, only the zero-Larmor-radius CGL part needs to be retained
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in the perpendicular components of ∇ · P:

b × F
Ωc

=
b × (∇ · PCGL)

Ωc
=

1
Ωc

[
b ×∇p⊥ + (p‖ − p⊥)(b × κ)

]
. (37)

On the other hand, the term involving the parallel component of F in (34) does not have an inverse

gyrofrequency factor, therefore the first-order gyroviscous part of ∇ · P must be included there. This

parallel component of the gyroviscous force can be obtained from ”perpendicular” (non-gyrotropic)

fluid theory alone, so we can use the result11,12:

b · F = b · [∇ · (PCGL + PGV )] = b · ∇p‖ − (p‖ − p⊥)b · ∇ lnB +

+ ∇ ·
{ b

Ωc
×

[
2p‖(b · ∇)u + p⊥b × ω + ∇qT‖ + 2(qB‖ − qT‖)κ

]}
+

+
b × κ

Ωc
·
[
2p‖(b · ∇)u + p⊥b × ω + ∇qT‖

]
+ p⊥σ . (38)

Let Mαβ (with α a non-negative integer and β a non-negative even integer) denote a generic

gyrotropic moment of the distribution function,

Mαβ(x, t) = 2π

∫
dv′‖ dv′⊥ v′⊥ v′‖

α
v′⊥

β
f̄(v′‖, v

′
⊥,x, t) , (39)

so that M00 = n, M10 = 0, p‖ = mM20, p⊥ = mM02/2, qB‖ = mM30/2 and qT‖ = mM12/2. We

also define the following higher-rank moments:rB‖ = m2M40/4, rB⊥ = m2M22/4, rT⊥ = m2M04/4,

sB‖ = m2M50/4, sB⊥ = m2M32/4 and sT⊥ = m2M14/4. Taking the v′‖
αv′⊥

β moment of the drift-

kinetic equation (32), we obtain after integration by parts:

∂Mαβ

∂t
+ ∇ ·

(
2π

∫
dv′‖ dv′⊥ v′⊥ v′‖

α
v′⊥

β ẋ f̄
)
−

− 2π

∫
dv′‖ dv′⊥ v′⊥ v′‖

α
v′⊥

β
[
∇ · ẋ +

∂v̇′‖
∂v′‖

+
∂v̇′⊥
∂v′⊥

+ α
v̇′‖
v′‖

+ (β + 1)
v̇′⊥
v′⊥

]
f̄ = 0 (40)

which, using the phase-space conservation property (36), reduces to:

∂Mαβ

∂t
+ ∇·

(
2π

∫
dv′‖ dv′⊥ v′⊥ v′‖

α
v′⊥

β ẋ f̄
)
− 2π

∫
dv′‖ dv′⊥ v′⊥ v′‖

α
v′⊥

β
(
α

v̇′‖
v′‖

+β
v̇′⊥
v′⊥

)
f̄ = 0 . (41)
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This is the generic evolution equation for the gyrotropic moments. After substituting the coefficient

functions ẋ, v̇′‖ and v̇′⊥ (33-35), assigning specific values to the exponents α and β, and recalling the

definitions given after (39), it reproduces the corresponding macroscopic equations in terms of con-

ventional fluid variables, as will be shown next for the first six moments.

i) Density moment and continuity equation.

Setting α = β = 0, Eq.(41) becomes

∂n

∂t
+ ∇ ·

(
2π

∫
dv′‖ dv′⊥ v′⊥ ẋ f̄

)
= 0 (42)

where, bringing in our expression (33) for ẋ, the velocity-space integral can be written in terms of the

gyrotropic moments as

2π

∫
dv′‖ dv′⊥ v′⊥ ẋ f̄ = n(u + uF ) +

p⊥
m

∇×
( b
Ωc

)
+

(p‖ − p⊥)(b × κ)
mΩc

. (43)

From (13) and (37) we get

uF = − 1
mnΩc

[
b ×∇p⊥ + (p‖ − p⊥)(b × κ)

]
, (44)

so that

2π

∫
dv′‖ dv′⊥ v′⊥ ẋ f̄ = n u + ∇×

( p⊥b
mΩc

)
(45)

and (42) becomes identical to the continuity equation

∂n

∂t
+ ∇ · (n u) = 0 . (46)

ii) Parallel relative velocity moment.

Setting α = 1 and β = 0, and multiplying by the mass, Eq.(41) becomes

∇ ·
(
2πm

∫
dv′‖ dv′⊥ v′⊥ v′‖ ẋ f̄

)
− 2πm

∫
dv′‖ dv′⊥ v′⊥ v̇′‖ f̄ = 0 , (47)

where, recalling (33,34), the velocity-space integrals are again written in terms of the gyrotropic

moments as

2πm

∫
dv′‖ dv′⊥ v′⊥ v′‖ ẋ f̄ = p‖b + qT‖∇×

( b
Ωc

)
+

b
Ωc

×
[
2p‖(b · ∇)u + (2qB‖ − qT‖)κ

]
(48)
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and

2πm

∫
dv′‖ dv′⊥ v′⊥ v̇′‖ f̄ = b · F − p⊥b · ∇ lnB + p⊥∇ ·

[ b
Ωc

× (ω × b)
]

+

+ qT‖∇ ·
(b × κ

Ωc

)
+

[ b
Ωc

× (ω × b)
]
· (F − p‖κ) − 2p‖

(b × κ

Ωc

)
· [(b · ∇)u] − p⊥σ . (49)

Substituting the expressions (37,38) for the perpendicular and parallel components of F, and using

some vector identities, (49) reduces to

2πm

∫
dv′‖ dv′⊥ v′⊥ v̇′‖ f̄ = ∇ ·

{
p‖b +

b
Ωc

×
[
∇qT‖ + 2p‖(b · ∇)u + (2qB‖ − qT‖)κ

]}
(50)

and, combining (50) with the divergence of (48), we verify that (47) is satisfied identically. Thus

our drift-kinetic equation is compatible with the required condition that the parallel relative velocity

moment of f̄ , i.e. M10, be equal to zero.

iii) Parallel pressure.

Setting α = 2 and β = 0, multiplying by half the mass and following a procedure analogous to the

previous two cases, we get

1
2

∂p‖
∂t

+ ∇ ·
{p‖

2
(u + uF ) + qB‖b +

rB⊥
m

∇×
( b
Ωc

)
+

b
Ωc

×
[
2qB‖(b · ∇)u +

(2rB‖ − rB⊥)
m

κ
]}

+

+ p‖b ·
[
(b · ∇)(u + uF )

]
+ qT‖b · ∇ lnB − qT‖∇ ·

[ b
Ωc

× (ω × b)
]
− 2rB⊥

m
∇ ·

(b × κ

Ωc

)
+

+ 2
[ b
Ωc

× (ω × b)
]
· [p‖(b · ∇)u + qB‖κ] + 4qB‖

(b × κ

Ωc

)
· [(b · ∇)u] + qT‖σ = 0 (51)

which, substituting for uF (44) and using vector identities, becomes

1
2

[∂p‖
∂t

+ ∇ · (p‖u)
]

+ p‖b · [(b · ∇)u] + ∇ · (qB‖b) + qT‖(b · ∇ lnB + σ) +

+∇ ·
{ b

mΩc
×

[
− p‖

2n
∇p⊥ − p‖(p‖ − p⊥)

2n
κ + 2mqB‖(b · ∇)u + mqT‖b × ω + ∇rB⊥ + (2rB‖ − 3rB⊥)κ

]}
+

+2
(b × κ

mΩc

)
·
{
− p‖

2n
∇p⊥+mqB‖

[
2(b ·∇)u+b×ω

]
+∇rB⊥

}
−

[ b
Ωc

×(b×ω)
]
· [2p‖(b ·∇)u+∇qT‖] = 0.

(52)
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It is useful to make explicit the contribution of a two-temperature Maxwellian f2M (v′‖, v
′
⊥,x, t) to the

fourth-rank gyrotropic moments, separating it from the contribution of the difference between the

actual distribution function and the two-temperature Maxwellian:

rB‖ =
3p2

‖
4n

+ r̃B‖ , (53)

rB⊥ =
p‖p⊥
2n

+ r̃B⊥ (54)

and

rT⊥ =
2p2

⊥
n

+ r̃T⊥ , (55)

where r̃B‖, r̃B⊥ and r̃T⊥ are the corresponding moments of (f̄ − f2M ) and

f2M (v′‖, v
′
⊥,x, t) =

( m

2π

)3/2 n5/2

p
1/2
‖ p⊥

exp
[mn

2

(v′2‖
p‖

+
v′2⊥
p⊥

)]
. (56)

In terms of these, (52) is rewritten as:

1
2

[∂p‖
∂t

+ ∇ · (p‖u)
]

+ p‖b · [(b · ∇)u] + ∇ · (qB‖b) + qT‖(b · ∇ lnB + σ) +

+∇ ·
{ b

mΩc
×

[p⊥
2
∇

(p‖
n

)
+

p‖(p‖ − p⊥)
n

κ + 2mqB‖(b · ∇)u + mqT‖b × ω + ∇r̃B⊥ + (2r̃B‖ − 3r̃B⊥)κ
]}

+

+2
(b × κ

mΩc

)
·
{p⊥

2
∇

(p‖
n

)
+mqB‖

[
2(b·∇)u+b×ω

]
+∇r̃B⊥

}
−

[ b
Ωc

×(b×ω)
]
·[2p‖(b·∇)u+∇qT‖] = 0.

(57)

From ”perpendicular” (non-gyrotropic) fluid theory11, the perpendicular flux of parallel heat is known

to be

qB⊥ =
b

mΩc
×

[p⊥
2
∇

(p‖
n

)
+

p‖(p‖ − p⊥)
n

κ+2mqB‖(b·∇)u+mqT‖b×ω+∇r̃B⊥+(2r̃B‖−3r̃B⊥)κ
]

(58)

and also

b · PGV =
b
Ωc

×
[
2p‖(b · ∇)u + p⊥b × ω + ∇qT‖ + 2(qB‖ − qT‖)κ

]
. (59)

Using these expressions, the compact form of the parallel pressure evolution equation (57) is

1
2

[∂p‖
∂t

+ ∇ · (p‖u)
]

+ p‖b · [(b · ∇)u] + ∇ · (qB‖b + qB⊥) + qT‖(b · ∇ lnB + σ) +

+ b · PGV · (b × ω) − 2qB⊥ · κ = 0 , (60)

identical to the result derived from moments of the Vlasov equation10,11.
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iv) Perpendicular pressure and energy conservation.

Setting α = 0 and β = 2, and multiplying by half the mass in Eq.(41), we get

∂p⊥
∂t

+ ∇ ·
{
p⊥(u + uF ) + qT‖b +

rT⊥
m

∇×
( b
Ωc

)
+

b
Ωc

×
[
2qT‖(b · ∇)u +

(2rB⊥ − rT⊥)
m

κ
]}

+

+ p⊥
{
∇ · (u + uF ) − b · [(b · ∇)(u + uF )]

}
− qT‖b · ∇ lnB + 2qT‖∇ ·

{ b
Ωc

×
[
(b · ∇)u

]}
+

+
2rB⊥

m
∇·

(b × κ

Ωc

)
− 2

[ b
Ωc

× (ω×b)
]
· [p⊥(b ·∇)u+ qT‖κ] − 4qT‖

(b × κ

Ωc

)
· [(b ·∇)u] = 0 . (61)

Next we trace the steps of the previous parallel pressure calculation, substituting for uF (44) and

using vector identities and the relations (54,55), to arrive at

∂p⊥
∂t

+ ∇ · (p⊥u) + p⊥
{
∇ · u − b · [(b · ∇)u]

}
+ ∇ · (qT‖b) − qT‖b · ∇ lnB +

+∇ ·
{ b

mΩc
×

[
2p⊥∇

(p⊥
n

)
+ 4mqT‖(b · ∇)u + ∇r̃T⊥ + (4r̃B⊥ − r̃T⊥)κ

]}
−

−2
(b × κ

mΩc

)
·
{p⊥

2
∇

(p‖
n

)
+mqT‖

[
2(b ·∇)u+b×ω

]
+∇r̃B⊥

}
−2

[ b
Ωc

×(b ·∇)u
]
·(p⊥b×ω+∇qT‖) = 0.

(62)

The perpendicular flux of perpendicular heat, as derived from ”perpendicular” (non-gyrotropic) fluid

theory11, is

qT⊥ =
b

mΩc
×

[
2p⊥∇

(p⊥
n

)
+ 4mqT‖(b · ∇)u + ∇r̃T⊥ + (4r̃B⊥ − r̃T⊥)κ

]
(63)

hence, using this result along with (58,59), we obtain the compact form of the perpendicular pressure

evolution equation:

∂p⊥
∂t

+ ∇ · (p⊥u) + p⊥
{
∇ · u − b · [(b · ∇)u]

}
+ ∇ · (qT‖b + qT⊥) − qT‖b · ∇ lnB +

+ 2b · PGV · [(b · ∇)u] + 2qB⊥ · κ = 0 . (64)

Finally, adding (60) and (64), defining the total perpendicular heat flux q⊥ = qB⊥ + qT⊥ and

recalling the ”perpendicular” (non-gyrotropic) fluid theory result11

PGV : (∇u) = b · PGV · [2(b · ∇)u + b × ω] + qT‖σ , (65)
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we recover exactly the well known evolution equation for the mean scalar pressure, which combined

with the component on the momentum conservation equation along u is also the expression of energy

conservation:

3
2

[∂p

∂t
+ ∇ · (pu)

]
+

(
PCGL + PGV

)
: (∇u) + ∇ · (q‖b + q⊥) = 0 . (66)

v) Parallel flux of parallel heat.

The dynamic evolution equation for the parallel flux of parallel heat, qB‖, is obtained from the

α = 3, β = 0 moment of the drift-kinetic equation. Following the by now familiar procedure, but

omitting the details, we get

∂qB‖
∂t

+ ∇ · (qB‖u) + 3qB‖b · [(b · ∇)u] +
3p‖
2m

b · ∇
(p‖

n

)
+

1
m
∇ ·

(
2r̃B‖b + tB⊥

)
+

+
3r̃B⊥

m
(b · ∇ lnB + σ) +

3
m

b ·PGV ·
[
∇

( p‖
2n

)
− p‖

n
κ

]
− 3

m
tB⊥ ·κ + 3qB⊥ · (b×ω) = 0 , (67)

where the perpendicular vector tB⊥ is:

tB⊥ =
b
Ωc

×
{
∇sB⊥ − qB‖

n
∇p⊥ − 3p‖

2n
∇qT‖ +

+
[
2sB‖ − 4sB⊥ − qB‖

n
(p‖ − p⊥) − 3p‖

n
(qB‖ − qT‖)

]
κ + 4r̃B‖(b · ∇)u + 3r̃B⊥b × ω

}
. (68)

This equation coincides with the one derived from moments of the Vlasov equation11 after identifying

the scalar s̃B, defined but not evaluated explicitly in Ref.11, as

s̃B/2 = ∇ · tB⊥ − 3tB⊥ · κ + 3r̃B⊥σ . (69)

vi) Parallel flux of perpendicular heat.

The last moment of the drift-kinetic equation to be considered here is the dynamic evolution

equation for the parallel flux of perpendicular heat qT‖, which is similarly derived taking α = 1 and

β = 2. Omitting again the details, the result is
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∂qT‖
∂t

+ ∇ · (qT‖u) + qT‖∇ · u +
p‖
m

b · ∇
(p⊥

n

)
+

1
m
∇ ·

(
2r̃B⊥b + tT⊥

)
−

−
[p⊥(p‖ − p⊥)

mn
+

2r̃B⊥ − r̃T⊥
m

]
b · ∇ lnB +

( p2
⊥

mn
+

r̃T⊥
m

)
σ +

1
m

b · PGV ·
[
∇

(p⊥
n

)
+

2p‖
n

κ
]

+

+
p⊥
m

∇ ·
( 1
n
b · PGV

)
+

1
m

(2tB⊥ − tT⊥) · κ + 4qB⊥ · [(b · ∇)u] + qT⊥ · (b × ω) = 0 , (70)

where

tT⊥ =
b
Ωc

×
{
∇sT⊥ − 2qT‖

n
∇p⊥ − 2p⊥

n
∇qT‖ +

+
[
4sB⊥ − 2sT⊥ − 2qT‖

n
(p‖ − p⊥) − 4p⊥

n
(qB‖ − qT‖)

]
κ + 8r̃B⊥(b · ∇)u + r̃T⊥b × ω

}
. (71)

The sum of (67) and (70) gives the evolution equation for the total parallel heat flux q‖. This equation

coincides again with the one derived from moments of the Vlasov equation11 after identifying the

scalar s̃, defined but not evaluated explicitly in Ref.11, as

s̃/2 = ∇ · (tB⊥ + tT⊥) − (tB⊥ + tT⊥) · κ + 3(r̃T⊥ − r̃B⊥)σ . (72)

IV. Summary.

A form of the collisionless drift-kinetic equation in a moving reference frame (32-35), accurate to

the first order in the FLR expansion and valid for fully electromagnetic nonlinear dynamics, sonic

macroscopic flows and far-from-Maxwellian distribution functions has been put forward. The expres-

sion of its coefficient functions (34-35) is rather compact and makes the phase-space conservation (36)

clearly manifest. Taking the complete macroscopic flow velocity of the species under consideration

as the velocity of the moving reference frame where this drift-kinetic equation applies, it has been

shown that its fluid moments reproduce exactly the corresponding FLR macroscopic equations for the

gyrotropic fluid variables as previously derived from moments of the Vlasov equation. When work-

ing in this reference frame of the macroscopic flow, the electric field is eliminated algebraically and

16



the functions of space-time involved in the coefficient functions of the drift-kinetic equation are the

magnetic field B, the flow velocity u and the five lowest gyrotropic scalars n, p‖, p⊥, qB‖ and qT‖,

which are also the variables needed to specify the complete stress tensor P = PCGL + PGV . Of these,

B and u must be obtained from Maxwell’s equations and from the fluid momentum conservation

equations for each species, so that the result is a hybrid fluid-kinetic closed plasma description. For

the five gyrotropic scalars, one has the choice of either evaluating them as moments of the drift-kinetic

distribution function solution (which requires an implicit solution scheme since these low moments

are themselves part of the drift-kinetic coefficient functions), or from their fluid evolution equations

(46,60,64,68,70) which involve the additional fourth and fifth rank gyrotropic moments to be deter-

mined by the drift-kinetic solution (hence an explicit scheme since these higher moments are not part

of the drift-kinetic coefficient functions).

The present form of the drift-kinetic equation can also be used in the traditional way, whereby

the working reference frame is taken as either the laboratory (provided the flows are subsonic) or the

frame of the electric drift. In these cases, the drift-kinetic coefficient functions involve explicitly the

electric field that has to be determined separatetly and whose sufficiently accurate evaluation becomes

the trickier part of the problem.
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Appendix A: Elimination of the time derivative of the magnetic unit vector.

The operators Λ±1 (17) and the functions λ±1 (20) involve the components of ∂b/∂t along e1 and

e2 which, according to Faraday’s law, are

(e1 ± ie2) ·
∂b
∂t

= − 1
B

(e1 ± ie2) · (∇× E) . (A.1)

Using (12) we can eliminate E in favor of F:

E = −u × B +
F
en

+
m

e

[∂u
∂t

+ (u · ∇)u
]

, (A.2)

whence

− 1
B

(e1 ± ie2) · (∇×E) = (e1 ± ie2) ·
{
(b · ∇)u− (u · ∇)b− 1

Ωc
∇×

[ F
mn

+
∂u
∂t

+ (u · ∇)u
]}

. (A.3)

Bringing this expression to (17) and (20), we can write

Λ1 = Λ∗
−1 =

v′⊥
2

(e1 − ie2) ·
∂

∂x
+

v′⊥
2

(e1 − ie2) ·Z
∂

∂v′‖
+

1
2
(e1 − ie2) ·

( F
mn

− v′‖ Y
) ∂

∂v′⊥
(A.4)

and

λ1 = λ∗
−1 =

i

2v′⊥
(e1 − ie2) ·

( F
mn

− v′‖Y
)

− v′⊥
2

b ·
[
∇× (e1 − ie2)

]
, (A.5)

where

Z(v′‖,x, t) = −b × ω + v′‖κ − 1
Ωc

∇×
[ F
mn

+
∂u
∂t

+ (u · ∇)u
]

(A.6)

and

Y(v′‖,x, t) = 2(b · ∇)u + v′‖κ − 1
Ωc

∇×
[ F
mn

+
∂u
∂t

+ (u · ∇)u
]

. (A.7)

For our present purpose of deriving a first-order FLR drift-kinetic equation valid for sonic flows, it is

sufficient to keep Λ±1 and λ±1 within the accuracy of Λ±1 ∼ λ±1 ∼ vth/L, therefore it is sufficient to

keep

Z(v′‖,x, t) = −b × ω + v′‖κ + O(δvth/L) (A.8)

and

Y(v′‖,x, t) = 2(b · ∇)u + v′‖κ + O(δvth/L) . (A.9)
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Appendix B: Operator commutations.

Our derivation of the FLR drift-kinetic equation bypasses the explicit calculation of the gyrophase

dependent part (i.e. l �= 0 harmonics) of the first-order distribution function and requires only the

calculation of the three operator commutators defined by the three terms inside square brackets in

Eq.(31). Using the expressions (A.4,A.5) for Λ±1 and λ±1, and (18,21) for Λ±2 and λ±2, the result is

1
iΩc

[
(Λ1 − iλ1)Λ−1 − (Λ−1 + iλ−1)Λ1

]
=

1
Ωc

{
b ×

( F
mn

− v′‖Y
)
− v

′2
⊥
2

[b · (∇× b)] b
}
· ∂

∂x
+

+
1
Ωc

{[
b ×

( F
mn

− v′‖Y
)]

· Z +
v
′2
⊥
2
∇ · (Z × b)

} ∂

∂v′‖
+

v′⊥
2Ωc

{(
b × κ

)
·
( F
mn

− v′‖Y
)

+ ∇ ·
[( F

mn
− v′‖Y

)
× b

]
+

[
b ×

(
Y + v′‖κ

)]
· Z

} ∂

∂v′⊥
, (B.1)

v′⊥
2iΩc

[
(e1 − ie2) · ∇ lnB Λ−1 − (e1 + ie2) · ∇ lnB Λ1

]
=

v
′2
⊥

2Ωc
(b ×∇ lnB) · ∂

∂x
+

+
v
′2
⊥

2Ωc

[
(b ×∇ lnB) · Z

] ∂

∂v′‖
+

v′⊥
2Ωc

[
(b ×∇ lnB) ·

( F
mn

− v′‖Y
)] ∂

∂v′⊥
(B.2)

and
1

iΩc

[
(
1
2
Λ2 − iλ2)Λ−2 − (

1
2
Λ−2 + iλ−2)Λ2

]
=

v
′2
⊥
2

σ
∂

∂v′‖
, (B.3)

where σ(x, t) is the scalar introduced in Ref.11:

σ =
1

4Ωc
εjklbj

(
∂bk

∂xm
+

∂bm

∂xk

)
(δmn − bmbn)

(
∂ul

∂xn
+

∂un

∂xl

)
. (B.4)

As can be seen, the outcome of these commutations does not depend on (e1, e2) and involves only

the intrinsic geometry of the magnetic field along with the velocity field u and the force density F.

Substituting the expressions (A.8,A.9) for Z and Y, bringing the result to Eq.(31) and carrying some

straightforward algebra, one obtains the final form of the first-order contribution to the drift-kinetic

equation.
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Appendix C: Drift-kinetic equation in the laboratory frame.

If the flow is sufficiently slow so that E � vthB, the drift-kinetic analysis can be carried out in

the laboratory frame. Then, the slow flow, first-order FLR drift-kinetic equation derived in Ref.6, is

recovered as a special case of the present results. Setting u = 0, v′ = v, F = enE and uF = uE , our

drift-kinetic equation (32-35) becomes

∂f̄(v‖, v⊥,x, t)
∂t

+ ẋ · ∂f̄

∂x
+ v̇‖

∂f̄

∂v‖
+ v̇⊥

∂f̄

∂v⊥
= 0 , (C.1)

with

ẋ = uE + v‖b +
v2
⊥
2
∇×

( b
Ωc

)
+

(
v2
‖ −

v2
⊥
2

)b × κ

Ωc
, (C.2)

v̇‖ =
e

m
b · E − v‖b · [(b · ∇)uE ] − v2

⊥
2

b · ∇ lnB +
v‖v2

⊥
2

∇ ·
(b × κ

Ωc

)
(C.3)

and

v̇⊥ =
v⊥
2

{
b · [(b · ∇)uE ] − ∇ · uE + v‖b · ∇ lnB − v2

‖∇ ·
(b × κ

Ωc

)}
. (C.4)

In the traditional literature, it is customary to use as phase-space variables the kinetic energy

ε(v‖, v⊥) = m(v2
‖ + v2

⊥)/2 and the magnetic moment µ(v⊥,x, t) = mv2
⊥/(2B). Making the change of

variables from (t,x, v‖, v⊥) to (t,x, ε, µ), Eqs.(C.1-C.4) become

∂f̄(ε, µ,x, t)
∂t

+ ẋ · ∂f̄

∂x
+ ε̇

∂f̄

∂ε
+ µ̇

∂f̄

∂µ
= 0 , (C.5)

with

ẋ = uE +
[ 2
m

(ε − µB)
]1/2

b + µB∇×
( b
mΩc

)
+ (2ε − 3µB)

b × κ

mΩc
, (C.6)

ε̇ =
[ 2
m

(ε − µB)
]1/2

e b · E − µB ∇ · uE + (2ε − 3µB) uE · κ (C.7)

and

µ̇ =
µ

mΩc

[
τ b · (eE − µ∇B) + 2(ε − µB) B · ∇

( τ

B

)]
, (C.8)
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where τ = b · (∇× b). The advantage of using the (ε, µ) variables is clear if one does not go beyond

the zero-Larmor-radius approximation where µ̇ vanishes. The first-order FLR contribution to µ̇ (C.8)

would also vanish if the magnetic twist function τ(x, t) (or equivalently the parallel current) were

equal to zero, but this is seldom of interest. The (ε, µ) variables become less attractive if we consider

the FLR equations with non-zero parallel current. This situation worsens when we include the fast

inhomogeneous flows, in which case the form of the FLR drift-kinetic equation in terms of (ε, µ)

becomes much more unwieldly than our form (32-35) in terms of (v‖, v⊥), besides adding the compli-

cation of a B-dependent Jacobian. It is possible to obtain a more accurate adiabatic invariant than µ,

that is conserved to any desired order in the FLR expansion, thus making its associated drift-kinetic

coefficient function vanish. However, the expression of this adiabatic invariant and the corresponding

Jacobian in our required first order already turn out to be quite unappealing. This was the reason for

our favoring the (v‖, v⊥) variables in this work.

Introducing the magnetic gradient drift velocity

V∇B(ε, µ,x, t) =
1

mΩc

{
b × [µ∇B + 2(ε − µB)κ] + µτB

}
(C.9)

and using Faraday’s law and some vector identities, the coefficient functions (C.6-C.8) can be cast in

a form equivalent to the one given in Ref.6 in its first order:

ẋ = uE +
[ 2
m

(ε − µB)
]1/2

b + V∇B , (C.10)

ε̇ = e E · ẋ + µ
∂B

∂t
(C.11)

and

µ̇ = µ
{ τ

B
b · E + 2(ε − µB)1/2 b · ∇

[
(ε − µB)1/2 τ

mΩc

]}
, (C.12)

where the gradient operator ∇ = ∂/∂x now acts at constant ε and µ.
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