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Abstract.  A technique is developed and applied for analyzing pedestal and internal transport barrier (ITB) 
regions in a tokamak by formulating a special version of gyrokinetics. In contrast to typical gyrokinetic 
treatments, canonical angular momentum is taken as the gyrokinetic radial variable rather than the radial guiding 
center location. Such an approach allows strong radial plasma gradients to be treated, while retaining zonal flow 
and neoclassical (including orbit squeezing) behavior and the effects of turbulence. The new, nonlinear 
gyrokinetic variables are constructed to higher order than is typically the case. The nonlinear gyrokinetic equation 
obtained is capable of handling such problems as collisional zonal flow damping with radial wavelengths 
comparable to the ion poloidal gyroradius, as well as zonal flow and neoclassical transport in the pedestal or ITB. 
This choice of gyrokinetic variables allows the toroidally rotating Maxwellian solution of the isothermal tokamak 
limit to be recovered. More importantly, we prove that a physically acceptable solution for the lowest order ion 
distribution function in the banana regime anywhere in a tokamak and, in particular, in the pedestal must be 
nearly this same isothermal Maxwellian solution. That is, the ion temperature variation scale must be much 
greater than the poloidal ion gyroradius. Consequently, in the banana regime the background radial ion 
temperature profile cannot have a pedestal similar to that of plasma density.  

 
 

PACS numbers: 52.25.Dg, 52.25.Fi, 52.30.Gz, 52.35.Ra 
 
 



1. Introduction 
  
Understanding tokamak pedestal physics[1,2] is one of the more crucial challenges currently facing magnetic 
fusion science. A self-consistent, predictive description of this region is necessary to understand the reason 
for improved confinement or H mode operation [3] and to gain insight into the Greenwald density limit [4]. 
As the barrier between the core and scrape-of-layer, the pedestal also helps control particle and heat fluxes [5] 
to the first wall and divertor [6]. One of the many reasons that the pedestal appears complicated is that the 
well known kinetic approaches [7-11] fail in the presence of the strong plasma gradients associated with the 
pedestal [11,12] as well as internal transport barriers (ITB) [13,14]. In these regions, as well as near the 
magnetic axis [15,16], finite ion orbit [10,11], orbit squeezing [17], and even neutral [18-20] effects on the 
pedestal may need to be addressed. To deal with the geometrical complications associated with large drift 
departures from flux surfaces [21], a variation of standard gyrokinetics [9,22,23] using the canonical angular 
momentum as the radial variable is developed and applied. This alternate description is constructed to exactly 
preserve conservation of canonical angular momentum and energy and is thereby able to provide key insights 
into the behavior of the ions in regions with step gradients. Canonical angular momentum has been employed 
as a variable in drift kinetic quasilinear descriptions [24], but we are not aware of it being used in gyrokinetic 
descriptions. 

Gyrokinetics is a well established formalism capable of handling phenomena with high perpendicular 
wavenumbers that is being successfully used for studies of turbulence in tokamak core plasmas [25-31]. 
However, its application to steep gradient regions becomes more transparent if an alternative analytical 
treatment involving canonical angular momentum is employed. We focus on the development and insights 
provided by such an electrostatic gyrokinetic formulation that explicitly makes use of the axisymmetric 
magnetic field of a tokamak while allowing strong radial variation of the background ion profiles so that 
barrier widths comparable to the poloidal ion gyroradius may be treated in fully turbulent plasmas. 

The technique we employ is a generalization of a standard linear gyrokinetic procedure [32,33] and 
its nonlinear counterpart that is used to consider the shortcomings of gyrokinetic quasineutrality at long 
wavelengths [34]. By modifying these procedures we construct nonlinear gyrokinetic variables to higher 
order than is typically done while retaining finite poloidal ion gyroradius effects. The resulting fully nonlinear 
gyrokinetic equation is not only valid for 1k ρ⊥ ∼ , as any gyrokinetic approach would be, but also due to 
our choice of canonical angular momentum as one of the variables, it is naturally separable into departures 
from flux surfaces caused by neoclassical drifts and classical finite Larmor radius (ρ ) effects. This feature is 
what makes the analysis of the leading order solution for the ion distribution function in a tokamak pedestal 
and an ITB (and near the magnetic axis) intuitively easy to understand since it precisely retains the isothermal 
limit [35]. In particular, it allows us to conclude that in the pedestal and an ITB (and near the magnetic axis) 
the lowest order ion distribution function must be nearly isothermal in the banana regime. As a result, an ion 
temperature pedestal or internal ion heat transport barrier is not allowed in a tokamak operating in the banana 
regime. 

Having this result, we go further to formulate the gyrokinetic equation for the next order corrections 
to the ion distribution function. The relevant gyrokinetic equation obtained consistently contains neoclassical 
effects [7,8,10,11] and zonal flow phenomena [36-39] in the pedestal or an ITB along with the terms 
responsible for orbit squeezing [40] and potato orbits [15,16]. This gyrokinetic equation is also valid for zonal 
flow and neoclassical studies in core tokamak plasmas since our full nonlinear gyrokinetic equation with 
turbulence retained is constructed to smoothly connect to the core where it remains valid. 

The remainder of the paper is organized as follows. In sections 2 - 3 we outline the gyrokinetic 
procedure we use to derive the full nonlinear gyrokinetic equation and discuss how it differs from standard 
nonlinear gyrokinetics [34,41-44] including a version developed especially for the edge [44]. The expressions 
for the gyrokinetic variables we employ and the orderings under which they are obtained are given in brief in 
sections 4 - 5 and in detail in appendices A - C. In section 6 the full nonlinear gyrokinetic equation is derived 
and its main properties are discussed. An entropy production analysis is employed in section 7 (with some 
details relegated to appendix D) to obtain the most general form of the leading order solution for the ion 
distribution function. Section 8 provides further insight into the physics of a pedestal or an ITB with the help 
of pressure balance equations. The gyrokinetic equation for zonal flow and neoclassical phenomena is 
presented in section 9. We close with a brief discussion of the results in section 10. 
 



2.  Gyrokinetic procedure 
 
An assumption that is a basis of the gyrokinetic procedure to be described is the slow spatial variation of the 
equilibrium magnetic field. In particular, the background magnetic field of interest is assumed to obey the 
ordering 

 1i

L
ρ

δ ≡ � , (1) 

where ( ) 1lnL B −≡ ∇  and i i ivρ ≡ Ω  with 2i iv T M≡  the ion thermal speed and 

i ZeB McΩ ≡  the ion cyclotron frequency.  For simplicity, the magnetic field will be also assumed 

constant in time so that electric field can be treated as electrostatic; however, the slowly evolving induced 
electric field in a tokamak can easily be retained.   
 Consider the Vlasov operator written in terms of { }, ,r v t

GG
 variables: 

 ( )ˆr v
d Ze

v v n
dt t M

φ
∂

≡ + ⋅ ∇ + Ω × − ∇ ⋅ ∇
∂

G G
 . (2) 

Then, the evolution of the distribution function is given by 

 { }
df

C f
dt

= , (3) 

where C  is the collision operator. Equation (3) includes the fast time scale associated with the gyromotion of 
particles in the external magnetic field. Generally, in order to remove this time scale an averaging over 
gyrophase ( )ϕ  is performed. This, in turn, requires switching to a new set of magnetic field aligned 
variables that includes the gyrophase and then gyrophase averaging (3) written in terms of these variables. If 
the new variables are denoted by { }51,... ,q q ϕ , then (3) transforms into 

 { }1 5

51
...

dq dqf f f f d
C f

t q dt q dt dt
ϕ

ϕ
∂ ∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂

. (4) 

The gyroaverage to be employed is defined as  

 ( )
1
2

dϕ
π

〈⋅〉 ≡ ⋅∫v , (5) 

where the integration is performed holding the jq ’s fixed. 

If the new variables are chosen so that { }1 5, ... ,
dq dq d
dt dt dt

ϕ
 do not depend on ϕ  the averaging of the 

left side of (4) becomes particularly convenient. However, it is difficult to find variables that possess this 
property exactly. Fortunately, the existence of the small parameter (1) allows us to construct variables whose 
total time derivatives are gyroindependent to the desired order in δ . The procedure follows. 

We first choose a suitable set of initial variables ( ) ( ){ }0 0
51 , ...q q  and apply the 

d
dt

 operator to them as 

well as to ϕ . Then, we extract the gyrodependent part of these total time derivatives and define the 

corrections ( ) ( ) ( ){ }1 1 1
51 , ... ,q q ϕ  such that ( ) ( )( )0 1

j j
d
q q

dt
+  is gyroindependent to next order, where 

( ) ( )0 1
j jq q+  is the improved variable. This procedure employs the lowest order result 

 ( ) ( )1 1
j j

d
q q

dt ϕ
∂

≈ −Ω
∂

. (6) 

Thus, we can recover ( )1
jq  by performing an integration over ϕ  as follows: 

 ( ) ( ) ( )1 0 0
j j j

d d
q q q

dt dtϕ
∂

Ω = −
∂

. (7) 

This results in ( ) ( )1 0
j jq qδ∼ , thereby allowing us to determine the variables up to any given order by 

repeating the steps above. What this procedure yields is a particularly convenient set of gyrokinetic variables.  



Note, that by this procedure we only find the gyrodependent part of  ( )1
jq  that results in the 

gyroindependency of  ( ) ( )( )0 1
j j

d
q q

dt
+ . Thus, we can arbitrarily choose ( ) ( )1 0

j jq qδ∼  if it is convenient. 

Generally, we will set ( )1 0jq = , but sometimes a clever choice of ( )1
jq  can further simplify (4). This 

freedom is what allows us to define a magnetic moment variable that will be an adiabatic invariant order by 
order, as will be demonstrated. Moreover, it is just the freedom needed to replace the regular radial 
gyrokinetic variable with the canonical angular momentum. 
 
3. An alternative to regular gyrokinetics 
 
Often, the initial set of variables is chosen as [9,32,33,41-44]  

r
G

; ( )
2

2
v Ze

r
M

φ+
G

 or ||v ; 
2

0 2
v
B

µ ⊥≡ ; ϕ . 

However, in the case of tokamaks it is convenient to make use of conservation of the toroidal component of 
the canonical angular momentum. To do so we employ  

 *
ˆMc

Rv
Ze

ψ ψ ζ≡ − ⋅
G

 (8) 

as the radial variable. The other initial variables are chosen to be the poloidal angle θ , the toroidal angle ζ , 

the magnetic moment 0µ , and the kinetic energy 
2

2
v

. The gyrophase is defined such that 

 ( )|| 1 2ˆ ˆ ˆcos sinv v n v e eϕ ϕ⊥= + +
G

 (9) 

where ||
2

0ˆ 2v v n v Bµ≡ ⋅ = −
G

, n̂ B B≡
G

, and B B≡
G

. Also, ( )1̂e r
G

 and ( )2̂e r
G

 are orthogonal 

unit vectors in the plane perpendicular to B
G

 such that 1 2ˆ ˆ ˆe e n× = . 
 
4. Orderings 
 

We desire to develop a formalism to handle both neoclassical (large spatial scale) and turbulent 
(small spatial scale) phenomena. For this purpose we adopt the ordering used in [34]. Basically, this ordering 
allows only weak variations along the magnetic field while rapid perpendicular gradients are allowed for 
small amplitude fluctuations of the potential. Mathematically, our orderings are expressed as 

 
1

n̂
L

⋅ ∇ ∼  (10) 

and 

 
1ke

T k L
ϕ

⊥

∼ , (11) 

where the subscript k  denotes a Fourier component. Physically, (11) implies that the E B×  drift can be 
only of order thvδ  or smaller. 

The distribution function f  is ordered analogously to the potential by taking 

 
0

1kf
f k L⊥
∼ , (12) 

where the equilibrium solution 0f  is assumed to have spatial scales of order L . These orderings allow 
perturbations of the potential, density, and temperature with sharp gradients, and are relevant to turbulence, 
zonal flow, and the pedestal, ITBs, and near the magnetic axis in tokamaks. 
 In addition to the preceding orderings, we assume the characteristic frequency of the turbulent 
behavior to be that of drift waves, 

 *
thv k
L

ω ρ⊥∼ , (13) 



and allow the species collision frequency ν  to be of order of its transit frequency, 

 thv
L

ν ∼ , (14) 

where thv  is the species thermal speed and ρ  is its Larmor radius. 
 
5. Gyrokinetic variables for an axisymmetric magnetic field  
 
We next briefly consider the explicit expressions for the gyrokinetic variables that result from the procedure 
of Sec. 2 along with the orderings of section 4. Gyrokinetic variables resulting from an initial variable ( )0q  
will be denoted as *q  at each order. We perform the calculation up to the second order in δ  starting from the 
initial variables given in section 3. Here we summarize the results correct up to the first order, with the details 
of the derivation given in appendix A. Second order corrections and details of their derivation are given in 
appendix B. 
 
5.1. Spatial variables 
 
Applying the gyrokinetic procedure to 0θ θ≡  and 0ζ ζ≡  we find 

 *

ˆv n
θ θ θ

×
= + ⋅ ∇

Ω

G
 (15) 

and 

 *

ˆv n
ζ ζ ζ

×
= + ⋅ ∇

Ω

G
. (16) 

No first order correction to the *ψ  of equation (8) is needed. Equations (15) and (16) give the usual θ  and ζ  
coordinates of the gyrocenter, while *ψ  labels the so-called “drift surface” [7,11]. The total time derivatives 
of the spatial variables to the requisite order are given by 

 * *
*

c
φ

ψ ψ
ζ

∂
≈ =

∂
� � , (17) 

 ( )
( )|| ||

||
*

** * *

ˆ
ˆ( )d

Iv v n
v n v

θ
θ θ θ

ψ
∂ ⋅ ∇

≈ = + ⋅ ∇ +
Ω ∂

G� � , (18) 

 ( )
( )|| ||*

* * || * *

ˆ
ˆ( )d

Iv v n
v n v

ζ
ζ ζ ζ

ψ
∂ ⋅ ∇

≈ = + ⋅ ∇ + =
Ω ∂

G� �  

 || || ||

*
2 2d

Iv Iv Iv
v

BR BR
ζ

ψ
⎛ ⎞ ⎛ ⎞∂⎟ ⎟⎜ ⎜= + ⋅ ∇ +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠Ω ∂

G
, (19) 

where 

 ( )||
2

ˆ ˆ ˆ ˆ ˆd

vc
v n n n n n B

B
µ

φ≡ − ∇ × + × ⋅ ∇ + ×∇
Ω Ω

G
, (20) 

 ( )* * * * * * *

1
, , , , ,

2
E dφ φ φ ψ θ ζ µ ϕ ϕ

π
≡ ≡ ∫v , (21) 

and tI RB= , with tB  the toroidal magnetic field and R  the tokamak major radius. The axisymmetric 
tokamak magnetic field is taken to be 
 ( )B I ψ ζ ζ ψ= ∇ + ∇ ×∇

G
, (22) 

so that *ψ  can be rewritten as 

 ||

*

ˆ Ivv n
ψ ψ ψ

×
= + ⋅ ∇ −

Ω Ω

G
. (23) 

Also, in the preceding formulas and throughout the paper we use the following notation. If a certain quantity 
is given in terms of initial variables by ( ), , , , ,Q Q Eψ θ ζ µ ϕ= , then we define 



 ( )* * * * * * *, , , , ,Q Q Eψ θ ζ µ ϕ≡ . (24) 
For example,  
 ||

*
* * *v E Bµ= − . (25) 

The difference between Q  and *Q  is of order Qδ  and sometimes is unimportant. For instance, in the last 

term in (18) we can replace ||v  by ||
*v  and still stay within the required precision. However, in the first term of 

the same equation we must distinguish between these two. 
 
5.2. Energy 
 
Applying the gyrokinetic procedure to 2

0 2E v≡  we find 

 
2

* 2
v Ze

E
M

φ= + � , (26) 

and to requisite order 

 * * *
* * * *

* * ( ) 1
Ze Ze

E E
M M E

φ φ φ φ
ψ θ ζ

ψ θ ζ
⎛ ⎞∂ ∂ ∂ ∂ ⎟⎜≈ = − + + + ⎟⎜ ⎟⎟⎜∂ ∂ ∂ ∂⎝ ⎠

� �� � � , (27) 

where  
 φ φ φ≡ −� . (28) 

In (27) the expressions for *ψ� , *θ� , and *ζ�  are given by (17) – (19), and the small *Eφ∂ ∂  term is given by 

(B.21) and must be retained to ensure that total energy remains an exact constant of the motion in the steady 
state. 
 
5.3. Magnetic moment 
 
The gyrokinetic procedure applied to 2

0 2v Bµ ⊥≡  gives 

 ( ) ( )[ ]||

1 1ˆ ˆ ˆ:
4

M
vv v Ze
v v n v n v n

B B MB
µ φ µ⊥ ⊥

⋅
= − − × + × ∇ + +

Ω

G G G G G G � , (29) 

where 

 ( )||
2

0ˆ ˆ ˆ ˆM

v
v n n n n B

µ
≡ × ⋅ ∇ + ×∇

Ω Ω
G

. (30) 

 
As mentioned at the end of section 2, 1µ  can be chosen arbitrarily as long as 1 0µ δµ∼ . For all the 
other variables we set the gyroindependent part of the correction equal to zero (notice that *ψ  automatically 
retains a gyroindependent term). However, as the magnetic moment is an adiabatic invariant [45], we show 
we can define 1µ  such that  * 0µ =�  order by order. This feature is checked in the appendix C by 
choosing 

 ||
2

1 ˆ ˆ
2
v v
n n

B
µ ⊥= − ⋅ ∇×

Ω
 (31) 

to find  
 3

1 0µ µ µ δ+ Ω� � ∼ . (32) 

This choice allows us to neglect the f µ∂ ∂  term in the gyrokinetic equation even with 1k ρ⊥ ∼  potential 

fluctuations retained. 
 
5.4. Gyrophase 
 



For the ordering we employ, 0f ϕ∂ ∂ = to lowest order. As a result, for our purposes it is adequate to use 

*ϕ ϕ=  as defined by (9). Then, we find 
2 2

||
2 1* || ||2

|| * *
* *

ln
ˆ ˆ ˆ ˆ ˆ

2
v Z e ZeI B
n n v n e e Iv

M c Mv
φ φ

ϕ ϕ
µ ψ ψ

∂ ∂ ∂
≈ = −Ω − ⋅ ∇× + ⋅ ∇ ⋅ − − − ≡ −Ω

∂ ∂ ∂
� � . (33) 

The first order correction to the gyrophase is given in appendix A for completeness. 
 
6.  Electrostatic gyrokinetic equation 
 
Having defined the gyrokinetic variables we can now insert them into (4) and gyroaverage to find our full 
nonlinear gyrokinetic equation 

 * * * *
* * * *

{ }
f f f f f

E C f
t E

ψ θ ζ
ψ θ ζ

∂ ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂ ∂
� � �� , (34) 

where f f≡  and expressions (17) - (19) and (27) give *ψ
� , *θ

� , *ζ
� , and *E

� . Note that for *E
�  defined by 

(27) the total energy *

Ze
E

M
ε φ≡ +  is exactly conserved by the gyrokinetic Vlasov operator. 

Consequently, we can construct an exact solution to (34) in the isothermal case in the same way as Catto and 
Hazeltine in [35].   

To do so we observe that for a stationary and axisymmetric plasma any function of ε  and *ψ  makes 

the left side of the equation exactly vanish. On the other hand, to make the right side vanish f  has to be 
Maxwellian as ion-ion collisions dominate over those between ions and electrons. Combining these two 
statements we find an exact solution for arbitrary collisionality to be the rigidly toroidally rotating 
Maxwellian 

 ( ) ( )23
2

*

ˆ
exp( )

2 2

M v RM
f n

T T

ω ζ
π

−
= −

G
, (35) 

with the density given by 

 
2 2

exp( )
2

Ze M R Ze
n

T T cT
φ ω

η ωψ= − + − , (36) 

where T , ω , and η  are constants. In terms of the gyrokinetic variables this solution is only a function of the 
constants of motion ε  and *ψ  since 

 ( ) *

3
2

* 2

M Ze
T cT

M
f e

T

ε
ωψη

π
− −= . (37) 

 
7.  Entropy production   
 
 Now we analyze the case with spatially varying T  still assuming 0ζ∂ ∂ = . It is convenient to 

switch to *θ  and ε  variables so that our gyrokinetic equation becomes 

 *
*

{ }
f f Ze f

C f
t M tε ε

φ
θ

θ ε
∂ ∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂

� . (38) 

In the steady state we let 0f f=  and transit average  

 0
0*

*

{ }
f

C f
ε

θ
θ

∂
=

∂
�  (39) 

to obtain the solubility constraint 
 0{ } 0C f = , (40) 
where the transit average is defined by 



 * *

* *

Qd
Q

d

θ θ

θ θ
≡ ∫

∫

�

�
v
v

. (41) 

The full nonlinear constraint (40) must be satisfied for any physically acceptable stationary solution 
( )0 0 * * *, , ,f f ψ θ ε µ= , and the transit average is performed holding *ψ , ε  and *µ  fixed by integrating 

over a complete bounce for trapped particles and a full poloidal circuit for the passing. Next, we use the 
preceding to determine the lowest order ion distribution function 0f  in a tokamak pedestal and internal 
transport barrier (ITB).  
 We define the radial scale w  of the distribution function as 

 
ln 1f

w
ψ

ψ
∂

∇ ≡
∂

. (42) 

In a pedestal or in an internal barrier region we assume strong spatial gradients by allowing 
 polw Lρ∼ � , (43) 

where polρ  is the poloidal ion gyroradius. Gradients along the flux surface will be allowed to be strong as 

well 

 
ln 1

pol

f
θ

θ ρ
∂

∇ <
∂ �

, (44) 

although we will demonstrate that only weak derivatives over θ  are physically possible in the banana regime. 
The electrostatic potential φ  is assumed to scale analogously to f . With these assumptions, we demonstrate 
that in the pedestal or  an ITB the leading order solution to (40) remains Maxwellian (from now on we refer 
to the pedestal case only as proof for an ITB is exactly the same). Before doing so we remark that the original 
orderings (11) – (12) we used to derive the axisymmetric gyrokinetic equation imply that the characteristic 
scale of the leading order axisymmetric distribution function and potential is the size of tokamak L. However, 
all our results remain valid provided  pol wρ ρ <�

�
. Indeed, in all the estimates required for the derivation 

of the gyrokinetic variables we can then replace L by polρ  so that the outcome of the gyrokinetic procedure 

stays unchanged. However, the comparison among different terms in the gyrokinetic formulas can be 
affected. In particular, in (18) for *θ

�  the contribution of the E B×
G G

 term in dv
G

 becomes comparable to that 
due to the ||v  if the potential gradient is of order 1 polρ  so that orbit squeezing effects enter [17]. 

We begin our demonstration by multiplying (39) by 0ln f  and integrating it over ε  and *µ  to obtain 
the steady state result 

 *
0 0* *

*

0 ln { }ii

d
d d d f C f

θ
ε µ ϕ

θ
= ∫∫ ∫ ∫�v v , (45) 

where we employ 

 ( )0
0 0 0 0

* *

ln ln
f

f f f f
θ θ

∂ ∂
= −

∂ ∂
 (46) 

to annihilate the left side. Notice that all the integrals in equation (46) are performed holding *ψ  fixed. Next, 
we recall (18) and ordering (44) to find the leading order result  

 || ||*
ˆ ˆE

cI
v n v v n

B
φ

θ θ θ θ
ψ

⎛ ∂ ⎞⎟⎜≈ ⋅ ∇ + ⋅ ∇ ≈ + ⋅ ∇⎟⎜ ⎟⎜⎝ ⎠∂
G� , (47) 

where we must retain the E B×
G G

 term as noted at the end of the previous paragraph. Contributions of the 
other terms from (18) are always one order smaller in wρ . Rewriting we obtain 

 
( )* ||

* *
0 02

ln { } 0ii

d d dd
f C f

B v B cI Bψ

ε µ ϕθ
θ φ ψ

− =
⎡ ⎤⋅ ∇ + ∂ ∂⎢ ⎥⎣ ⎦

∫ ∫∫∫Gv , (48) 



where the inner integrations are performed holding *ψ  fixed.  
 To clarify the novel features of a pedestal plasma, we first review the analysis of (45) in the weak 
gradient limit (w L∼ ) relevant to the core (see [11] for example). In this simpler case we can hold ψ  fixed 
instead of *ψ  without an error to leading order. Then, neglecting the φ ψ∂ ∂  term in the denominator, 

equation (45) becomes  

 
||

0 0* * ln { } 0ii
d B

d d d f C f
vB

θ
ε µ ϕ

θ
− =

⋅ ∇∫ ∫∫∫Gv . (49) 

Finally, employing 

 ||* * 0 0 0
3 3

d d d vdE d d
Bd v d v

ε µ ϕ µ ϕ
≈ =   (50) 

we see that the left side of (49) is the flux-surface averaged entropy production on a given flux surface. Thus, 
we can employ the Boltzmann H-theorem to determine that 0f  is Maxwellian.  

In the pedestal ( )( ) ( )* polf w f fψ ψ ψ ρ− ∂ ∂ ∼ ∼  and integrating holding *ψ  fixed rather 

than ψ  becomes important. To adjust the logic to the pedestal we need to integrate (48) with respect to *ψ  
over the entire pedestal region. Then, we can use  

 ( ) ||
* * * * *

3 3 ˆ
d d d d d d cI

n v
Bd rd v

ψ θ ζ ε µ ϕ φ
θ

ψ
⎛ ∂ ⎞⎟⎜≈ ⋅ ∇ + ⎟⎜ ⎟⎜⎝ ⎠∂

 (51) 

(see appendix D for the derivation) to transform (48) into 
 3

0 0ln { } 0

ped

ii
V

d r f C f =∫ , (52) 

where pedV  denotes the pedestal volume. As a result, we conclude from the H-theorem that 

( )0 0 * * *, , ,f f ψ θ ε µ=  must be Maxwellian in the pedestal as well.  
It is interesting to notice, that the proof for the core plasma only requires integration over a given flux 

surface, while for the pedestal plasma we have to integrate over the entire pedestal region (the presence of a 
separatrix complicates the pedestal case as discussed at the end of this section and in section 10; however for 
the ITB case this proof is robust). This feature suggests that in the absence of sharp gradients each flux 
surface equilibrates by itself, while within the pedestal all flux surfaces are coupled. Physically, this coupling 
is due to the order polρ  departures of ions from a flux surface. This effect is not important in the core plasma, 

where spatial variation is weak on the polρ  scale and therefore we can consider any given flux surface a 

closed system. However, when the radial gradient scale is as large as 1 polρ  these flux surface departures 

affect the equilibrating of the neighboring flux surfaces and therefore it is the entire pedestal region that is a 
closed system rather than its individual flux surfaces. 
 As a result of the preceding observations, the leading order ion distribution function must be 
Maxwellian, thereby satisfying constraint (40) and making 0{ } 0C f =  as well. Therefore, in the banana 
regime (39) results in 0 * 0f θ∂ ∂ =  so that 0f  can only depend on ε , *ψ , and *µ , and allowing strong 

poloidal gradients [recall (44)] was unnecessary. The only Maxwellian that satisfies these conditions must be 
independent of *µ  and given by the relations (35) - (37), in which T , ω , and η  are now allowed to be 
slowly varying compared to polρ : 

 ln 1ipol Tρ ∇ �  (53) 

and 
 ln 1polρ ω∇ � , ln 1polρ η∇ � . (54) 

Thus, for the ions we have proven that the solution to (39) in a pedestal or an ITB is an isothermal 
Maxwellian to lowest order – no other solution is possible. Non-isothermal modifications enter in next order 
as indicated by (53) and (54). As a result, in the banana regime a pedestal in the background ion temperature 



is unlikely to exist in a tokamak. In the Pfirsh – Schlüter regime ion departures from a flux surface are much 
smaller and an ion temperature pedestal cannot be ruled out. The plateau regime is a transitional case. 

In addition, an ion temperature pedestal in the near scrape-of-layer (SOL) (or at the separatrix) is 
unlikely since our kinetic equation (39) remains valid there and is satisfied by the very same nearly 
isothermal Maxwellian ion distribution function we find inside the separatrix. As a result, no entropy 
production or entropy flow occurs to lowest order in the near SOL and no ion temperature pedestal is 
anticipated there as long as the near SOL remains in the banana regime. 
 
8. Pressure balance in pedestal or ITB 

 
In the previous section we studied pedestal and internal transport barrier plasmas given that the ion 
distribution function radial gradient is of order 1 polρ . This gradient can only be associated with the density 

(and potential) as the ion temperature is proven to be slowly varying. In this section we comment on how 
such large density gradients can be sustained.  

We start by noting that from the ion pressure balance equation and (53) we find to lowest order that 

 i
i

cTd dn
c
d Zen d
φ

ω
ψ ψ

= − − , (55) 

where dn dψ
 
obeys ordering (43). Then we estimate that 

 ii
i

i

RcT dn
en d v

ω
ω

ψ
∼  (56) 

with iRω  the net ion flow.  Thus, unless ions are sonic the left side of (55) must be smaller to lowest order 
than each of the terms on the right. Also, 0dn dψ <  and therefore 0d dφ ψ < , so the electric field in the 

pedestal is inward, as observed for pedestals in the presence of  subsonic ion flow [46,47]. Also, we notice 
that, as the left side of (55) is negligible for a plasma having subsonic ion flow, density and potential must be 
connected through the lowest order radial Boltzmann relation giving 

 iTd dn
d Zen d
φ
ψ ψ

≈ − . (57) 

Next, we consider electron flows in the pedestal by writing the net electron velocity as 
 ( )ˆ

e e eV R BK nω ζ ψ= +
G G

, (58) 

with eK  a flux function so that ( ) 0enV∇ ⋅ =
G

 to lowest order. Then, total pressure balance, 

( )e iJ B c p p× = ∇ +
G G

, reduces to the lowest order electron pressure balance result 

 e
e

e

d c dp
c
d en d
φ

ω
ψ ψ

= − + , (59) 

when (57) is employed. But here the terms on the right side have the same sign and therefore cannot cancel as 
in the ion equation. Estimating, ( )e ec c en pω φ ψ ψ∂ ∂ ∂ ∂∼ ∼  we find a large electron flow,  

 e iR vω ∼ . (60) 
Thus, the electrostatic potential associated with the density gradient in the pedestal or an ITB can only be 
sustained by a large electron flow. As a result, it is the electron dynamics that underlies pedestal or ITB 
physics, and we can say that ions are electrostatically confined by the electrons. Although it is not clear what 
establishes the pedestal, it is clear that subsonic ion flow implies the pedestal is maintained by a large 
electron current with the ions electrostatically confined. Any small small departure of the ions from a radial 
Maxwell - Boltzmann relation must be due to weak ion temperature variation. 
 
9. Zonal flows and neoclassical transport 
 
Now that we have the leading order solution to (38) we can seek higher order corrections to it. We proceed by 
writing 



 ( ) ( )* * * * *, , , , ,f f g tψ ε ψ θ µ ε= + , (61) 
with *g f�  and *f  given by (35) - (37) but with T , η , and ω  allowed to be slowly varying functions of 

*ψ . Then, equation (38) becomes 
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*
ii

fg g Ze
C f g

t M tε ε

φ
θ

θ ε
∂∂ ∂ ∂

+ − + =
∂ ∂ ∂ ∂

� . (62) 

To evaluate the collision operator term in (62) we expand the slowly varying terms of *f  around ψ  
to obtain 
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. (63) 

The expression preceding the square parentheses is a toroidally rotating Maxwellian at any given point in 
space 
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G
, (64) 

where ( )n n r=
G

 is given by (36). We use 
 { } 0ii MC f =  (65) 

and employ the linearized ion-ion collision operator l
iiC  along with momentum conservation to note that  

 { } 0l
ii MC vf =
G

. (66) 

Recalling that ( )*
ˆMc Ze Rvψ ψ ζ− = − ⋅

G
 and using properties (65) - (66) we find 
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G G G
. (67) 

Finally, we can neglect the last two terms in the collision operator for subsonic flows because of (53) - (54) to 
obtain the simple result 
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⎧ ⎫∂⎪ ⎪⎪ ⎪≈ −⎨ ⎬⎪ Ω ∂ ⎪⎪ ⎪⎩ ⎭

. (68) 

 Next, we evaluate the φ  term on the right side of (62) assuming ( ),tφ φ ψ=  to the requisite order 
[36--39], and using an eikonal form 
 ( )ˆ iSe ψφ φ= , (69) 

with ( )k S ψ⊥ ≡ ∇
G

. Then, expanding ( )S ψ  around *ψ  and gyroaveraging φ  holding *ψ  fixed yields 
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, (70) 

where ( )*
*

ˆ iSe ψφ φ≡  and ( )||
Q Iv S ′≡ Ω , with S S ψ′ ≡ ∂ ∂  and S  assumed slowly varying. 

 Now we insert (68) and (70) into (62) and use ( )* Mf M T fε∂ ∂ ≈ −  to obtain the equation for g  

to be 

 ( )|| *
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ii M M
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C g f f J e
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Finally, we consider the banana regime in which * 0g θ∂ ∂ =  to lowest order, so that transit averaging (71) 

gives 

 ( )|| *
2

2 02
l iQ
ii M M

Ivg Mv T Ze k v
C g f f J e

t T tT
φ

ψ
⊥ ⊥

⎧ ⎫∂ ∂ ∂⎪ ⎪⎪ ⎪− − = −⎨ ⎬∂ ⎪ Ω ∂ ⎪ ∂ Ω⎪ ⎪⎩ ⎭
 (72) 

with transit average defined as in (41). The distinctions between Mf , Q , ||v , 0J  and *f , *Q , ||
*v , *

0J  
respectively is unimportant in (71) and (72). Equation (72) contains both neoclassical and zonal flow drives 
in an uncoupled manner. The neoclassical drive enters in the collision operator and for it the time derivatives 
in (72) are negligible. The zonal flow drive is due to the * tφ∂ ∂  term that requires keeping g t∂ ∂ , but for 

which the neoclassical drive does not matter. This gyrokinetic equation is capable of retaining finite Larmor 
radius effects on these phenomena, as well as finite poloidal gyroradius and orbit squeezing effects since it is 
derived using *ψ  as the radial variable. 
 
10. Discussion 
 
An electrostatic gyrokinetic formalism for tokamaks is developed and its first applications are performed. 
Based on an entropy production argument that retains orbit squeezing as well as E B×

G G
 shear effects, the 

most important prediction is that in the banana regime the background ion temperature is not allowed to have 
a pedestal similar to the ones observed for plasma density, electrostatic potential, and electron temperature 
since inequality (53) must be satisfied. This prediction seems to be in reasonable agreement with 
experimental observations [48,49] since currently there are no direct measurements of the background ion 
temperature in a tokamak pedestal. Even impurity helium near the plateau to banana regime transition tends 
to exhibit a weaker temperature pedestal for the ions than for the electrons [48]. The majority of existing ion 
temperature measurements are for impurities which have a smaller ion gyroradius and are more collisional 
than the background ions. Moreover, it must be kept in mind that in the pedestal temperature equilibration 
between impurities and background ions is no longer local (flux surface by flux surface) because of finite 
orbit effects that can allow impurity radial heat transport and equilibration to compete. 

Of course, the entropy production proof that the background ions do not have a temperature pedestal 
has some limitations. First, we can only apply it when the collision operator does not dominate over the 
streaming term in the kinetic equation. Therefore, our proof is valid in the banana regime, but not in the 
collisional Pfirsch-Schluter regime (with any plateau regime behavior expected to be transitional). Only in the 
banana regime does the distribution function being Maxwellian result in it being independent of *θ  and 
therefore *µ , which in turn leads to slow radial temperature variation. 

Another issue is the implicit assumption of the absence of any significant entropy flow from the 
pedestal into divertor plates that is needed to obtain (52). This assumption requires the pedestal region to be 
within the tokamak separatrix in such a way that all the flux surfaces carrying a significant amount of plasma 
are closed. If the separatrix were to fall part way up the pedestal our proof would no longer be mathematically 
robust. However, our almost isothermal Maxwellian solution remains valid in the near SOL so entropy flow 
into the divertor is negligible.  Therefore, we expect that in the banana regime it will be difficult to sustain the 
strong background ion temperature variation comparable to that of plasma density needed to obtain an ion 
temperature at the top of the pedestal in the 2-4 keV range as assumed in ITER [50].  

Other limitations of our proof are associated with the neglect of charge exchange and ionization, and 
direct orbit loss to physical structures outside the SOL, which may or may not be playing a role in 
establishing the pedestal [50]. Orbit loss results in non-Maxwellian features that cause the entropy production 
to be finite so we anticipate that ion orbit loss will have to remain a weak effect in a well defined pedestal in 
local equilibrium. Moreover, in the short neutral mean free path limit the velocity dependence of the neutral 
distribution function will become the same as that of the ions causing charge exchange collisions of the ions 
with the neutrals to produce no entropy. For longer neutral mean free paths we expect little entropy 
production due to the presence of the neutrals based on a self-similar treatment of the neutrals which finds 
results roughly in agreement with short mean free path results [51]. 

Interestingly, we can apply our nonlocal entropy production proof to the case of the so-called “potato 
regime” near the magnetic axis [15,16] that is the potato analog of the regular banana regime. In this region 



of a tokamak polρ  becomes large so that (53) requires an almost constant ion temperature in the vicinity of 

the magnetic axis meaning that there is no transport in a conventional sense. This analysis is in agreement 
with the point made in [16] that near the magnetic axis we should speak about a global solution in the entire 
region rather than about a local diffusive process. This point is in turn similar to the point about the non-local 
equilibration of the pedestal that we make in section 7. 

Finally, we remark that a favorable consequence of the lack of a background ion temperature pedestal 
in the banana regime is the probable enhancement of the bootstrap current in the pedestal. To see this effect 
we employ the usual Z = 1, large aspect ratio expression                        

 
lnln ln 0.29

1.66 1 0.47 ei i
etBS

e e

T d Td n d T
j f nT R

ZT d d ZT dψ ψ ψ
⎡ ⎤⎛ ⎞⎟⎜= − + + −⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

, (73)    

where tf  is a trapped particles fraction (e.g. see [11]). We use (73) only as an estimate because neoclassical 
transport in pedestal can be slightly different from this result in the large aspect ratio form due to strong 
shaping effects in the pedestal. Experiments show that eT  and n  profiles are very similar  with strong 
electron temperature variation being allowed by the small poloidal gyroradius of the electrons. We recall that 
(53) prevents iT  from having a gradient comparable to that of n  and eT , so the ion temperature gradient 
term is expected to be negligible in the pedestal, but more importantly (53) leads us to expect 1eiT T �  to 

hold in the coefficient of the ion density gradient term. Thus, the first term in square parentheses in (73) is 
expected to be greater in pedestal than in the core resulting in a larger bootstrap current closer to plasma edge. 

In summary, the modified gyrokinetic approach we employ promises to be a useful tool for studies of 
plasma turbulence and transport in tokamaks. The choice of *ψ  as the gyrokinetic radial variable results in a 
convenient treatment of arbitrary poloidal gyroradius effects in the pedestal, in ITBs, and about the magnetic 
axis, while still allowing neoclassical collisional effects and zonal flow to enter naturally along with finite 
Larmor radius phenomena including orbit squeezing. As a result, our formalism is capable of handling such 
problems as collisional zonal flow damping with 1polk ρ⊥ ∼ , zonal flow in a pedestal, and neoclassical 

transport in a pedestal, as well as turbulent phenomena. 
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Appendix A.  First order corrections to gyrokinetic variables 
 
We show in this appendix how the gyrokinetic procedure we describe in section 2 is implemented to obtain 
our gyrokinetic variables correct up to first order in δ . 
 
Spatial variables.  Following the steps outlined in section 2 we first apply the Vlasov operator to 0θ θ≡  to 
obtain 

 0d v
dt
θ

θ= ⋅ ∇
G

. (A.1) 

Next, we extract gyrodependent part of  0d dtθ  by writing 

 0 0d d
v

dt dt
θ θ

θ⊥− = ⋅ ∇
G

. (A.2) 

Then, we have to solve for 1θ  such that to lowest order 



 ( ) ( )0 1 0 1 0
d d
dt dt

θ θ θ θ+ − + = . (A.3) 

Using (A.2) and (6), (A.3) gives the equation 

 1 0 0d d
v

dt dt
θ θ θ

θ
ϕ ⊥

∂
Ω = − = ⋅ ∇

∂
G

. (A.4) 

To perform the integration over ϕ  we use ˆv d v nϕ⊥ = ×∫
G G

. Thus, setting 1 0θ =  gives 
1

1 ˆv nθ θ−= Ω × ⋅ ∇
G

, reproducing the relation (15) given in the section V. We get the first order correction 

to ζ  by similar procedure to find 1
1 ˆv nζ ζ−= Ω × ⋅ ∇

G
 and (16). 

As has already been mentioned, the *ψ  variable does not require a first order correction. However, if 
we were to simply take ψ  as the initial variable and then proceed analogously to θ  and ζ , we find  

 1
ˆv n

ψ ψ
×

= ⋅ ∇
Ω

G
� . (A.5) 

If we define 

 1 *
ˆMc

Rv
Ze

ψ ψ ψ ζ≡ − = − ⋅
G

, (A.6) 

then we see the gyrodependent part of 1ψ  is equal to 1ψ� . This can be verified by using (22) for the magnetic 

field in tokamaks to rewrite 1ψ  as ||
1

1 ˆv n Ivψ ψ−= Ω × ⋅ ∇ − Ω
G

, as in (23).  

 
Magnetic moment.  Here we will only show the derivation of the gyrodependent part of  1µ  denoted as 1µ� . 
The gyroindependent term 1µ  will be considered in the appendix C.  As usual, we first evaluate 
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We notice that 
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giving 0d dtµ  as purely gyrodependent. Then, we write 
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Our ordering allows large gradients for the electric potential and therefore the last term in (A.9) must be 
analyzed carefully. To do so, notice that 
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Using the relations for 1θ , 1ζ , and 1ψ  we obtain  
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This form is conveniently integrated over ϕ  to find (29). 
 
Energy.  Once again, we begin by applying the Vlasov operator to the initial variable to find 
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Next, with the help of (A.11) we extract the gyrodependent part of the total time derivative to find 
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Our orderings allow us to neglect the first term on the right side of (A.13) and therefore the equation for 1E  
can be written as 

 1 0 0E dE dE Ze
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Integrating setting 1 0E =  gives 

 1
Ze

E
M

φ= � . (A.15) 

 
A useful expression.  Before deriving the first order correction to the gyrophase we obtain a useful relation 
that will also be helpful during the calculation of the second order corrections. Suppose we have a physical 
quantity given in terms of original spatial variables ( ), ,Q Q ψ θ ζ= . Then, according to (24) we define 

( )* * * *, ,Q Q ψ θ ζ≡ .  As it has been already mentioned there is a first order difference between Q  and *Q . 
For a slowly varying function we have upon Taylor expanding 
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. 

Note that this expansion is not normally valid for such quantities as electric potential and distribution function 
because they contain strong spatial gradients. Inserting the relations for 1θ , 1ζ , and 1ψ we find 
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or defining I  as in (22) 
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Gyrophase.  Evaluating 0d dtϕ  gives 
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To extract the gyrodependent part of  0d dtϕ  we have to take into account that Ω  becomes slightly 

gyrodependent when expressed in terms of the starred variables. To do so we employ Eq. (A.16) to write 
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In addition, we use the vector relation 
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where ˆ ˆn nκ ≡ ⋅ ∇
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 and the double-dot notation is defined by :ac T c T a≡ ⋅ ⋅
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. 
Finally, we rewrite the ( )ˆv n φ× ⋅ ∇

G
 term so that it can be integrated over ϕ . For this purpose we 

notice that  
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Using the relations for 1θ , 1ζ , and 1ψ , we find that  
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or 
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On the right side of the last formula the original variables can be replaced by the starred ones without an error 
to the order of interest. Thus, the only ϕ  dependence in ( )ˆv n φ× ⋅ ∇

G
 enters through the electric potential.  

Inserting (A.18), (A.19), and (A.22) into (A.17) and gyroaveraging we obtain 0  d dtϕ = −Ω as 

given by (33). Extracting the gyrodependent part of  0d dtϕ  and using 

1 0 0 0d dt d dtϕ ϕ ϕ ϕΩ∂ ∂ = −  yields  
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where 
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, , , , ,
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E d

ϕ

φ ψ θ ζ µ ϕ ϕ
π

′ ′Φ ≡ ∫�  (A.24) 

with 0Φ =� .  
 
Expression for φ⊥∇ .  To complete appendix A we give an expression that will be used in appendix C to 
prove that the magnetic moment correction given by (29) and (31) makes µ  a good adiabatic invariant. This 
expression is obtained by using the relations (A.11) and (A.22) to decompose the perpendicular component of 
electric field as 
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. (A.25) 

 
Appendix B  Second order corrections to gyrokinetic variables 
 
In this appendix we perform a second iteration to evaluate the gyrokinetic variables to second order in δ . To 
carry out this calculation we apply the gyrokinetic procedure to the variables correct up the first order that 
were calculated in appendix A. 
 
Spatial variables.  We begin by evaluating 
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. (B.1) 

Here, the first term is one order larger than the others and therefore it needs to be expressed in terms of the 
new variables up to order δ . To do so for n̂ θ⋅ ∇ , we employ (A.16),   
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G
. (B.2) 

In addition, ||v  requires some special care. Writing 

 ( )( )|| 0 02v E B rµ= −
G

 (B.3) 

and using ||
*v  from (25) we expand to obtain 
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Using (29), (31), and (A.15) and applying (A.16) to B  we find 
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 (B.5) 

Having (B.2) and (B.5), we can now gyroaverage ||ˆv n θ⋅ ∇  by writing 
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and after some algebra find 
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Next, we need to gyroaverage the rest of the terms in (B.1). These calculations give 
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and 
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Collecting the terms we reproduce the relation (18) for ( )0 1 *d dtθ θ θ+ = � . 

Now, we can extract the gyrodependent part of (B.1) and, using 
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∂
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, 

integrate it over ϕ  setting 2 0θ =  to obtain 2θ  as  
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The calculation of 2ζ  involves exactly the same procedure as used for 2θ  giving (19) as well as 
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where ˆ Rζ ζ∇ =  and ( ) 2ˆ ˆˆ ˆR R Rζ ζ ζ∇∇ = − + . 

The total time derivative of *ψ  has been already given in the appendix A. Here we only have to 

extract the gyrodependent part of *ψ
�  in order to obtain ( )* 2

ψ , 
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Integrating ( ) 0* * *2
ψ ϕ ψ ψΩ∂ ∂ = −� �  along with using ( )* 2

0ψ =  gives 
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where to second order ( ) ( )* * 2
ˆMc Ze Rvψ ψ ζ ψ→ − ⋅ +

G
 . 

 
Energy.  To evaluate the Vlasov operator with the required precision it is convenient to write 
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We can express the total time derivative in terms of the starred variables as 
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where the *φ µ∂ ∂  term can be neglected since * 0µ =�  to the requisite order. Also, using 
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and inserting (B.16) into (B.15) we find 
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Gyroaveraging and using ( )0 1 *E E E+ ≈� � � , we solve for *E
�  to find (27). 

Next, we extract the gyrodependent part of ( )0 1d E E dt+  to obtain the equation for 2E  to be 
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which upon integrating and setting 2 0E =  yields 
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To finish this section we analyze the *Eφ∂ ∂  term 
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Note, that in conventional gyrokinetics the first order corrections to the spatial variables involve only v⊥  and 
therefore do not depend on E  in leading order. Here, the correction to *ψ  involves ||v  and therefore this term 
needs to be retained. From (B.20) we find 
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. (B.21) 

This expression will be helpful for proving that the magnetic moment is a good invariant. Also, for numerical 
simulations the right side of the relation (B.21) may be more preferable to use than *Eφ∂ ∂ . Indeed, the *E  

dependence of φ  is weaker than the *ψ  dependence of φ  and therefore numerical evaluation of  *Eφ∂ ∂  

potentially contains a greater error than that of *φ ψ∂ ∂ . 

 
Appendix C. Magnetic moment 
 



This appendix verifies that the corrections to the magnetic moment we employ allow us to neglect f µ∂ ∂  

term in the kinetic equation. To do so, we need to prove that 3
0*µ µ δ Ω� ∼ . This has been already proven 

for the case without electric potential [23,34,45]. Here, we need only check that the first and second order 
terms of µ�  explicitly involving the electric potential gyroaverage away. These terms are given by 
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where we define 
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It is convenient to consider the first two terms on the right side of (C.1) together 
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Using the preceding allows us to rewrite ( )φµ�  as 
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In the following subsections we evaluate each term of  (C.3) up to order 2
0δ µΩ  in terms of the starred 

variables and then gyroaverage. 
 
Third term.  Here, we express ||ˆv n φ⋅ ∇  in terms of starred variables before considering the first three terms 
together. We start by writing 
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To evaluate the right side of (C.3) to the required order, relations (17), (15), (16), and (26) must be inserted 
for *ψ , *θ , *ζ , and *E , respectively. To the same order, for *µ  and *ϕ  we only need insert the zero order 
expressions in terms of δ . As a result, (C.4) becomes 
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The first three terms in the preceding equation are one order larger than the rest so the difference between 
ζ∇ , θ∇ , ψ∇  and ( )

*
ζ∇ , ( )

*θ∇ , ( )
*ψ∇  has to be taken into account. To do this we employ (23) and 

(A.16) so that Eq. (C.5) transforms into 
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To the required order we can write 
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and with the help of relation (A.25) we get 
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Finally, by inserting (C.7) into (C.6) we end up with 
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In the preceding expression the first three terms are one order larger than the rest. 
Then, relating ||v  and *

||v  and n̂  and *̂n  using (A.16) and (B.5), noting that 
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Then, we use 
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Gyroaveraging then gives 
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First three terms.  Next, we analyze d dtφ . We start by writing  
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where we insert (17) - (19) for *ψ
� , *θ

� , and *ζ
� , respectively, while for *E

�  we need only the leading order 
result 
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To eliminate the terms quadratic in φ  we use (B.21) along with the observation that  
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 Combining (C.12) with (C.9) we obtain 
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Remaining terms.  Finally, we analyze the last two terms in (C.3). As in the conventional gyrokinetics we find 
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Then, we notice that 
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Next, we combine the terms in the triangle brackets from (C.14) with the ||
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Combining terms.  Finally, we combine the results from the subsections of this appendix to obtain  

( ) ||

2
2

* * *

ˆˆ ln
2M

MB Iv Mc
v n B Rv

Ze Zeφ
φ φ φ

µ ψ ζ κ
ψ ψ ψ

⊥∂ ∂ ∂
= ⋅ ∇ + ⋅ ∇ − ⋅

∂ Ω ∂ ∂
G G� . 



Noticing that ( )2 ˆ2 lnBv Iv n Bψ ⊥∇ ⋅ ∇ = − Ω ⋅ ∇
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 and ( ) ||
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 we find to the 

requisite order the desired result  
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Appendix D. Jacobian in the strong potential gradient case 
 
To follow is the derivation of the leading order Jacobian of the transformation from the original set of 
variables to the one consisting of *ψ , *θ , *ζ , ε , *µ , and *ϕ . We start by writing 
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Keeping only the leading order terms in all the blocks yields 
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In the absence of sharp potential gradient we would neglect the φ∇  term in the upper-right block to obtain 
the usual expression for the leading order Jacobian, namely, 
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To calculate the determinant for polw ρ∼  we multiply the first column of matrix (D.2) by 

( )( )Ze M φ ψ∂ ∂ , the second by ( )( )Ze M φ θ∂ ∂  and the third by ( )( )Ze M φ ζ∂ ∂ , add them 

together and subtract the resulting linear combination from the fourth column of matrix (D.2) to obtain  
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The preceding determinant is easily evaluated to find 
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Notice, that if ( )( )1w e T φ ψ ψ≡ ∂ ∂ ∇  is of order 1 polρ  the two terms on the right side of (D.5) are 

comparable. 
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