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Abstract

Simulating electrostatic turbulence in tokamaks on transport time scales requires

retaining and evolving a complete turbulence modified neoclassical transport description,

including all the axisymmetric neoclassical and zonal flow radial electric field effects, as

well as the turbulent transport normally associated with drift instabilities. Neoclassical

electric field effects are particularly difficult to retain since they require evaluating the

ion distribution function to higher order in gyroradius over background scale length than

standard gyrokinetic treatments. To avoid extending gyrokinetics an alternate hybrid

gyrokinetic-fluid treatment is formulated that employs moments of the full Fokker-Planck

equation to remove the need for a higher order gyrokinetic distribution function. The

resulting hybrid description is able to model all electrostatic turbulence effects with

wavelengths much longer than an electron Larmor radius such as the ion temperature

gradient (ITG) and trapped electron modes (TEM).

PACS numbers: 52.25.Dg, 52.25.Fi, 52.30.Ex, 52.30.Gz, 52.35.Ra
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1. Introduction

Moment equations are often employed in strongly magnetized plasmas to obtain

expressions for the heat fluxes and viscosity requiring less accurate, lower order

evaluations of the distribution functions [see, for example, references 1-9]. The heat

fluxes and viscosities found in this manner can then be employed in the conservation of

charge, number, momentum, and energy equations along with a lower order kinetic

equation to obtain a hybrid fluid-kinetic closure. The earliest example of a hybrid closure

in a strongly magnetized plasma is due to Kulsrud [10] who employed a large flow

ordering with a simple drift kinetic equation for the parallel dynamics.

A hybrid fluid-kinetic description of strongly magnetized plasma, if correctly

formulated and properly applied, has advantages over a purely kinetic description since it

requires solving a much less accurate kinetic equation for the distribution function and

the results are often easier to interpret. Closed hybrid descriptions can consist of and

evolve charge, density, momentum, and energy conservation equations, and a kinetic

equation for each species, along with Maxwell's equations. To obtain such a closed

hybrid description the expressions for the species heat fluxes and viscous stress tensors,

as well as the interspecies energy and momentum exchanges, should be written in terms

of velocity moments of and require the least possible information about the distribution

function, which in turn is found by solving the simplest possible gyrokinetic and/or drift

kinetic equations.

Here we formulate a hybrid system that requires solving both an ion gyrokinetic

equation and an electron drift kinetic equation. To treat the ions we must also formulate

the gyrokinetic extension of some aspects of the recent drift kinetic derivation by

Simakov and Catto [9] of the ion viscosity and heat flux for arbitrary collisionality

plasmas. Their results are obtained by expanding in ion Larmor radius 

� 

ρi over

background perpendicular scale length 

� 

L⊥  and assuming the lowest order distribution

function is Maxwellian. We generalize the moment procedure they employed to insure

that turbulent gyrokinetic effects with 

� 

k⊥ρi ~ 1 are retained as well as the long

wavelength features that require higher order terms in 

� 

ρi /L⊥ , where 

� 

k⊥ is the

characteristic perpendicular wave number of the turbulence with 

� 

k⊥L⊥ >> 1 allowed.

Gyrokinetics has not yet been formulated to high enough order in the gyroradius of
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background magnetic field and plasma scale lengths to recover these results directly.

Indeed, here we show that there is no need to do so because the gyrokinetic extension of

the moment procedure used in Ref. [9] retains the desired long wavelength effects in

general, and the axisymmetric zonal flow and radial electric field behavior in particular.

Moreover, in our formulation a lowest order full f gyrokinetic equation provides the 

� 

k⊥ρi
~ 1 effects needed to describe turbulent phenomena. The moment equations are required

to extend simulations to transport time scales on which long wavelength phenomena with

� 

k⊥L⊥ ~ 1 must be retained to describe the interaction between the turbulence generated

zonal flow and neoclassical modifications to the axisymmetric radial electric field. To

retain transport phenomena including low mode number effects as generally as possible

we allow perpendicular (

� 

L⊥ ) and parallel (

� 

L|| ~ k||−1) scale lengths to be comparable,

while for the turbulent fluctuations including the zonal flow our orderings allow

� 

L|| ˜ > L⊥ >> k⊥
−1 ~ ρi. These orderings permit the lowest order distribution 

� 

f0 to be

Maxwellian as in local core gyrokinetic codes, but by use of a moment approach allow us

to keep both transport and turbulent modifications to much higher order than standard

gyrokinetics with only the 

� 

δf  of local gyrokinetic codes. In summary, we retain long

wavelength phenomena to higher order than standard gyrokinetics, by extending the

moment procedure of drift kinetics [1-9] to gyrokinetics to retain and evolve these

phenomena as well as turbulence in a fully self-consistent way.

To keep the formulation for describing turbulence on transport time scales as

simple as possible we only consider electrostatic turbulence in a tokamak and assume

� 

k⊥ρe  << 1 for the electrons. As a result, we employ   

� 

 
E = −∇Φ and the axisymmetric,

steady state magnetic field form   

� 

 
B = I(ψ)∇ζ + ∇ζ ×∇ψ = B

 
b , with 

� 

ψ the poloidal flux

function (

� 

|∇ψ|= RBp), 

� 

ζ  the toroidal angle (

� 

|∇ζ|=1/R), 

� 

I = RBt ,   

� 

B = |
 
B |, R the major

radius, and 

� 

Bt  and 

� 

Bp the toroidal and poloidal components of the magnetic field. These

assumptions seem straightforward, but tedious, to remove. Making them simplifies the

presentation and avoids obscuring key points.

Sections 2 and 3 present the fluid and kinetic descriptions we employ, while

section 4 evaluates the heat flows and viscosities in detail. We close with a brief

summary of the equations that must be solved in a hybrid gyrokinetic - fluid description.
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2. Fluid conservation equations

We consider a quasi-neutral plasma with only a single singly charged ion species

of plasma density n, with e the magnitude of the charge on an electron. We denote the ion

mean velocity by   

� 

 
V , the current density by   

� 

 
J =en(

 
V −
 
V e), so that the electron mean flow

is   

� 

 
V e  =   

� 

 
V −
 
J /en , and the ion and electron temperatures and pressures by 

� 

Ti and 

� 

Te , and

� 

pi = nTi and 

� 

pe = nTe . In electron momentum conservation we ignore inertial terms and

gyroviscosity, as well as perpendicular viscosity, but retain parallel viscosity. We employ

the sum of the ion and electron momentum equations rather than the ion momentum

equation. As a result, the electron momentum conservation equation (or Ohm's law) and

the conservation forms of the number, charge, total momentum, and species energy

equations are as follows:

  

� 

∂n
∂t

+ ∇ ⋅ (n
 
V ) = Sn  , (1)

  

� 

∇ ⋅
 
J = 0 , (2)

  

� 

∂(Mn
 
V )

∂t
+ ∇ ⋅ [(pi + pe)

 
I +
 
π i +
 
π e] = 1

c
 
J ×
 
B +
 
S mi +

 
S me  , (3)

  

� 

en(−∇Φ+ 1
c
 
V e×
 
B ) + ∇ ⋅ (pe

 
I +
 
π e) =

 
F +
 
S me , (4)

  

� 

3
2
∂pi
∂t

+ ∇ ⋅ ( q i + 5
2

pi
 
V ) = −en

 
V ⋅ ∇Φ+ W + Spi , (5)

and

  

� 

3
2
∂pe
∂t

+ ∇ ⋅ ( q e + 5
2

pe
 
V e) =en

 
V ⋅ ∇Φ−W + Spe  , (6)

where the ion viscosity   

� 

 
π i =   

� 

M d3v∫ fi(
 v  v −
 
I v2/3) =   

� 

M d3v∫ fi
 v  v − pi

 
I  =   

� 

 
π ||i  + 

  

� 

 
π gi +   

� 

 
π ⊥i

implicitly retains the Reynolds stress terms, the electron viscosity is simply

  

� 

 
π e =
 
π ||e =m d3v∫ f e( v  v −

 
I v2/3) = m d3v∫ f e

 v  v − pe
 
I =  

� 

(p⊥e− p||e)(
 
I /3−

 
b 
 
b )  with  the overbar

on 

� 

fe  denoting a gyroaverage holding   

� 

 r  fixed, the ion and electron heat fluxes are

defined as   

� 

 q i = d3v∫ fi
 v (Mv2 − 5Ti)/2  and   

� 

 q e = d3v∫ fe
 v (mv2 − 5Te)/2 , and   

� 

 
I  is the unit

dyad. Arbitrary collisionality expressions for the parallel, gyro, and perpendicular

viscosities, along with the ion and electron heat fluxes,   

� 

 q i and   

� 

 q e, will be given in
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subsequent sections. Momentum exchange of the electrons with the ions is given by the

friction term [3,4,6]

  

� 

 
F = mnνe

 
V − 2γemn d3∫ vfe

 v /v3 =   

� 

mnνe(
 
V −
 
V ⊥e + 3 q de/5pe) − 2γemn

 
b d3∫ vf ev|| /v3, (7)

that is obtained from   

� 

 
F = d3∫ vm v Cei, with 

� 

Cei the electron-ion collision operator, m the

electron mass, 

� 

νe =   

� 

4(2π)1/2ne4nΛ /3m1/2Te3/2 the electron collision frequency, 

� 

γe  =

� 

[3(2π)1/2νe/4n](Te/m)3/2 ,   

� 

 q de =   

� 

−(5pe /2mΩe)
 
b ×∇Te, and 

� 

Ωe = 

� 

eB/mc . The final

form of   

� 

 
F  is obtained by assuming drift kinetic electrons, with the last term of equation

(7) including implicit parallel electron and ion flow terms in 

� 

f e  (the ion flow enters

because of the electron-ion collision operator). Energy exchange of the ions with the

electrons is given by [3,4,6]

  

� 

W = 3mnνe(Te − Ti)/M + (mnνe
 
V −
 
F ) ⋅
 
V  , (8)

where 

� 

W = d3∫ v(Mv2/2)Cie  with 

� 

Cie the ion-electron collision operator and M the ion

mass. The particle, ion and electron momentum, and ion and electron energy sources, 

� 

Sn ,

  

� 

 
S mi,   

� 

 
S me, 

� 

Spi, and 

� 

Spe, are allowed to be the same order as time derivatives in the

corresponding equations.

In the electrostatic limit considered here Eqs. (1) - (6) are ten equations evolving

the ten unknowns n, 

� 

pi or 

� 

Ti, 

� 

pe or 

� 

Te ,   

� 

 
V ,  

� 

 
V e  =   

� 

 
V −
 
J /en , and 

� 

Φ. Equations (1), (5) and

(6) advance n, 

� 

pi or 

� 

Ti, and 

� 

pe or 

� 

Te . The momentum and charge conservation equations

give the electrostatic potential and the ion and electron flows (or equivalently the ion

flow and the current density), with the parallel component of (4) the parallel Ohm's law.

Flux surface averaging   

� 

∇ ⋅
 
J = 0 and integrating once in 

� 

ψ gives the global

ambipolarity constraint 
  

� 

〈
 
J ⋅ ∇ψ〉ψ = 0 , where the flux surface average is defined by

  

� 

〈...〉ψ = [ dζ∫ dϑ(...) /
 
B ⋅ ∇ϑ∫ ]/[2π dϑ /

 
B ⋅ ∇ϑ∫ ] (9)

with 

� 

ϑ  the poloidal angle. This result is consistent with Ampere's law of course, but our

electrostatic assumption means that magnetic fluctuations are ignored so Ampere's law is

not employed and is assumed to be satisfied by the steady state fields to whatever order is

required.
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To see that the radial particle transport reduces to the correct intrinsically

ambipolar form [11,12] for an axisymmetric   

� 

 
B  in the source and sink free limit, we form

the 

� 

R2∇ζ  component of equation (4) to obtain

  

� 

n
 
V e ⋅ ∇ψ = (c /e)R2∇ζ ⋅ (en∇Φ−∇pe +

 
F +
 
S me) − (c /e)∇ ⋅ (R2 π e ⋅ ∇ζ)  . (10)

The lowest order result of flux surface averaging equation (10) in the absence of a

significant toroidal momentum source or sink is

  

� 

〈n
 
V e ⋅ ∇ψ〉ψ = (c /e)〈en∂Φ/∂ζ + R2∇ζ ⋅

 
F 〉ψ, (11)

where 

� 

〈∂pe/∂ζ〉ψ = 0  is employed and any gyroviscous contribution from

  

� 

〈∇ ⋅ (R2
 
π e ⋅ ∇ζ)〉ψ is an order 

� 

k⊥ρe2/L⊥<< 1 correction (since any departure from a

Maxwellian 

� 

f0e will depend on 

� 

∂f0e/∂ψ∝1/L⊥ ) and assumed negligible. Then,

  

� 

〈
 
J ⋅ ∇ψ〉ψ = 0  gives 

  

� 

〈n
 
V ⋅ ∇ψ〉ψ = 〈n

 
V e ⋅ ∇ψ〉ψ and intrinsic ambipolarity [11,12] is

maintained even in the presence of fluctuations (as long as any magnetic perturbations

remain sufficiently small) provided the electron kinetic equation is solved in a way that

insures 
  

� 

〈n
 
V e ⋅ ∇ψ〉ψ is independent of 

� 

∂Φ/∂ψ  (in the neoclassical limit 

� 

∂Φ/∂ψ  terms

from 

� 

V|| in the electron-ion collision operator and 

� 

∂f0e/∂ψE  exactly cancel). Notice that

we do not improperly determine the axisymmetric radial electric field by adjusting it until

  

� 

〈n
 
V ⋅ ∇ψ〉ψ ≈ 0 or 

  

� 

〈
 
J ⋅ ∇ψ〉ψ = 0 , as is sometimes mistakenly done in tokamaks.

Then the axisymmetric portion of the radial electric field is determined by

conservation of toroidal angular momentum as required [3,5,6,13-15]. It is obtained from

the 

� 

R2∇ζ  component of equation (3), using   

� 

 
B ×∇ψ = I

 
B −B2R2∇ζ , to find

  

� 

∂(MR2n
 
V ⋅∇ζ)

∂t
+ ∇⋅{R2[(pi+ pe)

 
I +
 
π i +
 
π e]⋅∇ζ} = c−1

 
J ⋅∇ψ+ R2(

 
S mi+

 
S me)⋅∇ζ  . (12)

In the steady state in the absence of sources or sinks, the flux surface average of equation

(12) followed by a 

� 

ψ integration yields the lowest order constraint

  

� 

〈R2∇ζ ⋅
 
π i ⋅ ∇ψ〉ψ ≈ 0 , that determines the neoclassical 

� 

∂Φ /∂ψ  (or equivalently   

� 

 
V ⋅ ∇ζ ).

In an axisymmetric steady state (ss) lowest order flow is in a flux surface and is

given by

  

� 

n
 
V 

ss
= K(ψ)

 
B − cn[∂Φ

∂ψ
+ 1

en
∂pi
∂ψ

]R2∇ζ  , (13)
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with 
  

� 

n
 
V 

ss
⋅ ∇ψ  = 0. Consequently, only the flux function K and the potential need be

determined in the ion flow. The K is found from the lowest order version of parallel

momentum conservation, namely 
  

� 

〈
 
B ⋅ (∇ ⋅

 
π ||i)〉ψ ≈ 0, in the Pfirsch-Schlüter regime, and

directly from the ion distribution function in the banana regime [3,4,6]. As already noted,

the potential is found from equation (12) [3,5,6,13-17], but it is important to realize that

the poloidally varying corrections to equation (13) must be retained in the gyroviscosity

when evaluating its contribution to 
  

� 

〈R2∇ζ ⋅
 
π i ⋅ ∇ψ〉ψ ≈ 0  in complete generality [16].

Our description contains a steady state current consistent with our axisymmetric

  

� 

 
B . From Ampere's law and   

� 

 
J ×
 
B ≈ c∇p, with p = 

� 

pi + pe a lowest order flux function,

this lowest order current is in a flux surface and given by

  

� 

 
J 

ss
= −(c /4π)(dI /dψ)

 
B − cR2(dp /dψ)∇ζ  . (14)

3. Drift and gyrokinetic equations

The electron drift and ion gyrokinetic equations need not be solved in a

conservative form since only moments of the distribution functions are needed to provide

closure in the conservation of number, momentum, energy and charge forms of our

hybrid formulation. The plasma density, mean ion and electron velocities, species

pressures, and electrostatic potential are evaluated from fluid equations in conservative

form so no extraneous number, charge, momentum and energy sources or sinks will

inadvertently be included.

To keep the   

� 

 
E ×
 
B  drift velocity   

� 

 v E  of order 

� 

δ times the ion thermal speed 

� 

vi we

must assume 

� 

eΦ /T << 1 for the fluctuating gyrokinetic part of the electrostatic

potential, while allowing 

� 

eΦ /T  ~ 1 in the long wavelength drift kinetic portion. The

restriction on the   

� 

 
E ×
 
B  drift leads us to order

 

� 

eΦ /T  ~ 

� 

1/k⊥L⊥ , (15)

with 

� 

k⊥ ~ 1/ρi for gyrokinetic fluctuations and  

� 

k⊥ ~ 1/L⊥  in the long wavelength  limit.

Before considering gyrokinetic effects (

� 

k⊥ρi ~ 1 and 

� 

k⊥L⊥  >> 1) in more detail it

is convenient to consider the drift kinetic limit (

� 

k⊥ρ  << 1 and 

� 

k⊥L⊥ ~ 1) to see what
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effects are needed to retain turbulent and neoclassical effects on transport time scales of

many ion-ion collision times.

3.1. Drift kinetic equation

Drift kinetic descriptions in strongly magnetized plasmas assume the species

gyrofrequency is much larger than any frequency of interest (

� 

Ω >>

� 

∂/∂t) and that the

species gyroradius 

� 

ρ  is smaller than any other length scale of interest (

� 

δ

� 

≡

� 

ρ/L⊥<< 1 and

� 

k⊥ρ  << 1, where 

� 

L⊥  and 

� 

k⊥−1 are the shortest perpendicular scale length and

wavelengths of interest).  The lowest order  form of the drift kinetic equation [5,18,19] in

kinetic energy 

� 

ε = v2/2 and magnetic moment 

� 

µ0 = v⊥2/2B variables is

  

� 

∂f 
∂t

+ [(v|| +vp)
 
b +  v d] ⋅ ∇ ε,µo

f − e
M

∇Φ⋅ [(v|| +vp)
 
b +  v d]∂f 

∂ε
= C {f }, (16)

where the spatial gradient is performed holding 

� 

ε and 

� 

µ0 fixed, the gyroaverage is

performed holding 

� 

ε, 

� 

µ0, and   

� 

 r  fixed, 

� 

C  is the gyroaveraged collision operator,

� 

v|| = (2ε− 2µ0B)1/2  is the parallel velocity and 
  

� 

vp = (µ0B/Ω)
 
b ⋅∇×

 
b  its correction, and

  

� 

 v d =
 v E +
 v M is the total drift velocity with   

� 

 v E = c
 
B ×∇Φ /B2  the electric or   

� 

 
E ×
 
B  drift

and   

� 

 v M = Ω−1
 
b ×(µ0∇B + v||

2 κ ) the magnetic drift, with   

� 

 
κ =
 
b ⋅∇
 
b  the curvature. This

form of the drift kinetic equation retains only order 

� 

δ corrections and assumes that 

� 

µ0

variation of 

� 

f  is weak compared to the

� 

ε variation, that is, it assumes 

� 

∂f /∂ε >> B−1∂f /∂µ0

as is required to allow 

� 

f = f0  be Maxwellian (or isotropic) to lowest order. The alternate

form of the drift kinetic equation obtained by changing variables from 

� 

ε to 

� 

v|| may also

be employed.

For arbitrary collisionality the closure requirements are simplified by choosing the

lowest order solution of the drift kinetic equation 

� 

f 0 as an axisymmetric Maxwellian. To

see that this is consistent we linearize the drift kinetic equation about 

� 

f 0 and then allow

the perpendicular and parallel scale lengths to be comparable (

� 

k⊥−1 ~ L⊥ ~ L||). Then the

parallel streaming and parallel electric field terms must dominate in the Vlasov operator

because the transit time is much faster than any temporal evolution scale for the lowest

order distribution 

� 

f 0. Moreover, if we adopt the arbitrary collisionality ordering on the

mean free path 

� 

λ  by taking 

� 

Δ = 

� 

λ/

� 

L||  ~ 1, then the collision operator must be retained
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to the same order (we always assume 

� 

L⊥ ~ L|| so our results are valid for arbitrary aspect

ratio and safety factor). In this case, we see that 

� 

f 0 must be Maxwellian since to lowest

order it must satisfy

  

� 

v||[
 
b ⋅ ∇ ε,µo

f 0 −
e
M

 
b ⋅ ∇Φ∂f 0

∂ε
] = C {f 0}. (17)

The lowest order solution 

� 

f 0 to the left side of equation (17) can only be a function of

total energy 

� 

E∗ = v2/2 + eΦ/M  and magnetic flux 

� 

ψ [this is rigorously true on irrational

flux surfaces, and true by continuity on rational ones], since

� 

∇ E∗,µo
= ∇ε,µo

− (e /M)∇Φ∂/∂ε  and   

� 

 
b ⋅∇ψ = 0 . Moreover, to make the collision operator

vanish the right side can only be satisfied by a Maxwellian (the right side does not permit

� 

f 0 to depend on 

� 

µ0 to lowest order). Consequently, to make the collision and lowest

order Vlasov operators vanish, 

� 

f 0 = f0(ψ,E∗,t)  must be the Maxwellian:

� 

f0 = η(M/2πT)3/2 exp(−ME∗ /T) = n(M/2πT)3/2 exp(−Mv2/2T) , (18)

with 

� 

η = η(ψ,t) = nexp(eΦ/T), 

� 

T = T(ψ,t) ,   

� 

n = n( r ,t) , and   

� 

Φ = Φ( r ,t) . Notice that

according to the preceding drift kinetic argument the density and potential need not be

flux functions to lowest order since   

� 

 
b ⋅∇η = 0 . For the hybrid gyrokinetic-fluid treatment

herein we allow our lowest order Maxwellian to have   

� 

T = T( r ,t) , as well as   

� 

n = n( r ,t)

and   

� 

Φ = Φ( r ,t)  since this form is allowed in the short mean free path limit. By taking f as

Maxwellian to lowest order we can simplify the expressions for the heat fluxes and

viscosities to see that only order 

� 

δ and 

� 

δ2  corrections, respectively, to 

� 

f0 contribute.

If we write   

� 

f = f0 + δf ( r ,ε,µ0,t) + δ˜ f ( r ,ε,µ0,ϕ,t) and retain all order 

� 

δ terms as in

the Appendix, we would obtain a drift kinetic equation [18,19] for 

� 

δf  containing

turbulent behavior and neoclassical particle and heat flow as well as the zonal flow

generated by the turbulence [20,21], and a gyrophase, 

� 

ϕ , dependent contribution 

� 

δ˜ f  odd

in   

� 

 v  giving   

� 

d3vδ∫ ˜ f i(
 v  v −
 
I v2/3) = 0 . As a result, the leading order corrections 

� 

δ˜ f  and 

� 

δf 

to the Maxwellian must give   

� 

∇ζ ⋅
 
π i ⋅ ∇ψ = 0  since   

� 

d3vδ∫ f i(
 v  v −
 
I v2/3) is diagonal.

Consequently, the radial electric field can only be evaluated by retaining order 

� 

δ2  or

higher Larmor radius effects. A higher order version of equation (16) is available [19],
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but even it's solution is not good enough to directly evaluate the perpendicular collisional

viscosity to the order required to determine the neoclassical electric field.

For the hybrid model outlined herein the drift kinetic equation (16) is only used

for the electrons, for which 

� 

C→Cee + Cei ≡ Ce and   

� 

Cei{fe} = Lei{fe −m
 
V ⋅  v f0e/Te} with

� 

Lei the Lorentz collision operator for electron-ion collisions and 

� 

Cee{f e} =

� 

Cee{f e −mV|| v||f0e/Te} for the linearized gyroaveraged electron-electron collision

operator. Rewriting the electron kinetic equation as an equation for 

� 

H e≡ f e−mV|| v||f0e/Te

or 

� 

h e ≡ f e + (Iv|| /Ωe)∂f0e /∂ψ insures intrinsic ambipolarity by cancelling the 

� 

∂Φ/∂ψ

terms in the neoclassical limit since   

� 

 v de⋅∇ψ∂f0e /∂ψ =   

� 

v||
 n ⋅∇[(Iv|| /Ωe)∂f0e /∂ψ]. The

plateau approximation can only be used for 

� 

Ce{H e}→−νH e .

3.2. Gyrokinetic equation

Various choices for the gyrokinetic variables forms for the gyrokinetic equation

are possible [22-25]. For our purposes the gyrokinetic equation that is the natural

extension of the drift kinetic equation (16) is employed [26]

 
  

� 

∂〈f〉
∂t

+ [v || (
 
R )
 
b (
 
R )+
 v d(
 
R )]⋅∇R 〈f〉 −

e
M
∇R 〈Φ( r ,t)〉 ⋅ [v ||(

 
R )
 
b (
 
R )+
 v d(
 
R )]∂〈f〉

∂E
=〈C{f}〉 , (19)

where, unlike the drift kinetic gyroaverage, the gyrokinetic gyroaverage denoted by 

� 

〈...〉

is performed holding fixed the gyrokinetic variables

  

� 

E = v2/2 + (e /M)[Φ( r ,t) − 〈Φ( r ,t)〉] + (c /B)∂ ˜ Φ /∂t ,

  

� 

 
R =
 r + Ω−1 v ×

 
b +Ω−2

 
b [(v||
 
b + 1

8
 v ⊥) v ×

 
b +  v ×

 
b (v||
 
b + 1

8
 v ⊥)] : (∇

 
b ×
 
b ) (20)

  

� 

+Ω−1[(v||
 
b + 1

4
 v ⊥) v ×

 
b +  v ×

 
b (v||
 
b + 1

4
 v ⊥)] ˙ × ∇(

 
b /Ω) + (v|| /Ω2) v ⊥⋅∇

 
b − (c /BΩ)∇R ˜ Φ ×

 
b ,

and

 
  

� 

µ =
v⊥2

2B
+ e

MB
[Φ( r ,t) − 〈Φ( r ,t)〉]− 1

B
 v ⋅  v M − v||

4ΩB
[ v ⊥
 v ×
 
b +  v ×

 
b  v ⊥]:∇

 
b − v||v⊥

2

2ΩB

 
b ⋅∇×

 
b .

In the preceding, 
  

� 

v ||(
 
R ) = [2ε− 2µB(

 
R )]1/2 =〈v||〉+ vp(

 
R ) ,   

� 

 v d(
 
R ) =

 v E (
 
R ) +

 v M(
 
R ), and

  

� 

∇R = ∂/∂
 
R , where   

� 

〈v||〉=〈[2ε−2µB( r )]1/2〉 ,   

� 

 v E (
 
R )=c

 
B (
 
R )×∇R 〈Φ( r ,t)〉 /B2(

 
R ) ,   

� 

 v M(
 
R ) =

  

� 

Ω−1(
 
R )
 
b (
 
R )×[µ∇RB(

 
R )+v||

2(
 
R ) κ (

 
R )],

  

� 

vp(
 
R )=(µB/Ω)

 
b (
 
R )⋅∇R×

 
b (
 
R ) , and   

� 

˜ Φ ≡ ˜ Φ (
 
R ,E,µ,t)

  

� 

≡ dϕϕ∫ [Φ( r ,t) − 〈Φ( r ,t)〉] with this indefinite integral performed holding   

� 

 
R , E, and 

� 

µ

fixed such that 

� 

〈 ˜ Φ 〉  = 0. Our vector conventions are   

� 

 a  c :
 

M =
 c ⋅
 
M ⋅  a  and   

� 

 a  c ˙ × 
 
M =
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� 

 a × ( c ⋅
 
M ) = −

 c ⋅
 
M ×  a . Use of the higher order gyrokinetic variables [23,26] given in

equations (20) is essential when we evaluate the ion viscosity. The alternate form of the

gyrokinetic equation obtained by changing variables from E to 

� 

v || may also be employed.

The hybrid model outlined herein employs the gyrokinetic equation for the ions.

Like the drift kinetic equation (16), our gyrokinetic equation (19) is derived by neglecting

some order 

� 

(ρ/L⊥)2 corrections even though it allows 

� 

k⊥ρ  ~ 1, where 

� 

L⊥  is the local

unperturbed density, temperature, potential, or magnetic field scale length. However, our

gyrokinetic variables (20) allow us to retain all order 

� 

(ρ/L⊥)2 gyrophase dependent

corrections in the long wavelength limit as shown in Appendix D of [26] by Taylor

expanding 

� 

〈f〉  about the Maxwellian. This feature is essential to allow us to retain

neoclassical electric field effects when we evaluate the ion viscosity. In addition, we

employ quasi-neutrality to equate the electron and ion densities (so only the plasma

density enters) rather than attempting to determine the electrostatic potential by using the

gyrokinetic version of quasi-neutrality [24,25] that requires the distribution functions to

very high order in the 

� 

ρ/L⊥  expansion. In the hybrid description described herein the

electrostatic potential is determined by employing conservation equations (1)-(6).

Although we employ a full f gyrokinetic equation, it is convenient to consider the

lowest order distribution Maxwellian to make estimates and to order the electrostatic

potential according to (15). As a result, to estimate the characteristic departure of the full

gyrokinetic 

� 

〈f〉  from Maxwellian we use a Maxwell-Boltzmann or adiabatic response

[

� 

n∝exp(−eΦ/T)] for gyrokinetic fluctuations by taking

� 

(〈f〉 − f0) /f0 ~ eΦ /T ~ ρi /L⊥ = δ , (21)

since 

� 

k⊥ ~ 1/ρi. In the long wavelength limit 

� 

〈f〉 ~ f0 . More precisely, when 

� 

k⊥ρi << 1,

Eqs. (16) and (19) are identical since   

� 

〈f〉→ f + Ω−1 v ×
 
b ⋅ [∇f − (e /M)∇Φ∂f /∂ε] + ..., but of

course for 

� 

k⊥ρi ~ 1 they differ and 

� 

(〈f〉− f ) /f ~ δ . We stress here that 

� 

〈f〉  contains all

order 

� 

k⊥ρi ~ 1 modifications, but only order 

� 

ρi /L⊥  corrections as in standard drift

kinetics - it is missing some order 

� 

(ρi /L⊥)2  gyrophase independent corrections.

A direct evaluation of   

� 

 q i = d3v∫ fi
 v (Mv2 − 5Ti)/2  using the local gyrokinetic result

of equation (A8) from the Appendix, with 

� 

f0i the local Maxwellian and
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� 

∂f0i/∂ψE = f0i[pi
−1∂pi/∂ψ+ (e/Ti)∂Φ/∂ψ+ (Mv2/2Ti − 5 /2)Ti

−1∂Ti/∂ψ] ,
gives

  

� 

 q i→ d3v∫ 〈h〉 v (Mv2 − 5Ti)/2 + (5pi/2MΩi)(∂Ti/∂ψ)(
 
b ×∇ψ− I

 
b )  ,

where 

� 

〈h〉 /f0i ~ ρi/L⊥and   

� 

 
b ×∇ψ− I

 
b = −R2B∇ζ . In the drift kinetic limit

  

� 

〈h〉→ h + Ω−1 v ×
 
b ⋅ [∇h − (e /M)∇Φ∂h /∂ε] + ... this gives the incomplete result

 
  

� 

 q i→
 
b 1

2
d3v∫ h v||(Mv2−5Ti) + 5pi

2MΩi

∂Ti
∂ψ

(
 
b ×∇ψ− I

 
b )

  

� 

+ 1
4Ωi

d3v∫ v⊥
2(Mv2−5Ti)

 
b ×[∇h − (e /M)∇Φ∂h /∂ε]

that is seen to be missing the perpendicular collisional heat flux (note that the third term

on the right is 

� 

h /f0i~ δ smaller than the second). Therefore, to retain neoclassical (and

classical) heat flow, as well as the 

� 

k⊥ρi ~ 1 turbulent heat flow, without the need for

higher order gyrokinetics, we evaluate   

� 

 q i by an alternate, moment approach that

generalizes the one used in drift kinetics. Similar, but more complicated difficulties arise

for the ion viscosity. These issues are addressed in the next section, while the Appendix

presents a simple derivation of the intrinsically ambipolar form of the ion kinetic

equation (A4) with zonal flow retained.

4. Heat flows and viscosities

All gyrokinetic, drift kinetic, and moment descriptions in strongly magnetized

plasmas take advantage of the species gyrofrequency being much larger than any

frequency of interest. This assumption allows various moments of the full Fokker-Planck

equation for the ions,

  

� 

dfi
dt

≡ ∂fi
∂t

+∇⋅ ( v fi) −∇v⋅ [
e
M

(∇Φ−1
c
 v ×
 
B )fi] = Ci{fi} , (22)

to be used to obtain expressions for fluxes in which a less accurate or lower order

expression for the ion distribution function 

� 

f i can be employed, where 

� 

Ci{f i}  is the ion-

ion plus ion-electron collision operator [2-9].

4.1. Ion heat flow

For ion heat flow it is convenient to form the   

� 

M v v2/2  moment of equation (22)

and then subtract from it 

� 

Ti times the   

� 

 v moment to obtain [9]
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� 

Ωi
 
b ×  q i + ∇ ⋅ [ d3v∫ fi(Mv2 − 5Ti)

 v  v /2] + (5 /2M)(pi
 
I +
 
π i) ⋅ ∇Ti + (e /M)

 
π i ⋅ ∇Φ =

  

� 

(1/2) d3v∫ (Mv2 − 5Ti)
 v Ci{fi}, (23)

where time derivatives are neglected as small. To lowest order the ion-electron collision

term in (23) may be neglected and 

� 

f i thought of as the Maxwellian 

� 

f0i. Also, we need

only retain the linearized ion-ion collision operator by making the replacement

  

� 

Ci{f i}→Cii
{f i−f 0i}=  

  

� 

Cii
{f i}−Cii

{f 0i} = Cii
{f i} since 

  

� 

Cii
{f 0i} = 0 .

The lowest order terms in (23) are   

� 

Ωi
 
b ×  q i, the diamagnetic term 

� 

pi∇Ti, and the

second term since   

� 

∇ ⋅ [M d3v∫ (Mv2 − 5Ti)
 v  v fi] ~ pi∇Ti. Moreover, even though

� 

Ti is a

lowest order flux function according to drift kinetics or gyrokinetics, if we imagine

� 

Ti=T i(ψ) + ˜ T i(ψ,ϑ,ζ), then both terms in 

� 

∇Ti= ∇ψ∂T i/∂ψ+ ∇ ˜ T i  are comparable since

we order 

� 

˜ T i/T i ~ ρi /L⊥  for gyrokinetic (

� 

k⊥ρi ~ 1) temperature fluctuations, with a tilde

on a spatial quantity indicating an order 

� 

ρi /L⊥  correction to the lowest order flux

function denoted by an overbar. Consequently, 

� 

˜ p i∇ ˜ T i ~ (ρi /L⊥ )p i∇T i.

To consistently retain neoclassical and classical heat transport all terms in

equation (23) must be retained to next order, with 

� 

νi /Ωi

� 

~ ρi /L⊥  to retain collisional

heat transport. In the term containing viscosity only the parallel and gyroviscosity

(including Reynolds stress) need be retained. Collisional perpendicular viscosity is

smaller by 

� 

νi /Ωi and need not be kept here, however, it will be needed in momentum

conservation. Ion viscosity will be discussed in detail in subsection D of this section.

To verify that the ion heat flux in the neoclassical and classical limits [11-12]

remains independent of the radial electric field, we first consider the collisional term in

(23), and employ for 

� 

˜ f i the lowest order gyrophase dependent drift kinetic (

� 

k⊥ρi << 1)

solution

  

� 

˜ f i = f0i[(M /Ti)
 v ⋅
 
V ⊥i− (1/ΩiTi)(5 /2 − xi

2) v ⋅
 
b ×∇Ti]  , (24)

with

  

� 

 
V ⊥i= (c /B)

 
b ×∇Φ+ (1/MniΩi)

 
b ×∇pi (25)

to lowest order and 

� 

xi = (Mv2/2Ti)1/2 . To obtain Eqs. (24) and (25), we allow 

� 

f 0i to

depend on   

� 

 r  rather than 

� 

ψ, and then solve   

� 

Ωi∂˜ f i/∂ϕ =
 v ⊥⋅ [∇f0i + (ef0i/Ti)∇Φ]. We notice
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that the   

� 

 v f 0i dependence of 

� 

˜ f i in 
  

� 

Cii
{˜ f i}  does not matter since 

  

� 

Cii
{ v f 0i} = 0  gives

  

� 

Cii
{˜ f i} = Cii

{˜ f iT}, where

 
  

� 

˜ f iT = (f0ixi
2 /ΩiTi)

 v ⋅
 
b ×∇Ti (26)

is the only gyrophase dependent term that contributes. Next, the self-adjointness of

  

� 

Cii
{f i} , 

  

� 

d3v∫ gCii
{h} =  

  

� 

d3v∫ (h /f 0i)Cii
{gf 0i}, followed by the use of [9,15]

   
  

� 

Cii
{Mv2 v f0i} = 2νiTiQ(xi)

 v f0i (27)

gives

  

� 

d3v∫ (Mv2− 5Ti)
 v Ci{fi}→ d3v(∫ fi/f0i)Cii

{Mv2 v f0i}

  

� 

=2νiTi d3vfi∫ Q(xi)
 v . (28)

Here 

� 

Q(x) = −[3(2π)1/2/x]{[1− (5 /2x2)]E(x) + (5 /2x)E'(x)}, 

� 

E(x) = 2π−1/2 dt0
x∫ exp(−t2)

the error function, and 

� 

E'(x) = dE(x) /dx. Notice that in the drift kinetic limit

(

� 

fi → f i + ˜ f i),  only the 

� 

˜ f iT  portion of 

� 

˜ f i and the gyro-independent departure  of 

� 

f i from

the Maxwellian 

� 

f 0i contribute to (28) as desired since   

� 

d3vf0i∫ Q(xi)
 v  v ≡ 0.

Returning to equation (23) and solving for   

� 

 q i⊥ with the replacement 

� 

fi→〈fi〉  to

the requisite order in the collisional term gives the result

  

� 

 q i= 1
Ωi

 
b ×{∇ ⋅ [ d3v∫ 〈fi〉(Mv2− 5Ti)

 v  v /2] + 5pi
2M

∇Ti +
 
π i ⋅ (

e
M

∇Φ+ 5
2M

∇Ti)}

          

� 

+ (νi/Ωi)Ti d3v∫ 〈fi〉Q(xi)
 v ×
 
b +
 
b d3v〈∫ fi〉v||(Mv2 − 5Ti)/2 , (29)

where 
  

� 

νi = (4π1/2nie4nΛ)/(3M1/2Ti
3/2) and 

� 

Ωi=eB/Mc. The last term in (29), the

gyrokinetic parallel heat flux, is the same order as the first and second terms on the right

(all of order 

� 

piviδ, since the first and last terms vanish for 

� 

f 0i). The third and fourth

terms are smaller by 

� 

δ and the same size as the fluctuating contibutions to the second

term and the fast time average of the first term. The next to the last term (~

� 

piviδνi /Ωi)

contains the classical collisional heat flux contribution. In some situations (i.e., short

mean free path and long wavelengths) it may be sufficient to only retain the second,

fourth, and fifth terms on the right side of (29).

We stress again that a direct evaluation of   

� 

 q i→ d3v∫ 〈fi〉
 v (Mv2 − 5Ti)/2 will not

recover the collisional terms in (29) because the gyrokinetic equation (19) is not
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sufficiently accurate. However, in the drift kinetic limit we can see the collisional term in

(29) does not vanish. In particular   

� 

d3v∫ 〈fi〉Q(xi)
 
b ×  v → d3v∫ ˜ f iTQ(xi)

 
b ×  v  since only the

� 

˜ f iT  term from 
  

� 

〈fi〉→ f i +Ωi
−1 v ×

 
b ⋅ [∇f0i+ (ef0i /Ti)∇Φ] survives to order 

� 

δ because

  

� 

d3vf0i∫ Q(xi)
 v  v ≡ 0. More generally, the velocity space integrals involving 

� 

〈fi〉  must be

performed holding   

� 

 r  fixed since 

� 

〈fi〉  depends on the gyrokinetic variables (20).

Fortunately, in equation (29) it is sufficient to approximate them by the first order forms

  

� 

 
R =
 r + Ω−1 v ×

 
b  and 

� 

E = v2/2 + (e /M)(Φ− 〈Φ〉) , and use 

� 

µ0 = v⊥2/2B (since 

� 

〈fi〉  is

Maxwellian to lowest order).

In the form (29) the neoclassical contributions are implicit, but they can be made

explicit by using the 

� 

∇ζ  component of (23) with   

� 

 
b ×∇ζ = ∇ψ /R2B to obtain the result    

  

� 

 q i ⋅ ∇ψ= (Mc /2e)∇ ⋅ [R2 d3v∫ 〈fi〉(Mv2− 5Ti)
 v  v ⋅ ∇ζ] + (5cR2pi/2e)∇ζ ⋅∇Ti +

          

� 

cR2∇ζ⋅
 
π i⋅ [∇Φ+ (5/2e)∇Ti]−(νi/Ωi)TiBR2 d3v∫ 〈fi〉Q(xi)

 v ⋅∇ζ  . (30)

The dominant turbulent heat flux in (30) comes from the second term on the right, while

the classical (from   

� 

 v ⊥⋅∇ζ ) and neoclassical (from   

� 

v||
 
b ⋅∇ζ ) contributions are given by the

collisional term. Flux surface averaging (30) and retaining only these terms gives

  

� 

〈
 q i ⋅ ∇ψ〉ψ≈(5c/2e)〈pi∂Ti/∂ζ〉ψ−〈(νi/Ωi)TiBR2 d3v∫ 〈fi〉Q(xi)

 v ⋅ ∇ζ〉ψ . (31)

The two terms on the right compare as: 

� 

〈 ˜ p i∂ ˜ T i/∂ζ〉ψ/piTi ˜ < k⊥L⊥δ2~δ  versus 

� 

δνiR/vi~δ ,

with a phase factor possibly reducing the turbulent heat flux.

4.2. Electron heat flow

The heat flow associated with the electrons is simplified because we assume

� 

k⊥ρe  << 1 and can therefore adopt a drift kinetic procedure. Otherwise, the same basic

procedure is used for the electrons as is used for the ions. We start with [9]

  

� 

Ωe
 q e×
 
b + ∇ ⋅ [ d3v∫ fe(mv2 − 5Te) v  v /2] + (5 /2m)(pe

 
I +
 
π e) ⋅ ∇Te − (e /m)

 
π e⋅ ∇Φ =

  

� 

(1/2) d3v∫ (mv2 − 5Te) v Ce{fe} , (32)

where 

� 

Ce includes electron-electron and electron-ion collisions. Only the diagonal part of

the stress tensor is required so   

� 

 
π e→m d3v∫ f e( v  v −

 
I v2/3) = (p||e−p⊥e)(

 
b 
 
b −
 
I /3)  with

� 

p||e = m d3v∫ f ev||
2  and 

� 

p⊥e = mB d3v∫ f eµ . Similarly, we may employ 

� 

fe→ f e  in second

term in equation (32), which is then the same order as the collisional term for arbitrary
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mean free path. Then, solving for the perpendicular electron heat flux and adding in the

parallel component gives

  

� 

 q e= − 1
Ωe

 
b ×{∇⋅ [1

2
d3v∫ f e(mv2− 5Te) v  v ]+ 5pe

2m
∇Te −

 
π e⋅ (

e
m
∇Φ− 5

2m
∇Te)}

  

� 

+(1/2Ωe) d3v∫ (mv2 − 5Te)
 
b ×  v Ce{fe} +

 
b d3v∫ fev||(mv2− 5Te)/2 , (33)

where 
  

� 

 v  v ≡ (v⊥2 /2)(
 
I −
 
b 
 
b ) + v||

2
 
b 
 
b . To make the neoclassical terms explicit we use the

� 

∇ζ  component of (32) to find

  

� 

 q e⋅∇ψ= −(mc /2e)∇ ⋅ [R2 d3v∫ f e(mv2− 5Te) v  v ⋅ ∇ζ]− (5c/2e)(pe∂Te/∂ζ)

  

� 

+cR2∇ζ⋅
 
π e⋅ [∇Φ− (5/2e)∇Te] + (mcR2/2e) d3v∫ (mv2 − 5Te) v ⋅ ∇ζCe{fe}. (34)

Flux surface averaging in the drift kinetic limit removes the first term on the right, the

second term due to turbulence is expected to dominate, the third or viscous term is an

order smaller than the second term, and the last term contains neoclassical (  

� 

v||
 
b ⋅∇ζ ) as

well as classical (  

� 

 v ⊥⋅∇ζ ) contributions which tend to be small.

To make the collision terms more explicit we keep only the linearized collision

operators by writing 
  

� 

Ce{fe} = Cee{fe}+ Cei{fe}→Cee {fe}+ Cei
 {fe} , with 

� 

fe  equal to

the Maxwellian 

� 

f0e to lowest order. As before, for like collisions we must be careful to

extract terms that give no contribution to   

� 

Cee  so we employ 

� 

fe = f e + ˜ f e with

  

� 

˜ f e = f0e[(m/Te) v ⋅
 
V ⊥e + (1/ΩeTe)(5 /2 − xe2) v ⋅

 
b ×∇Te] , (35)

where   

� 

 
V ⊥e = (c /B)

 
b ×∇Φ− (1/mneΩe)

 
b ×∇pe. Then all that survives is

     

� 

d3v∫ (mv2− 5Te) v Cee{fe}→ 21/2νeTe d3v∫ (f e + ˜ f eT)Q(xe) v , (36)

with

  

� 

˜ f eT = −(f0exe2 /ΩeTe) v ⋅
 
b ×∇Te  , (37)

and 

� 

xe = (mv2/2Te)1/2 . The extra 

� 

2  in (36) arises because of the differing numerical

factors in the definitions of 

� 

νi and 

� 

νe. For electron-ion collisions

  

� 

Cei
 {fe} = Lei{fe} + (2γemn/Tev3)f0e

 v ⋅
 
V = Lei{fe −m

 
V ⋅  v f0e/Te}  , (38)

with

� 

Lei{fe} = γen∇v⋅ (∇v∇vv ⋅ ∇vfe). (39)

The Lorentz operator has the property

     

� 

Lei{(mv2 − 5Te) v f0e} = 2γepe(5 − 2xe2) v f0e/v3. (40)
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Using Eqs. (35) and (40), the self-adjointness of 

� 

Le{fe}  is used to find

  

� 

d3v∫ (mv2 − 5Te) v ⊥Lei{˜ f e} = (3peνe)
 
V ⊥e + (13peνe/2mΩe)

 
b ×∇Te . (41)

Carrying out the complete evaluation of the collisional terms as in [9] gives the final

expression for the electron heat flux to be

  

� 

 q e= −1
Ωe

 
b ×{∇⋅ [1

2
d3v∫ f e(mv2−5Te) v  v ] + 5pe

2m
∇Te−

 
π e⋅ (

e
m
∇Φ− 5

2m
∇Te)} (42)

      

� 

−[(13/4)+ 2](peνe/mΩe2)∇⊥Te− (3peνe/2Ωe)
 
b ×(
 
V −
 
V e)+

 
b d3v∫ f ev||(mv2− 5Te)/2 .

4.3. Electron viscosity

Next, we consider viscosities. The electrons are drift kinetic with 

� 

k⊥ρe  << 1 so

we need only retain the parallel viscosity

   

� 

 
π e = m d3v∫ f e( v  v −

 
I v2/3) = (p||e − p⊥e)(

 
b 
 
b −
 
I /3) (43)

with

� 

p||e = m d3v∫ f ev||
2  and 

� 

p⊥e = mB d3v∫ f eµ . (44)

4.4. Ion viscosity

The viscosity of the ions is more difficult to evaluate than the electron viscosity

since we allow 

� 

k⊥ρi ~ 1. As for the ion heat flux, a direct evaluation of the ion viscosity

  

� 

 
π i = M d3v∫ fi[(

 v  v −
 
I v2/3) + ( v  v −  v  v )] using   

� 

M d3v∫ 〈fi〉(
 v  v −
 
I v2/3)  does not obtain the

collisional perpendicular viscosity needed to properly evaluate the neoclassical radial flux

of toroidal angular momentum, where we define 
  

� 

 v  v = (v⊥2 /2)(
 
I −
 
b 
 
b ) + v||

2
 
b 
 
b . As a result,

moments of equation (22) are again required to avoid having to solve a more accurate

gyrokinetic equation [5-9]. Forming the   

� 

M v  v  moment of equation (22) and following the

procedure in Simakov and Catto [9] requires solving an equation for   

� 

 
π i of the usual form

[5-9]: 
  

� 

Ωi(
 
π i×
 
b −
 
b ×
 
π i) =

 
K i =

 
K gi +

 
K ⊥i . The solution gives the following expressions for

the ion gyroviscosity 
  

� 

 
π gi and perpendicular viscosity   

� 

 
π ⊥i:

  

� 

 
π gi = (4Ωi)−1[

 
b ×
 
K gi⋅(

 
I + 3
 
b 
 
b ) − (

 
I + 3
 
b 
 
b )⋅
 
K gi×

 
b ] (45)

and

  

� 

 
π ⊥i = (4Ωi)−1[

 
b ×
 
K ⊥i⋅(

 
I + 3
 
b 
 
b ) − (

 
I + 3
 
b 
 
b )⋅
 
K ⊥i×

 
b ] , (46)

with

  

� 

 
K gi= ∇⋅ (M d3∫ v v  v  v fi) + (en∇Φ+ F||

 
b )
 
V +
 
V (en∇Φ+ F||

 
b ), (47)
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and

  

� 

 
K ⊥i= −M d3v∫

 v  v Cii{fi}  . (48)

Diagonal contributions to 
  

� 

 
K gi  and   

� 

 
K ⊥i are omitted since they do not contribute to 

  

� 

 
π gi

and   

� 

 
π ⊥i and only   

� 

 
b ⋅
 
F = F|| is retained since   

� 

 
F ⊥ is proportional to the electron Larmor

radius and therefore negligible. Diagonal viscous terms are not contained in 
  

� 

 
π gi +

 
π ⊥i ≡

  

� 

M d3v∫ fi(
 v  v −  v  v )  since   

� 

 
b ⋅ [ d3v∫ fi(

 v  v −  v  v )]⋅
 
b = 0 =

 
I : [ d3v∫ fi(

 v  v −  v  v )]. They are all

contained in the parallel viscosity defined by

            

� 

 
π ||i ≡ M d3v∫ fi(

 v  v −
 
I v2/3) ≈ M d3v∫ 〈fi〉(

 v  v −
 
I v2/3) = (p||i−p⊥i)(

 
b 
 
b −
 
I /3)  , (49)

with

� 

p||i =M d3v∫ 〈fi〉v||2    and   

� 

p⊥i =MB d3v〈∫ fi〉µ . (50)

The order of   

� 

 
π ⊥i is 

� 

piδνi/Ωi (it is order 

� 

δ smaller in the drift kinetic limit). The first

term in the 
  

� 

 
K gi  contribution to 

  

� 

 
π gi can be as large as order 

� 

piδ (order 

� 

piδ2  in the drift

kinetic limit), while the other terms are order 

� 

piδ2 . We remark that the off diagonal

component 
  

� 

R2∇ζ ⋅
 
π gi ⋅ ∇ψ that depends on the axisymmetric radial electric field can be

rewritten as

  

� 

(2e/Mc)R2∇ζ⋅
 
π gi⋅∇ψ = −(R2− I2B−2)[∇⋅ (M d3v∫ v2 v fi/2) +

 
V ⋅ (en∇Φ+

 
b F||)]

  

� 

−(3I2B−2−R2){
 
b ⋅ [∇⋅ (M d3v∫

 v  v  v fi/2)]⋅
 
b + V||(en

 
b ⋅∇Φ+ F||)}

  

� 

+∇⋅ [M d3v∫ (R2 v ⋅ ∇ζ)2  v fi] + 2R2
 
V ⋅∇ζ (en∂Φ/∂ζ + IF|| /B). (51)

In this form the Reynold's stress terms   

� 

(n∂Φ/∂ζ)
 
V ⋅∇ζ  and   

� 

n
 
V ⋅ ∇Φ are expected to be

the lowest order gyroviscous terms containing the radial electric field. They enter as order

� 

δ2  corrections to the ion pressure, and are smaller still by the phase factor relating the

fluctuating density and potential. They can compete with the

� 

∂Φ/∂ψ  term in

  

� 

R2∇ζ ⋅
 
π ⊥i ⋅ ∇ψ  as noted in [9]. Great care must be taken when dealing with the ion

viscosity to insure that the axisymmetric radial electric field is properly evaluated. The

other flows in (51) [namely  

� 

d3v∫ v2 v fi,   

� 

d3v∫ ( v ⋅ ∇ζ)2  v fi, and   

� 

d3v∫ v||
2 v fi] are various

contributions to heat flow that do not depend explicitly on

� 

∂Φ/∂ψ .

We next consider   

� 

 
π ⊥i. In equation (48), it is clear that in the contribution to

� 

Cii{f i}  from the linearized collision operator 
  

� 

Cii
{f i} , only order 

� 

δ2  gyrophase
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dependent portions of 

� 

fi will contribute since the order 

� 

δ corrections are odd in   

� 

 v  and

the gyrophase independent portions of 

� 

fi are irrelevant since they give diagonal

contributions. To retain order 

� 

δ2  effects in the nonlinear collision operator contribution

  

� 

Cii
n{f i−f 0i,f i−f 0i} ≈ Cii

n{〈fi〉 − fi0,〈fi〉 − fi0}, only order 

� 

δ contributions to 

� 

fi are needed

(the density associated with 

� 

fi0 in 
  

� 

Cii
n may be taken to be the full density since the error

will be negligible). Therefore, we may write

  

� 

 
K ⊥i= −M d3v∫

 v  v [Cii
{〈fi〉} + Cii

n{〈fi〉 − fi0,〈fi〉 − fi0}] (52)

where the replacement 

� 

fi→〈f i〉  is used in 
  

� 

Cii
 with the understanding that our

gyrokinetic variables (20) must be retained in it to order 

� 

δ2  to capture all gyrophase

dependent corrections in the drift kinetic limit along with arbitrary 

� 

k⊥ρi ~ 1 (gyrophase

independent terms give only inconsequential diagonal contributions).

In the drift kinetic limit, use of equation (52) for   

� 

 
K ⊥i in equation (46) yields the

result of [9], while in the gyrokinetic limit it retains additional physics due to 

� 

k⊥ρi ~ 1.

To see that (52) properly recovers the drift kinetic limit 

� 

〈f i〉  must be Taylor expanded in

  

� 

Cii
  to order 

� 

δ2  using the variables of (20) as in [26]. The result is the gyrophase

dependent term found in [19] and given by

  

� 

˜ f i =
 v ⋅ ( g i −

 v d
1
B
∂f i
∂µ

) − v||

4BΩi

∂f i
∂µ

( v ⊥
 v ×
 
b +  v ×

 
b  v ⊥ ):∇

 
b 

  

� 

+ 1
8Ωi

 v  v :[
 
b × (
 
h +
 
h T ) ⋅ (

 
I + 3
 
b 
 
b ) −(
 
I + 3
 
b 
 
b ) ⋅ (
 
h +
 
h T ) ×

 
b ], (53a)

where   

� 

 
h = ∇

 g i − (e/M)(∇Φ)∂ g i /∂ε and 
  

� 

 g i = Ωi
−1
 
b × [∇|ε,µ〈fi〉 − (e /M)∇Φ∂〈fi〉/∂ε],

superscript T denotes transpose, and we  use 

� 

f 0i in the second order terms containing 

� 

∇fi
or 

� 

∂fi/∂E . The only term missing in equation (53a) is an additive second order

(

� 

δ2~δνi/Ωi) classical collisional contribution from

  

� 

˜ f i
c = Ωi

−1 dϕϕ∫ [〈Cii
{fi}〉 −Cii

{fi}] ≈ Ωi
−1Cii
{ v ⋅  g i ×

 
b } (53b)

that must be retained as in Ref. [9] when forming the gyroviscosity to retain all classical

collisional effects.

The linear contribution to (52) can be rewritten more conveniently using the self-

adjointness of the linearized collision operator and the following result from [9]:
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� 

Cii
{ v  v f0i} = νiF(xi)f0i[

 v  v − (v2/3)
 
I ]  (54)

with 

� 

F(x) = −[9(2π)1/2/2x3]{[1− (3/2x2)]E(x) + (3/2x)E'(x)}. Then, (52) becomes

  

� 

 
K ⊥i=−M d3v∫

 v  v {νi〈f i〉F(xi) +Cii
n{〈fi〉−fi0,〈fi〉−fi0}}, (55)

where we have dropped a diagonal term since it cannot contribute to   

� 

 
π ⊥i.

Next, we consider 
  

� 

 
π gi. We need only rewrite the second term in (47) by making

the replacement 

� 

fi→〈f i〉  to obtain the desired form

  

� 

 
K gi= ∇⋅ (M d3∫ v v  v  v 〈fi〉) + (en∇Φ+

 
b F||)
 
V +
 
V (en∇Φ+

 
b F||) ,  (56)

which will recover the proper drift kinetic result for 
  

� 

 
π gi to order 

� 

δ3 for 

� 

k⊥ρi <<1.

Consequently, using (56) in (45) gives the desired gyrokinetic expression for 
  

� 

 
π gi.

Retaining all classical heat flux corrections to the gyroviscosity [16] requires the

replacement 

� 

〈f i〉 → 〈f i〉 + ˜ f i
c  in equation (53b).

In the linear terms   

� 

d3v∫
 v  v νi〈f i〉F(xi)  in   

� 

 
K ⊥i  and   

� 

d3∫ v v  v  v 〈fi〉  in 
  

� 

 
K gi when the

integrals are performed holding   

� 

 r  fixed with 

� 

〈f i〉  a function of   

� 

 
R , E and 

� 

µ , the full

gyrokinetic change of variables (20) must be employed to carefully relate these

gyrokinetic variables to the   

� 

 r , 

� 

ε = v2/2, 

� 

µ0 = v⊥2/2B, and 

� 

ϕ variables to insure the

proper neoclassical electric field is recovered.  In the nonlinear 
  

� 

Cii
n term in   

� 

 
K ⊥i  the

lower order relations   

� 

 
R =
 r + Ω−1 v ×

 
b , 

� 

E = v2/2 + (e /M)(Φ− 〈Φ〉)  and 

� 

µ0 = v⊥2/2B are

adequate. However, these lower order relations could be used in   

� 

d3v∫
 v  v νi〈f i〉F(xi)  and

  

� 

d3∫ v v  v  v 〈fi〉  if the order 

� 

δ2  gyrophase dependent terms are extracted from 

� 

〈f i〉  [recall

equation (53)] and evaluated analytically as in [9] by assuming 

� 

k⊥ρi ~ 1 corrections to

these terms are unimportant.

5. Discussion

The hybrid gyrokinetic - fluid description is now complete. It contains all the drift

kinetic features of [9] and insures intrinsic ambipolarity in the neoclassical limit, and yet

retains all the gyrokinetic turbulence modifications associated with drift wave turbulence

for 

� 

k⊥ρe <<1. The system of equations that must be solved consists of the ion

gyrokinetic equation (19), the electron drift kinetic equation (16), and the conservation
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equations (1)-(6); along with the momentum and heat exchange terms (7) and (8), the ion

and electron heat flows (29) and (42), the electron viscosity (43) and (44), the parallel ion

viscosity or pressure anisotropy (49) and (50), the ion gyroviscosity (45) and (56), and

the perpendicular ion viscosity (46) and (55). To relate the gyrokinetic variables to the

drift kinetic variables   

� 

 r , 

� 

ε, 

� 

µ0, 

� 

ϕ  in the first term of 
  

� 

 
K gi in the ion gyroviscosity and

  

� 

 
K ⊥i in the perpendicular viscosity requires use of equation (20). Elsewhere [including

the collisional correction of (53b) in the gyroviscosity], only the lower order relations

  

� 

 
R =
 r + Ω−1 v ×

 
b , 

� 

E = v2/2 + (e /M)(Φ− 〈Φ〉)  and 

� 

µ0 = v⊥2/2B are required. Solutions to

the ion gyrokinetic and electron drift kinetic equations are used to evaluate heat flows,

viscosities, and collisional exchange, but densities, particle flows, pressures, and the

electrostatic potential are evaluated from conservative forms of the moment equations to

avoid introducing non-physical sources and sinks.

In some situations certain terms may be neglected. For example, terms associated

with classical and neoclassical particle and electron heat transport are expected to be

negligible in most cases; and classical ion heat transport will often be small. Also, the

perpendicular ion viscosity can be ignored if the axisymmetric radial electric field terms

in the Reynold's stress portion of the gyroviscosity dominate (although this seems

unlikely to be the case for ion temperature gradient modes - or other electrostatic modes

with little radial particle flux - as noted by Simakov and Catto [9]). Even when this is not

the case simplification should be possible if only neoclassical (and not classical) effects

need be retained and the poloidal magnetic field is small [17,27].

Implementing this hybrid description requires integrating the expertise developed

by dealing with both gyrokinetic and extended magnetohydrodynamic codes, but seems

the only practical way to evolve turbulence simulations on transport time scales since no

extensions of gyrokinetics are needed and only the standard conservation forms of the

number, charge, momentum, and energy equations are employed.
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Appendix. Local gyrokinetics

Local gyrokinetic codes such as GS2 [28], PG3EQ [29], and GTC [30] normally

assume a stationary lowest order Maxwellian that depends only on 

� 

ε = v2/2 and 

� 

ψ. To

streamline the derivation of this equation it is convenient to suppress species subscripts

and define 

� 

f∗ ≡ f∗(ψ∗,E∗)  with 

� 

E∗=v2/2+eΦ/M  the total energy and

  

� 

ψ∗ = ψ− (Mc/e)R2∇ζ⋅
 v  the canonical angular momentum. Using

� 

df∗ /dt = (dE /dt)∂f∗/∂E + (dψ∗ /dt)∂f∗/∂ψ∗=(e/M)(∂Φ/∂t)(∂f∗/∂E)+c(∂Φ/∂ζ)(∂f∗/∂ψ∗) , (A1)

with d/dt defined by equation (22), taking 

� 

f∗  as the Maxwellian 

� 

f0 to lowest order, and

Taylor expanding 

� 

f∗  about 

� 

f0 ≡ f0(ψ,E)  as given by equation (18), yields

  

� 

f∗ ≡ η∗(M/2πT∗)3/2 exp(−ME∗ /T∗) = f0i − (Mc/e)(R2∇ζ⋅
 v )∂f0i/∂ψE∗

+ ... , (A2)

with   

� 

η∗ = η∗(ψ∗) = n( r ,t)exp[eΦ( r ,t)/T∗(ψ∗)] = ηi(ψ) + ... and 

� 

T∗ = T∗(ψ∗) = Ti(ψ) + ....

Using 

� 

fi = f∗ + h  in the ion equation (22) gives h as satisfying

  

  

� 

∂h
∂t

+
 v ⋅ ∇h− e

M
(∇Φ−1

c
 v ×
 
B ) ⋅ ∇vh ≈ Cii

{f∗− f0i + h} + ef0i
Ti

∂Φ
∂t

− c ∂Φ
∂ζ

∂f0i
∂ψ E∗

, (A3)

where higher order corrections in 

� 

ρi/L⊥  are neglected in 

� 

f0i terms on the right except in

the collision operator where the leading order non-vanishing contribution

  

� 

f∗− f0i →−(M2cR2/2eTi
2)(∂Ti/∂ψ)f0iv2 v ⋅ ∇ζ  must be retained to keep neoclassical and

classical heat transport. Changing the left side to the gyrokinetic variables   

� 

 
R , E, 

� 

µ , and

� 

ϕ  and gyroaveraging holding   

� 

 
R , E, and 

� 

µ  fixed gives the intrinsically ambipolar form

  

� 

∂〈h〉
∂t

+ [v|| (
 
R )
 
b (
 
R )+
 v d(
 
R )]⋅∇R 〈h〉 −

e
M
∇R 〈Φ( r ,t)〉 ⋅ [v ||(

 
R )
 
b (
 
R )+
 v d(
 
R )]∂〈h〉

∂E
≈

  

� 

〈Cii
{H}〉 + ef0i

Ti
∂〈Φ〉
∂t

− c ∂〈Φ〉
∂ζ

∂f0i
∂ψ E∗

 , (A4)

where the distinction between   

� 

 
R  and   

� 

 r  is negligible in 

� 

f0i terms on the right side and

� 

H ≡ h − (Iv||f0i/ΩiTi)[(Mv2/2Ti) − (5 /2)](∂Ti/∂ψ). In the plateau regime the replacement

  

� 

Cii
{H}→−νH  may be employed.
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For the drift wave drive terms, the 

� 

∂〈Φ〉 /∂t  term is actually the same order as the

� 

∂〈Φ〉 /∂ζ  term since the axisymmetric part of 

� 

〈Φ〉 ~ Ti /e  can only evolve on the slower

transport time scale, while the non-axisymmetric 

� 

k⊥ρi ~ 1 contributions evolve at the

diamagnetic drift frequency but are smaller by 

� 

1/k⊥L⊥ ~ ρi/L⊥. As a result,

� 

〈h〉 /f0i ~ ρi/L⊥ . To the order we have derived our gyrokinetic equation

  

� 

fi = f0i − (Mc/e)(R2∇ζ⋅
 v )∂f0i/∂ψE∗ + 〈h〉 , (A5)

with 

� 

f0i the local Maxwellian and

� 

∂f0i/∂ψE = f0i[pi
−1∂pi/∂ψ+ (e/Ti)∂Φ/∂ψ+ (Mv2/2Ti − 5 /2)Ti

−1∂Ti/∂ψ] . (A6)

Using   

� 

BR2∇ζ⋅
 v = Iv||−

 v ×
 
b ⋅∇ψ  gives   

� 

ψ∗ = ψ+ Ω−1 v ×
 
b ⋅∇ψ− Iv||/Ω≡ Ψ− Iv||/Ω  with

  

� 

Ψ ≡ψ+ Ω−1 v ×
 
b ⋅∇ψ the gyrokinetic radial variable so that

  
  

� 

fi = f0i − [Iv||/Ωi−Ωi
−1 v ×

 
b ⋅∇ψ]∂f0i/∂ψE + 〈h〉 = f0i(Ψ,ε) − (Iv||/Ωi)∂f0i/∂ψE∗

+ 〈h〉 (A7)

or upon defining 

� 

δfi,

� 

〈fi〉 = f0i(Ψ,ε) − (Iv||/Ωi)∂f0i/∂ψE∗ + 〈h〉 ≡ f0i(Ψ,ε) + δfi. (A8)
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