
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plasma Science and Fusion Center 
Massachusetts Institute of Technology 

Cambridge  MA  02139  USA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work was supported by the U.S. Department of Energy, Grant No.  DE-FG02-91ER-
54109.  Reproduction, translation, publication, use and disposal, in whole or in part, by or 
for the United States government is permitted. 
 
Submitted for publication in Physics of Plasmas (April 2008) 

PSFC/JA-08-12 
 
 
A general formulation of MHD stability including flow 

and a resistive wall 
 

Guazzotto, L.,* Freidberg, J.P. and Betti, R.** 
 

April 2008 
 
* University of Padua, Italy 
** University of Rochester, NY 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78059571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

A General Formulation of MHD Stability Including Flow and a Resistive Wall 

 

L. Guazzotto, J. P. Freidberg 

MIT Plasma Science and Fusion Center 

 

R. Betti 

University of Rochester 

 

 

 

 

Abstract 

 

A general formulation is presented for determining the ideal MHD stability of an 

axisymmetric toroidal magnetic configuration including the effects of an arbitrary 

equilibrium flow velocity and a resistive wall.  The system is inherently non self 

adjoint with the eigenvalue appearing in both the equations and the boundary 

conditions. Even so, after substantial analysis we show that the stability problem 

can be recast in the form of a standard eigenvalue problem: ω ⋅ = ⋅z zA B  which 

is highly desirable for numerical computation. 
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I. Introduction 

 

In recent years the study of the linear ideal MHD stability of fusion plasmas 

has continued to advance with the inclusion of additional physical effects of 

important practical relevance.  Of particular interest are the effects of an 

equilibrium flow velocity and a resistive wall.   

 

The inclusion of flow and a resistive wall substantially increases the complexity 

of the formulation with respect to the development of fast, reliable, and accurate 

numerical solvers.  To understand the complexity recall that ideal MHD without 

flow and a resistive wall reduces to a self adjoint eigenvalue problem for , a 

standard numerical problem.  The self adjointness guarantees that  is always 

purely real.  Adding flow by itself leads to a non self adjoint system.  The basic 

eigenvalue becomes (not ) and in general ω  is complex.  However, there is 

some degree of symmetry in that if ω  is an eigenvalue then so is .   A 

resistive wall by itself also introduces non self adjointness and complex 

eigenvalues although in this case the symmetry implies that if  is an eigenvalue, 

then so is .  With both flow and a resistive wall the system is non self 

adjoint and has complex eigenvalues with no general symmetry between the real 

and imaginary parts. 

2ω
2ω

ω 2ω
*ω

ω

*ω−

 

In the present work a general formulation is derived for determining the ideal 

MHD stability of an axisymmetric toroidal magnetic configuration including the 

effects of an arbitrary equilibrium flow velocity and a resistive wall.  In spite of 

the fact that the system is inherently non self adjoint with the eigenvalue 

appearing in both the differential equation and the resistive wall boundary 

condition, we show that the stability problem can, by means of a Galerkin 

procedure, be cast in the form of a standard eigenvalue problem: ω ⋅ = ⋅z zA B .  

This is a highly desirable form for numerical computation and is the main 

contribution of the paper. 
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A key feature of the formulation is the analytic solution of the 

vacuum/resistive wall region by means of Green’s theorem.  This allows us to 

project the outer solutions onto the plasma surface so that only the plasma 

interior is required for the computational domain.  To obtain this analytic 

solution requires an extensive amount of linear algebra, which, however, is 

straightforward computationally.  It is also necessary to exploit the commonly 

used “thin wall” approximation for the resistive wall.  The result is that for a 

given geometry the matrices  and A B  are of comparable size to the 

corresponding matrices for an ideal plasma without flow and a resistive wall.  

Also, they have a similar banded structure with most of the elements being zero, 

which is advantageous from a computer memory point of view since it allows for 

sparse-matrix memory allocation. 

 

To put our work in perspective we note there are many MHD codes already in 

existence.  The early codes mainly treated plasmas without flow or a resistive 

wall.  Later codes added the effects of flow but not a resistive wall.  One notable 

example is the upgraded version of CASTOR [1] named PHOENIX [2] which 

includes both toroidal and poloidal flows as well as gravity.  Its main applications 

are to astrophysics.  Other advanced MHD codes, aimed primarily at fusion 

research, include both toroidal flow and a resistive wall. These are the MARS-F 

[3,4], CASTOR_FLOW [5], and CARMA [6] codes.  The MARS-F code has an 

eigenvalue formulation of the problem but requires the construction of a grid in 

both the inner and outer vacuum regions.  The CASTOR_FLOW code requires 

multiple iterations to determine stability because of the nonlinear appearance of 

the eigenvalue.  The CARMA code combines the MARS-F code with the 

CARIDDI [7] wall code, thereby treating the more realistic case of a 3-D wall.  

Although the effects of flow are potentially available to CARMA because of 

MARS-F, it is typically run with zero flow for computational efficiency – it is run 

as an MHD code with a resistive wall but no flow.  Based on this summary, the 

present formulation can thus be viewed as a next step of progress along the path 

to the more efficient and realistic computation of MHD stability in toroidal 
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geometries: a computationally efficient MHD formulation including both toroidal 

and poloidal flows as well as a resistive wall.  

 

The paper is organized as follows.  To begin, an analysis is presented of a 

simple model problem that has the same features as the more general 2-D 

problem of interest.  This analysis demonstrates the steps necessary to convert 

the problem into the desired form without the need for large amounts of 

mathematics.  With this calculation in hand, we next generalize the analysis to a 

2-D axisymmetric toroidal system.  The generalization is relatively 

straightforward except for the complicated resistive wall boundary condition.  

Most of the text is then devoted to recasting the resistive wall boundary 

condition into a form suitable for use in a standard eigenvalue problem.  Finally, 

the results are combined, leading to the desired formulation. 

 

 II. Model problem 

 

In this Section we consider a simple model problem that incorporates the 

critical features of the more general problem under consideration.  The goal is to 

show how the model differential equation, which qualitatively includes the effects 

of an equilibrium flow velocity and a resistive wall, can be cast in the form of a 

standard linear algebra eigenvalue problem.  The value of the model problem is 

that the analysis is greatly simplified leading to a more transparent 

understanding of the steps to be taken in the general case. 

 

The model differential equation is given by 

 

 ( ) ( )2 0f ξ ω ξ′ ⎡ ⎤′ + −Ω + =g⎢ ⎥⎣ ⎦  (1) 

 

where  represents the flow velocity, ,  represent the 

stabilizing and destabilizing MHD drives, and  is the eigenvalue.  The 

boundary conditions are as follows.  At  we assume a regularity condition 

given by 

( )xΩ = Ω ( )f f x= ( )g g x=
ω

0x =

 4



 

 ( )0ξ = 0  (2) 

 

At x  we assume a resistive wall boundary condition of the form  a=

 

 ( ) ( ) ( ) ( )1 2 3 4 0i K K a i K K aω ξ ω ξ ′+ + + =  (3) 

 

with the jK  being constants.  The essential features of this condition are that (1) 

it involves a linear homogenous combination of  and , (2) the 

eigenvalue ω  appears explicitly and not higher than a linear power, and (3) the 

( )aξ ( )aξ ′

jK  are all real.  It is shown shortly that the resistive wall boundary condition for 

the general case is of the identical form.  

 

Note that for a static problem (i.e. ) with an ideal conducting wall (i.e. 

) the system is real and self adjoint.  The formulation reduces to 

that of a standard self adjoint eigenvalue problem with  being the eigenvalue.  

This is a classic problem in numerical analysis.   

0Ω =

1 3 0K K= =
2ω

 

If flow is introduced (i.e. ) the system loses its self adjointness.  Even so 

a simple substitution converts the equations into the form of a standard 

eigenvalue problem where  (rather than ) is the eigenvalue.  For this case  

is in general complex. 

0Ω ≠

ω 2ω ω

 

The main difficulty is associated with the resistive wall (i.e. ), 

which also causes the system to lose its self adjointness, resulting in complex 

eigenvalues.  The problem is the appearance of  in the boundary condition, 

which complicates the analysis.  For an arbitrary  dependence in the boundary 

condition there is no obvious way to transform the system into the form of a 

standard eigenvalue problem.  However, the fact that ω  appears linearly in the 

boundary condition for the thin-wall case makes it possible to reduce the problem 

to standard form.  

1 30, 0K K≠ ≠

ω

ω
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The points just discussed can be demonstrated explicitly by showing how the 

model problem can be cast in the form of a standard eigenvalue problem.  There 

are three steps involved.  First, convert the second order (in ω ) system into two 

first order systems.  Second, solve the equations using, for instance, a Galerkin 

expansion procedure.  Third, apply the boundary conditions at each end point 

showing how the resistive wall boundary condition can be incorporated into the 

linear algebraic equations.  The end result is an eigenvalue problem in standard 

form: . ω ⋅ = ⋅z zA B

 

We start by converting the system into a set of two first order equations in  

by introducing a new dependent variable .  The model 

reduces to  

ω
( ) ( ) ( )u x xω ξ= −Ω

 

   (4) 
( )[ ]

u

u f g

ωξ ξ

ω ξ ξ

= Ω +

′′= − + +Ωu

 

Next, following the Galerkin procedure we form a quadratic integral L by 

multiplying the first equation by , the second by , adding the equations 

together and then integrating over the plasma domain .   

û ξ̂
0 x a≤ ≤

 

 
0

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )
a

a
L u u f g u u uu dx fω ξ ξ ξ ξ ξξ ξ ξ ξξ⎡ ⎤ ⎡′ ′ ′= + − + −Ω + − + ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣∫ ⎦  (5). 

 

The solutions for ξ  and u  are represented by an expansion in a set of basis 

functions  with expansion coefficients ( )j xφ ,j juξ : 

 

  (6) 
( ) ( )

( ) ( )

0

0 0

          /

          /

N N

j j j j

N

j j j j

x d dx

u u x du dx u

ξ ξ φ ξ ξ φ

φ φ

′= =

′= =

∑ ∑

∑ ∑
0
N

x

x

 

The boundary condition at the origin is satisfied by setting  and assuming 

that  for all .  The first equation in Eq. (4) also implies that ..  
0 0ξ =

(0) 0jφ = j 0 0u =
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At x  there is a mixed homogeneous boundary condition involving both ξ  

and ξ .  A convenient way to treat this type of boundary condition is to select a 

set of compact basis functions (e.g. tent functions, parabolic functions, etc.) with 

the following properties: 

a=
′

 

  (7) 
1 1

1

( ) 1     ( ) ( ) 0          1 1

( ) 1     ( ) 0                          
j j j j j j

j j j j

x x x j

x x j N

φ φ φ

φ φ
− +

−

= = = ≤ ≤ −

= = =

N

 

With this choice of basis functions we see that the values of ξ  and u  at the node 

point jx x=  depend only on the coefficients jξ  and ju .   

 

Now, in general, we expect from basic mathematics that the value of ξ  

should be independent of the value of .  The relationship between these two 

quantities is determined by the externally imposed boundary condition.  This is a 

slightly subtle point but one that is crucial to the analysis.  As an explicit 

demonstration, consider the finite element expansion described above.   The 

value of 

(′ )a

( )aξ

( )jxξ′  depends on jξ  but in addition couples to the neighboring node 

point coefficients 1jξ ± .  This is a straightforward evaluation in the interior of the 

plasma.  However, at the boundary  the value of  depends upon the 

coefficients  and “ ” where  represents the node point of a 

hypothetical ghost element just outside the boundary.  Note that “ ” is not 

one of the actual unknowns in the problem even though it affects the value of 

.  (A similar situation arises with a finite difference formulation) 

Nx = a

N

ξ′

( )aξ′

1,Nξ ξ− 1Nξ + 1Nx +

1Nξ +

( )aξ′

 

The implication is that it is incorrect to determine the value of  by 

simply differentiating the expression for  given in Eq. (6) and then 

evaluating  using only the coefficients  and : that is, the quantity 

 (or equivalently ) must be viewed as an additional independent 

unknown in the problem.  This extra degree of freedom is essential in order to be 

able to apply the boundary condition at x .  A similar discussion applies in 

principle to  although in practice there is no issue here since  appears 

neither in the integrand nor the boundary condition.  To summarize, there are a 

( )aξ′

( )xξ
( )aξ′ 1Nξ − Nξ

( ) aaξ′ ≡ 1Nξ +

a=

( )u a′ ( )u x′
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total of 2  unknown coefficients in the problem represented by the 

eigenvector  where  and 

1N +
[ , , ]ξ ′= az u ξ 1[ , ]Nu u=u … 1[ , ]Nξ ξ= …ξ . 

 

We now derive a set of linear algebraic equations for the unknown coefficients 

by choosing two sequences of test functions for  and , and then evaluating the 

corresponding integrals.  Following the Galerkin procedure we choose the first set 

of test functions as follows. 

ξ̂ û

 

  (8) ˆˆ ( ) ( )     ( ) 0     1i i iu x x x i Nφ ξ= = ≤ ≤

 

Carrying out the integrals leads to a set of N  linear algebraic equations 

 

 ω ⋅ = ⋅ + ⋅ uξ ξD U D  (9) 

 

The matrices are square and symmetric, having dimensions (  with 

elements 

)

x

x

N N×

 

 0

0

a

ij i j

a

ij i j

D d

U d

φφ

φφ

=

= Ω

∫
∫

 (10) 

 

This procedure is repeated for a second set of test functions defined by 

 

  (11) ˆˆ ( ) 0     ( ) ( )     1i i iu x x x i Nξ φ= = ≤ ≤

 

In this case we obtain a set of N  linear equations, which because of the 

boundary term, contains N  unknowns 1+
 

 1a a i N j Nfω − − −′⋅ = ⋅ + ⋅ +u u ξ δ δξD W U  (12) 

 

Here,  is an (  symmetric square matrix with elements W )N N×
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 (
0

a

ij i j i jW f gφφ φφ′ ′= − )dx∫  (13) 

 

One more equation is needed to close the system.  This equation corresponds to 

the boundary condition which can be written in terms of the finite element 

expansion as 

 

  (14) ( ) ( ) ( )1 2 3 4 0Ni K K i K K aω ξ ω ξ ′+ + + =

 

The final step in the procedure is to collect all the algebraic equations.  The 

result is an eigenvalue problem in standard form 

 

 ω ⋅ = ⋅z zA B  (15) 

 

where  and B  are given by A

 

 

1 3 2 4

      

0 af

iK iK K K

= =

0

0
A

D UD

B
U WD

 (16) 

  

Equation (15) is the desired result.  Observe that the crucial point that allows 

the transformation of the original problem into a standard linear algebra problem 

is the fact that the model resistive wall boundary condition contains only 

constant and linear terms in .  A major part of the analysis that follows 

involves showing that the actual resistive wall boundary condition for a 2-D 

axisymmetric torus is of the same form as that of the model problem. 

ω

 

III. General axisymmetric toroidal formulation 
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The analysis just described is generalized in this section to the problem of 

ideal MHD stability in an arbitrary 2-D axisymmetric toroidal geometry 

including the effects of flow and a resistive wall.  The end goal is to show that 

the 2-D problem can be transformed into a standard linear algebra problem 

similar in form to Eq. (15). To achieve this goal requires the following steps: (1) 

describe the 2-D equilibria of interest, (2) derive the general stability equations, 

(3) transform the stability equations into a linear algebra problem with a 

temporarily unspecified boundary condition at the plasma-vacuum interface, (4) 

derive an explicit form for the resistive wall boundary condition, and (5) combine 

the results to obtain the final standard eigenvalue problem.   We note that the 

analysis has also been extended to arbitrary 3-D configurations.  The plasma 

analysis remains essentially the same.  The main difference is a slightly more 

complicated form of the resistive wall analysis because of the 3-D wall geometry.  

However, the structure of the resistive wall boundary condition remains 

unchanged. 

 

A. Equilibrium 

 

The analysis presented here relies heavily on the early work of Frieman and 

Rotenberg [8] and at this point is valid for an arbitrary 3-D geometry.  The 

starting point is the assumption that an ideal MHD equilibrium has been 

calculated, either analytically, or more probably numerically, that satisfies the 

following equations, 

 

  (17) 

( ) 0

( ) 0

( / ) 0p

p

γ

ρ

ρ

ρ

−

∇ ⋅ =

∇× × =

∇ ⋅ =

⋅∇ = × −∇

1

V

V B

V

V V J B
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Here,  and γ  have their usual definitions (from static ideal MHD) and 

 is the equilibrium flow velocity which has both toroidal and poloidal 

components. 

, , ,pρ B J

V

 

The goal now is to formulate the stability problem by linearizing about this 

equilibrium. 

 

B. Stability 

 

For the linear stability analysis we expand all dependent variables as follows: 

 with .  Here  is the equilibrium 

solution and Q  is a small perturbation.  The ex  dependence implies that 

we are carrying out a normal mode stability analysis.  For simplicity, the zero 

subscript is hereafter suppressed on all equilibrium quantities.   

0( , ) ( ) ( )exp( )Q t Q Q i tω= + −r r r� 0Q Q� � 0Q
� p( )i tω−

 

The stability problem is formulated in terms of the perturbed displacement 

vector .  For a system with an equilibrium flow velocity the relationship 

between  and the perturbed velocity  is defined as 

ξ

ξ v�

 

 iω≡ − + ⋅ ∇ − ⋅∇v V� Vξ ξ ξ  (18) 

 

With this definition it can be shown that the perturbed density, pressure, 

magnetic field, and current density can be written as 

 

 

( )                              Mass conservation

                   Adiabatic equation of state

( )                           Faraday plus Ohm's laws

( )           

p p p

ρ ρ

γ

=−∇ ⋅

=− ⋅∇ − ∇ ⋅

= ∇× ×

= ∇×∇× ×

B B

J B

�

�

�

�

ξ

ξ ξ

ξ

ξ            Ampere's law

 (19) 

 

Note that these are the identical relations as if there were no flow.  Also, here 

and below we set  in Ampere’s law to simplify the notation. 0 1µ =
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The last remaining equation corresponds to the linearized conservation of 

momentum and is given by 

 

 
1

d
p

dt
ρ
⎛ ⎞⎟⎜ ⎟ = × + × −∇⎜ ⎟⎜ ⎟⎜⎝ ⎠

v
J B J B� � �  (20) 

 

After a short calculation the inertial term can be linearized leading to the 

following perturbed momentum equation 

 

 
( ) ( )[ ]22 2 ( )i

p

ω ρ ωρ ρ ρ− ⋅∇ + ⋅∇ ∇ ⋅ ⋅∇

= × + × −∇

V V V V

J B J B� � �

ξ − ξ ξ − ξ
 (21) 

 

This is the basic equation describing the linear stability of the plasma. 

 

Observe that the stability equation is second order in ω .  It can be easily 

rewritten as two first order equations by introducing a new dependent variable 

.  The system of equations can then be rewritten as iω= + ⋅∇u Vξ ξ

 

 
( )

i

i

ωρ ρ ρ

ωρ ρ

⋅ ∇ +

=− − ⋅∇

V u

u F V u

ξ = − ξ

ξ
 (22) 

 

where 

 

 ( ) ( )p ρ⎡ ⎤= × + × −∇ +∇⋅ ⋅∇⎣ ⎦F J B J B V V� � �ξ ξ  (23) 

 

The equations now have the same form as that of the test problem.  See Eq. (4).  

Note that this form is similar to, but not identical to, the one given by Frieman 

and Rotenberg.  The difference is that the term i  is not incorporated in 

our definition of 

ρ ⋅∇V u

( )F ξ  while it is in Frieman and Rotenberg.  Our definition is 

shown to be useful theoretically in maximizing the symmetry that arises in the 

matrix formulation of the problem. 
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C. Intermediate linear algebra equations 

 

The next step is to transform Eq. (22) into an intermediate weak-form linear 

algebra problem using the Galerkin procedure.  Here, “intermediate” refers to the 

fact that the resistive wall boundary condition has not as yet been specified.   

 

A Galerkin integral L  is formed by multiplying the first equation by , the 

second equation by , adding them together, and integrating over the plasma 

volume.  Here,  serve as the Galerkin test functions.  A short calculation 

yields 

û

ξ̂
ˆˆ and u ξ

 

 
( )
( ) ( ) ( )

ˆˆ ˆ

ˆ ˆˆ

{

}

L

i d

ωρ ρ

ρ

= ⋅ + ⋅ − ⋅

⎡ ⎤+ ⋅ ⋅∇ + ⋅ ⋅∇ + ⋅⎢ ⎥⎣ ⎦

∫ u u u u

V u u V F

ξ ξ

ξ ξ ξ rξ
 (24) 

 

Here, ( )F ξ  is the MHD force operator including the effects of flow: 

 

  (25) 
( ) ( )p

ρ

= × + × −∇ +∇ ⋅

= ⋅∇

F J B J B

K V V

� � �ξ ξK

dS

 

The MHD force term can be rewritten in several alternate forms that are 

inherently symmetric by construction, with the exception of a boundary term 

arising from several integrations by parts.  As usual, obtaining these forms 

requires a large amount of seemingly mindless algebra.  In any event two such 

forms are given below.  Each can be written as 

 

  (26) ( )ˆ
F Bd W d S⋅ =− −∫ ∫ ∫F r rξ ξ

 

The first form is a modification of the so called “intuitive form” of the MHD 

potential energy [9] which includes the contributions due to flow.  It is given by 
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2

ˆ                                             line bending

ˆ ˆ( 2 )( 2 )       magnetic compression

ˆ( )( )                                  plasma compression

1 ˆ
2

FW

B

pγ

⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥

= ⋅

+ ∇ ⋅ + ⋅ ∇ ⋅ + ⋅

+ ∇ ⋅ ∇ ⋅

+ ⋅ × +

Q Q

J Q&

ξ ξ ξ ξ

ξ ξ

ξ

κ κ

( )

ˆ                      current driven modes

ˆ ˆ( ) ( )               pressure driven modes

1 ˆ ˆ ˆ ˆ            flow driven modes
2

ˆ( )( )    BS p

⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

⎡ ⎤×⎢ ⎥⎣ ⎦
⎡ ⎤− × ⋅ ⋅ + ⋅⎢ ⎥⎣ ⎦

⎡ ⎤+ ⋅ ∇ ⋅ + + +⎢ ⎥⎣ ⎦

= ⋅ + ⋅

Q

J B

K

n B Q

& &

�

ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξξ ξξ

ξ

κ κ

                             boundary term

 (27) 

 

Here, ,  and we have assumed for simplicity that ≡Q B� /B=b B

0p p= ∇ = = =J K  on the plasma surface. 

 

The second form is considerably more compact.  It can be written as 

 

 

ˆ( )( )

ˆ ˆ    ( ) ( )

1ˆ ˆ ˆ ˆ    ( *) ( ) ( ) : *
2

ˆ( )( )

F

B

W p

p p

S p

γ= ∇⋅ ∇ ⋅

+ ⋅ ∇ − ∇⋅ ⋅ ⋅ ∇ − ∇⋅

+ ∇ ⋅ ∇ ⋅ + ∇⋅ + ∇∇

= ⋅ + ⋅

B B B B

n B Q�

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ + ξ ξ

ξ

 (28) 

 

where .  Interestingly, the flow does not explicitly appear in this 

form.  It only appears implicitly through the equilibrium quantities.  Note that 

for incompressible MHD (i.e. 

2*p p B= + /2

0∇ ⋅ ξ = ) the form simplifies even further as follows 

 

 1ˆ ˆ ˆ( ) ( ) ( ) :
2FW p= ⋅ ∇ ⋅ ⋅∇ + ∇∇B Bξ ξ ξ ξ + ξ ξ *  (29) 

 

This surprisingly compact form is valid for a general 3-D geometry including 

arbitrary toroidal and poloidal flow although one must make sure that the 

incompressibility constraint 0∇ ⋅ ξ =  is satisfied when substituting trial functions 

for .   ξ
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While Eqs. (28) and (29) are elegant theoretically, they are not very efficient 

computationally since third order “radial derivatives” on the equilibrium flux 

function are required to numerically evaluate .  In practice it makes 

computational sense to substitute the equilibrium relation  to 

eliminate one “radial derivative”. 

*p∇∇

*p∇ = ⋅∇ −B B K

 

The next step is to introduce expansions for  and uξ .  To do this it is 

necessary to choose (1) a coordinate system, (2) a set of unit projection vectors, 

(3) normalizations for the components of  and uξ , (4) a convenient form of the 

force integral , and (5) an appropriate set of basis functions.  Clearly there is 

a great deal of freedom in these choices.  However, once the choices have been 

made a large part of the problem becomes standard, although requiring extensive 

algebra.  The one non-standard feature is the resistive wall boundary condition. 

FW

 

For present purposes it suffices to outline the standard part of the analysis for 

one choice of expansion options as described in (1) –(4) above and to then focus 

on the resistive wall boundary condition.  To demonstrate the procedure we 

begin by introducing a system of flux coordinates  where , ,ψ χ φ ( ),R Zψ ψ=  is 

the equilibrium flux function satisfying , φ  is the usual toroidal angle, 

and  is an arbitrarily defined poloidal angle.  Also, following 

Goedbloed [10], we introduce a set of unit orthogonal projection vectors 

0ψ⋅ ∇ =B

( ,R Zχ χ= )

/ ,ψ ψ= ∇ ∇n   and /B=b B = ×b nτ .  The unknowns ξ  and  can thus be 

written as 

u

 

 
i i

u iu iu
ψ τ

ψ τ

ξ ξ ξ+ +

+ +

n b

u n
&

& b

ξ = τ

= τ
 (30) 

 

One common normalization [10] for the components of  and uξ  is given by 
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p
p

p
p

BX RB Y Z
RB B

uBuX RB u Y Z
RB B

τ
ψ

τ
ψ

ξξξ= =

= =

&

&

=

=
 (31) 

 

Expansions for the normalized variables are introduced by Fourier analyzing 

in χ  and φ , and assuming a set of appropriate finite element basis functions in 

.  Specifically, we assume that ψ
 

 

1 1

1 1

1 1

1

( )         ( )

( )         ( )

( )        ( )

( )         

L L
in im in im

l j l j
l l
L L

in im in im
l j l j

l l
L L

in im in im
l j l j

l l

L
in im in

l j l
l

Z e Z h e Z e Z h e

Y e Y g e Y e Y g e

X e X f e X e X f e

Z e Z h e Z e Z

φ χ φ χ

φ χ φ χ

φ χ φ

φ χ φ

ψ ψ

ψ ψ

ψ ψ

ψ

= =

= =

= =

=

′ ′= =

′ ′= =

′ ′= =

′= =

∑ ∑

∑ ∑

∑ ∑

∑
1

1 1

1 1

( )

( )         ( )

( )        ( )

L
im

j
l

L L
in im in im

l j l j
l l
L L

in im in im
l j l j

l l

h e

Y e Y g e Y e Y g e

X e X f e X e X f e

χ

φ χ φ χ

φ χ φ

ψ

ψ ψ

ψ ψ

=

= =

= =

′

′ ′= =

′ ′= =

∑

∑ ∑

∑ ∑

χ

χ

m

 (32) 

 

Here, prime denotes  and / ψ∂ ∂

 

  (33) 
1 1

L J M

l j m M= = =−
≡∑ ∑ ∑

 

 

with  a unique identifier for each combination .  The 

range of l  is 

(2 1)l M j M= + − + ,m j

( )1 2l L M J≤ ≤ = + 1 .  Also, the order of the summation 

corresponds to fixing a value for  and then summing over all m  before 

proceeding to the next .  The magnetic axis corresponds to the index .  

Consequently the first amplitude coefficients (e.g. ) and all basis functions are 

j

j 0j =

0X
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assumed to satisfy the regularity condition on axis and are therefore known.  

They are suppressed from the summation.  The first unknown coefficients (e.g. 

) correspond to the second radial point.   1X

 

In analogy with the test problem we select a set of compact basis functions 

with the following properties: 

 

  (34) 1 1 1

1 1 1

( ) ( ) ( ) 1                   1

( ) ( ) ( ) 0            1 1 

( ) ( ) ( ) 0              

j j j j j j

j j j j j j

j j j j j j

f g h j J

f g h j J

f g h j J

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ
± ± ±

− − −

= = = ≤ ≤

= = = ≤ ≤ −

= = = =

  

The number of unknowns defined by the expansion equations is equal to .  

Again in analogy with the test problem we point out that the derivative of each 

harmonic on the boundary  is an independent free constant (because the 

amplitude of each harmonic ghost element is not included in the summation).  It 

is shown shortly that the only radial derivative appearing in the boundary term 

is proportional to .  Therefore, there are an additional 2  unknowns 

denoted by .  The conclusion is that all told there are 6  

unknown coefficients to be determined. 

6L

Bψ ψ=

/X ψ∂ ∂ 1M +
( )m B mX ψ′ ≡ X ′ 2 1L M+ +

 

In accordance with the Galerkin procedure we derive a set of linear equations 

for the unknown coefficients by substituting a sequence of test functions into the 

quadratic integral given by Eq. (24).  Normalized test functions  and ˆ ˆ ˆ, ,X Y Z
ˆ ˆ ˆ, ,X Y Z  are defined by 

 

 

ˆˆˆ ˆ

ˆˆ ˆˆ

p

p

p

p

RB YX i iB
RB B

RB YX i iB
RB B

= − −

= − −

n b

u n

ξ τ

τ

Z

Z b

 (35) 

 

Again, in analogy with the test problem, we choose six sequences as follows.   
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ˆSequence 1   ( )     1

ˆSequence 2   ( )     1

ˆSequence 3   ( )     1

ˆSequence 4   ( )     1

ˆSequence 5   

in im
j

in im
j

in im
j

in im
j

in im

Z e h l L

Y e g l L

X e f l L

Z e h l L

Y e g

φ χ

φ χ

φ χ

φ χ

φ χ

ψ

ψ

ψ

ψ

′− −
′

′− −
′

′− −
′

′− −
′

′− −
′

′= ≤ ≤

′= ≤ ≤

′= ≤ ≤

′= ≤ ≤

= ( )     1

ˆSequence 6   ( )     1

j

in im
j

l L

X e f l Lφ χ

ψ

ψ′− −
′

′≤ ≤

′= ≤ ≤

 (36) 

 

In each sequence only the component of test function listed is non-zero.  The 

resulting integrals give rise to 6  linear equations.  The remaining 2  

equations are determined from the resistive wall boundary condition.   

L 1M +

 

In its present form the linear algebra problem can be written as 

 

  (37) 

( )[ ]

( )[ ]

1

2

ˆ 0

0

ˆ ( ) 0

0Y X B

L i d

L i d

ωρ ρ ρ

ω

ωρ ρ

ω

= ⋅ − + ⋅∇ =

= ⋅ − ⋅ − ⋅ =

= ⋅ + ⋅∇ + =

′ ′= ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ =

∫

∫

u u V r

x y x

u V u F r

y y x Y X X

D D U

D U W

ξ ξ

ξ ξ

S S S

 

Here,  [ , , ] and [ , , ]= =y Z Y X x Z Y X  with 1[ , LZ Z=Z … ], 1[ , ]LY Y=Y … , 

1[ , LX X=X … ] ] ]

]M′

1

1

L

, , , and .  Also,  

.  Note that  each has a length  while  has a length 

.  The combination of these three vectors represent the total number of 

the unknown amplitudes in the problem equal to 6 2 .   

1[ , LZ Z=Z … 1[ , ]LY Y=Y … 1[ , LX X=X …

[ ,B MX X−′ ′=X … ,x y 3L B′X

2M +
L M+ +

 

The matrices  have dimensions (3  and can be calculated 

in a straightforward but tedious manner by evaluating the integrals using the 

appropriate test functions.  The smaller matrices  arise from the 

surface boundary terms and (are shown to) have dimensions (2 .  

, ,  and D U W ) (3 )L ×

, , and Y X ′S S S

1) (2 1)M M+ × +
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Also, the matrices  act only on the boundary elements of  and YS XS  and X Y , 

corresponding to  where .  For purposes of 

illustration we rewrite all the matrices appearing in Eq. (37) in terms of flux 

coordinates for the case of purely toroidal flow in Appendix A.  Once these 

coordinates are introduced it is then straightforward to explicitly determine the 

matrix elements.  Hereafter, we assume that the matrix elements 

 defined above are known. 

(2 1)l M J M= + − +m

X

M m M− ≤ ≤

, , , , ,  and Y X ′D U W S S S

 

To close the system, we require  additional equations which arise from 

the resistive wall boundary condition.  This is the next task. 

2 1M +

 

D. The resistive wall boundary condition 

 

Consider now the resistive wall boundary condition.  The geometry of interest 

is illustrated in Fig. 1 and four steps are required to accomplish our goal: (1) 

solve for the fields in the vacuum regions using Green’s theorem [11,12] , (2) 

solve for the fields within the resistive wall using the thin wall approximation, 

ultimately converting this solution into a set of jump conditions to connect the 

vacuum fields across the wall, (3) combine these results and project the solutions 

back onto the plasma surface, and (4) express the projected fields in terms of the 

plasma displacement  using the plasma-vacuum jump conditions on the plasma 

surface.  The end result is an expression for the resistive wall boundary condition 

in terms of ξ , which is shown to be linear in . 

ξ

ω

 

Calculation of the boundary condition is the critical component of the 

analysis and requires a lengthy calculation.  For the sake of continuity, we simply 

state the result here and give the details in Appendix B.  Specifically, in 

Appendix B it is shown that the resistive wall boundary condition can be written 

as 

 

  (38) 0Bi i iω ω ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ′− ⋅ + − ⋅ + − ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦X Y1 2 3 4 5 6K K K K K K
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where the jK  are known (2  matrices depending only on the 

geometry of the plasma surface and the resistive wall.  The matrices 

 act only on the boundary elements as described above. 

1) (2 1)M M+ × +

, , ,1 2 3K K K K4

 

With the calculation of the jK , all of the individual contributions to the 

analysis have been evaluated.  They must now be collected and assembled into 

the final formulation.  This is the task of the final Section. 

 

IV. Summary of the formulation 

 

Following the procedure outlined in the model problem we can cast the 2-D 

axisymmetric toroidal problem into the form of a standard eigenvalue problem.  

By adding the resistive wall boundary condition to the equations describing the 

plasma interior [i.e. Eq. (37)] we arrive at a standard linear algebra problem for 

the eigenvalue ω .  The formulation can be written as 

 

 ω ⋅ = ⋅z zA B  (39) 

 

Here, the eigenvector [ , , ] [ , , , , , , ]B B′ ′= =z y x X Z Y X Z Y X X .  The matrices are 

separated into to two contributions, one arising from the plasma interior and the 

other from the boundary terms: .  These are given as 

follows. 

,  P B Pi= + = +A A A B B BB
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P B

P B

Y X

= =

= =

′

0 0 00 0

0 0 00 0

00 0 0

0 00

00

0 0 0 0

A A

3 1 5

4 2 6

D

D

K K K

D U

B B
U W

S S S

K K K

0

 (40) 

 

This is the desired formulation of the problem which should be highly convenient 

for numerical computation. 

 

We conclude by emphasizing that the critical feature that has allowed us to 

achieve our goal is the fact that  appears linearly in the resistive wall boundary 

condition in the thin wall approximation. 

ω
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Appendix A 

 

The desired relations for  and  are obtained by using the projection 

vectors and eigenfunction normalizations suggested by Goedbloed [10].  We begin 

with the density normalization matrix D  which appears in several terms.  The 

matrix elements can be determined from any of these terms, for instance 

1L 2L

 

 ˆ dω ω⋅ = ⋅∫ u rξ D x  (A1) 

 

From the definitions of  and û ξ  it immediately follows that 

 

 

2 2
2

2 2 2
ˆ ˆˆ 2

1           

p

p

p

R B
d Jd d XX YY B ZZ

R B B

J

ρρρ π ψ χ ρ

χ

⎛ ⎞⎟⎜ ⎟⎜⋅ = + ⎟⎜ ⎟⎟⎜⎝ ⎠

=
⋅∇

∫ ∫u r

B

ξ ˆ+
 (A2) 

 

Consider next the flow matrix U  which can be evaluated from the definition  

 

 ( )ˆ  = i dρ ⋅ ⋅∇ − ⋅∫ u V r xξ U  (A3) 

 

For the case of purely toroidal flow, .  A short calculation yields ( )R φψ= ΩV e

 

 

( )

τ

τ

1 2 3

1 2 2

2 2

2 2

2
3

ˆ 2 (

n bnˆ   

nˆ   n

n bˆ   n

RR

p p

R p
p Z

R
p Z

p

i d Jd d U U

BnU X X Y Z
R B B RB

nR B
U Y X Y iRB Z

B B

B
U Z X iRB Y nB Z

RB

φφ

φ

φ

ρ π ψ χρ⋅ ⋅∇ = Ω + +

⎛ ⎞⎟⎜ ⎟⎜= − − ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎟⎜ ⎟= − + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟⎜= − − + ⎟⎜ ⎟⎟⎜⎝ ⎠

∫ ∫u V rξ )U

⎞  (A4) 
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Here, 

 

  (A5) 

τ

n
n

b

R R

Z

φ φ

φ φ

= ⋅
= ⋅

= ⋅
= ⋅

n e
n e

b e
eτ

Z

 

The next relation of interest involves the  matrix, defined by   W

 

 FW d = ⋅∫ r W x  (A6) 

 

The desired relation can be written as 

 

 ( )1 2 3 4 52FW d Jd d W W W W W Wπ ψ χ= + + + +∫ ∫r 6+  (A7) 

 

After substantial algebra the jW  can be evaluated.  In the same sequence as in 

Eq. (27), the first five jW  are given by 

 

 

( )1 2 2

2
2 2 2 2 2

3 2 2 2 2

1 ˆ ˆ ˆ( * ) *

ˆ2 21 1ˆ*

ˆ ˆ ˆ* *

p p

p p p

n p n p

p p

p p

RB RBB BW F X FX X F Y X F
R B RB B RB B

B BX XW B H G Y H GY
R B B R B B

X Y X YW p H G F Z H G FZ
B B B B

τ τα α

κ κ

γ

Y
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞⎟ ⎟⎢ ⎥ ⎢⎜ ⎜= + − + −⎟ ⎟⎜ ⎜⎢ ⎥ ⎢⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢⎣ ⎦ ⎣
⎡ ⎤ ⎡
⎢ ⎥= − − − −⎢ ⎥⎢ ⎥⎣ ⎦

⎤
⎥
⎥⎥⎦

2 2

4 2 2 2 2

2 2 2 2

5 2 2

ˆ ˆ ˆ ˆ* *
2

ˆ ˆ ˆ

p p

p p
n n

p

J B BW X X FY YFX X X F Y YF
B R B R B

R B R BJ BW X X i Y X X i Y
R B B B

τ τ

τ τ

α α

κ κ
κ κ⊥

⎤
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎢ ⎥ ⎢⎟ ⎟⎜ ⎜=− + − + −⎟ ⎟⎢ ⎥ ⎢⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎢ ⎥ ⎢ ⎥⎟ ⎟=− + −⎜ ⎜⎟ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

& X̂
⎤
⎥
⎥
⎥⎦

 (A8) 

  

where 
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( )

( )

2

2
2 2

1

...

p

p

n

B
F i i

J R

RB
G i i B

J
J

H B
R R

φ

φ

φ

τ

τ

χ φ

ψ
φ χ

ψ ψ χ
ψ χ

α

κ

κ

⎛ ⎞∂ ∂ ⎟⎜=− ⋅∇ =− + ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ⎟⎜=− ×∇ ⋅∇ =− − ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∇ ∂ ∇ ⋅∇ ∂⎟⎜= ∇ ⋅ = + −⎟⎜ ⎟⎝ ⎠ ∂ ∂
= ⋅∇×

= ⋅ ⋅∇

= ⋅ ⋅∇

B

B

n b b

b b

τ τ

τ

R

2

 (A9) 

 

The flow term is more complicated and can be written in the following form 

 † †
6 1 1 2W w w w w= + + +

 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

τ

τ

1 31 32 33

2 11 12 21 22 31 32

ˆ ˆ ˆn b

ˆ ˆ ˆ

ˆ ˆ ˆn

ˆ ˆ ˆ

R R R

R

R

w i i

w i i i i i

i i

i i i

ψ τ ψ τ

ψ ψ τ τ ψ τ ψ ψ τ

ψ ψ τ ψ

ψ τ τ τ τ

ξ ξ β ξ β ξ β ξ ξ ξ ξ ξ ξ

ξ ξ β ξ β ξ ξ β ξ β ξ ξ β ξ β

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

= − + + − ⋅∇ + ⋅∇ + ⋅∇

= + − + − +

⎡ ⎤+ ⋅∇ − ⋅∇ − ⋅∇⎢ ⎥⎣ ⎦
⎡ ⎤+ ⋅∇ − ⋅∇ − ⋅∇⎢ ⎥⎣ ⎦

b b b

n b

n b

& & & &

& &

&

τ

τ

&̂ &

(A10) 

 

The geometric factors appearing are given by 

 

 

( )

τ

b
R R

R R

ij R i jβ

= ⋅

= ⋅

= ⋅∇ ⋅

e

b e

e e e

τ

 (A11) 

 

with .  Also 1 2 3, ,  and = = =e n e eτ b ( ) ( )†
1 1

ˆ ˆ, *w Z X w Z X= ,

BX

 and so on. 

 

The last relation of interest involves the boundary term defined by 

 

  (A12) B Y XS dS ′ ′= ⋅ + ⋅ + ⋅∫ Y XS S S

 

This expression can be written as 
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 2BS dS Jd Sπ χ=∫ ∫  (A13) 

 

where 

 

 
( )

22
2 2

2 2

ˆ( )

ˆ

B

B

p p
p

S X

BBX B X i nB Y
R B q

ψ

φ

ψ

ψ χ
ψ χ χ

⎡ ⎤= ⋅⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∇ ⋅∇ ∂ ∂⎟⎜ ⎟⎟⎢ ⎥⎜⎜ ⎟ ⎟⎜=− + + +⎟ ⎜⎜ ⎟ ⎟⎟⎢ ⎥⎜ ⎜⎜ ⎟⎟ ⎟⎜⎟⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

B Q

 (A14) 

 

and for purposes of demonstration we have assumed straight field line 

coordinates:  ( ) ( ) (/ q )φ χ ψ⋅∇ ⋅∇ =B B . 

 

From these relations it is straightforward to directly read off the matrix 

elements for . , , , , ,  and Y X ′D U W S S S
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Appendix B 

 

The calculation of the resistive wall boundary condition proceeds as follows. 

 

1. The vacuum fields 

 

The perturbed magnetic field in each vacuum region satisfies  and 

.  Thus for each region we can write  with V  satisfying 

.  The potential V  is actually only needed on the plasma surface and 

the wall surfaces.  It is conveniently determined by means of Green’s theorem 

which can be written as 

0∇⋅ =B
0∇× =B V=∇B

2 0V∇ =

 

 
S

G VV V G J dvα
ρ ρ

⎛ ⎞′∂ ∂ ⎟⎜ ′= − ⎟⎜ ⎟⎜ ⎟′ ′∂ ∂⎝ ⎠∑∫ dφ′ ′ ′  (B1) 

 

Here, G  is the 3-D free space Green’s function 

 

 1 1( , )
4

G
π

′ = −
′−

r r
r r

 (B2) 

 

Each surface has been parameterized in terms of an arbitrary poloidal angle v : 

.  In terms of these coordinates ( ), ( )R R v Z Z v= =

 

 ( )1/22 2
v vJ R Q R R Z′ ′′ ′ ′ ′≡ = +  (B3) 

 

where as usual primed and unprimed quantities represent the integration and 

observation coordinates respectively and the subscript v  denotes .  Also 

we introduce ρ , the distance in the outward (away from the plasma) normal 

direction off any surface by the definition .   The value of the 

parameter α  depends on the location of the observation point and is defined as 

follows 

′ / v′∂ ∂
′

/ ρ′ ′∂ ∂ ≡ ⋅∇n ′
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  (B4) 

   1       observation point within the volume

   =  1/2      observation point on the surface

   0       observation point outside the volume

α

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
 

Lastly, note that the summation includes both the plasma and inner wall surfaces 

for the inner vacuum solution but only the outer wall surface for the outer 

vacuum solution since this solution vanishes at infinity. 

 

The required solutions are obtained by applying Green’s theorem three times, 

once for the observation point on the plasma surface, once on the inner wall 

surface, and once on the outer wall surface.  This leads to the following three 

equations 

 

 

1 2

1 2

11 1 12 2
1 1 11 2 12

1 1 2 2

21 1 22 2
2 1 21 2 22

1 1 2 2

33
3 3

2 2

2 2

2

S S

S S

H V H VV V H J dv V H J

H V H VV V H J dv V H J

HV V

ρ ρ ρ ρ

ρ ρ ρ ρ

⎛ ⎞ ⎛′ ′∂ ∂ ∂ ∂⎟ ⎟⎜ ⎜′ ′ ′ ′⎟ ⎟=− − + −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜′ ′ ′ ′∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎛ ⎞ ⎛′ ′∂ ∂ ∂ ∂⎟ ⎟⎜ ⎜′ ′ ′ ′⎟ ⎟=− − + −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜′ ′ ′ ′∂ ∂ ∂ ∂⎝ ⎠ ⎝

∂′=−
′∂

∫ ∫

∫ ∫

dv

dv

⎞
′ ′

⎠

⎞
′ ′

⎠

3

3
33

3 3S

VH J dv
ρ ρ

⎛ ⎞′∂ ⎟⎜ ′ ′⎟−⎜ ⎟⎜ ⎟⎜ ′∂⎝ ⎠∫

 (B5) 

 

where for an axisymmetric system the φ  integral involves only the Green’s 

function which can be carried out analytically [13], yielding 

′

 

 
( ) ( )

( )

( )
( )

2

0

1/2
2

1/2

,

2 1 !! 1/2, 1/2; 1;
2 ! 4

in

n

n

H v v Ge d

n z F n n z
n RR

π φ φ φ′−

+

′ ′=

−=− + +
′

∫
 (B6) 

 

with 
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( )

( ) ( )

2

1/22 2

2
2 2

2 2 1

4

kz
k k

RRk
R R Z Z

=
− + −

′
=

′ ′+ + −

 (B7) 

 

Here, F  is the hypergeometric function which can be evaluated using any 

standard mathematical package (e.g. Mathematica).  For low n the integral can 

be simply expressed in terms of a few elliptic integrals.  Note also that in Eq. 

(B5) all normal vectors point radially outward. 

 

This set of equations should be viewed as three coupled integral equations.  

We assume that  is a known quantity determined from the plasma-

vacuum jump conditions.  The specific relation is derived shortly.  Thus, there 

are five unknowns in the problem: .  Two 

more relations are required to close the system and these are determined by 

matching to the solutions within the wall.  Ultimately our goal is to eliminate 

unknowns leading to a single relation between .  

1 /V ρ′∂ ∂ 1′

3′

1′

1

1 2 3 2 2 3, , , / ,  and /V V V V Vρ ρ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂

1 1 and /V V ρ′ ′∂ ∂
 

2. The fields within the wall 

 

The fields within the wall can be found using standard techniques which 

exploit the “thin” wall approximation.  Here, we assume the wall is axisymmetric 

with a thickness d  and a characteristic minor radius b .  The thin wall 

approximation assumes that .  For resistive wall modes the 

appropriate ordering for the various quantities is as follows 

/d bδ ≡ �
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/
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δ
χ φ ρ

ω µ σ

ρ χ φ χ φ ρ χ φ

δ

∂ ∂ ∂
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⋅ ≡ ≈ +n B
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∼

� � �

� ∼

 (B8) 
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where the range of , the normal distance measured from the inside of the wall, 

is 0 . 

ρ
dρ≤ ≤

 

In the thin wall analysis we only need the equation for the normal component 

of perturbed magnetic field within the resistive wall.  Under the assumption of 

small δ  this equation reduces to 

 

 
2

02

B iωµ σ
ρ

∂ ≈−
∂

�
B  (B9) 

 

The solution, based on the usual “constant ψ ” analysis, is given by 

 

 ( ) ( ) 20, , , 1
2

B B iρ
ωµ σρ χ φ χ φ ρ⎛ ⎟⎜≈ − ⎟⎜ ⎟⎝

� ⎞
⎠  (B10) 

 

From this solution it follows that the jumps in B  and the normal derivative 

of B  across the resistive wall are given by 
ρ
�

ρ
�
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00
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/

d

d

B

B i

ρ

ρ ρ ωµ σ

≈

∂ ∂ ≈ −

�c fd ge h

�c fd ge h dB

=

0

d
−

fgh

 (B11) 

 

Next, since no ideal surface currents flow on the inner and outer surfaces of 

the wall (i.e. at  respectively) the jump conditions given by Eq. 

(B11) translate into an equivalent set of jump conditions on the vacuum fields.  

Specifically, on each wall surface we have 

0 and dρ ρ=

 

  (B12) 

0 0

0
0             / 0

0             / 0
d

d d

B B

B B

ρ ρ

ρ ρ

ρ

ρ

+ +

−

+ +

− −

= ∂ ∂ =

= ∂ ∂ =

� �c f c fd g d ge h e h

� �c f c fd g d ge h e h

 

Combining Eqs. (B11) and (B12) enables us to write the  conditions as  Bρ
�cde
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3 2

V V
ρ ρ
′ ′∂ ∂=
′∂ ∂

2

′

2ρ′

 (B13) 

 

This relation is in the desired form since  are two of the 

basic unknowns appearing in the coupled integral equations. 
3 3 2/  and /V Vρ′ ′ ′∂ ∂ ∂ ∂

 

The second relation is more complicated.   

 

 
2 2

3 2
02 2

3 2

V V i dωµ σ
ρ ρ

′ ′∂ ∂ ∂= −
′ ′∂ ∂ ∂

2

2

V
ρ
′
′

2′

 (B14) 

 

The difficulty is that the condition is expressed in terms of  whereas 

the basic unknowns in the problem involve V .  A simple relation can be 

obtained between  and V  by making use of the fact that  and 

defining an angle 

2 /V ρ′∂ ∂
′

2 2/V ρ∂ ∂ 2 0V∇ =
( )vχ χ=  to correspond to a normalized arc length-like variable.  

Specifically we define 

 

 

0

01
2

R Qd dv
R b

Rb Q
R

χ

π

=

= dv∫v
 (B15) 

 

After a slightly lengthy calculation, Laplace’s equation can be evaluated on 

both wall surfaces in terms of the arc length variable leading to the following 

jump condition relation 

 

 
2 2 2 2

2 2 2 2 2
0 0

1R V n VV
R R bρ χ

∂ = −
∂ ∂

c fc f dd g dd g d gd ge h e h
∂ gg  (B16) 

 

This equation can be easily solved by means of Fourier analysis.  We expand 
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where .  The Fourier coefficients 2, 3j = ( ) ( ),j j
m mV V′

��
′  are related to each other 

through Eq. (B16). 
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The final desired relations are obtained by Fourier expanding the normal 

derivative  
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and substituting into the jump conditions given by Eq. (B13) and (B14).  This 

yields 
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ωτ

′ ′

′ ′
′

=

= −

� �

� 2
m ′

1′

 (B20) 

  

where is the characteristic resistive wall diffusion time. 0w bdτ µ σ=

 

These two relations, combined with the three integral relations given by Eq. 

(B5) represent a closed set of five equations that ultimately enables us to express 

 in terms of .  This is the next step in the procedure. 1V ′ 1 /V ρ′∂ ∂
 

3. Solving the set of linear equations 
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The relation between  and  can be found by a relatively 

straightforward but somewhat lengthy linear algebra analysis.  The first step is to 

substitute Eq. (B20) into the third integral relation given in Eq. (B5).  This leads 

to an explicit relationship between the Fourier amplitudes 

1V ′ 1 /V ρ′∂ ∂ 1′

( )2
mV  and  which 

can be written as  

( )2
mV�

 

 ( ) ( ) ( ) ( ) ( )22 2 22 22 2
wiωτ⎡ ⎤⎡ ⎤+ ⋅ = + ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦V� �I H H M V�  (B21) 

 

where the matrix elements are given by 
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 (B22) 

 

Note also that on the wall surface we no longer have to distinguish between  

and  or  and  because of the thin wall approximation. 
3ρ′

2ρ′ 33H 22H

 

The second step focuses on the plasma surface.  We choose the angle v  on  

to coincide with the poloidal angle χ  defined within the plasma; that is, on  

we set v .  Next, the unknowns on  are Fourier expanded as follows 

1S

1S

χ= 1S
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and then substituted into the first two integral relations given in Eq. (B5).  This 

leads to a set of two matrix equations coupling the unknown Fourier coefficients 

 ( ) ( ) ( ) ( )1 1 2 2, , ,m m m mV V V V′ ′ ′
� �

′
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Here, the undefined matrix elements are given by 
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 (B25) 

 

The last step in the procedure is to eliminate the matrix elements ( )2
mV ′  and 

 from Eq. (B24) by making use of Eq. (B21).  The key point to keep in mind 

is that this elimination must be accomplished without ever having to calculate a 

matrix inverse that includes the eigenvalue .  This is the crucial step in the 

analysis. Several sub-steps are required. We begin by eliminating 

( )2
mV ′
�

ω
( )2V  in terms of 

 in Eq. (B24) by means of Eq. (B21). ( )2V�
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where 
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The next sub-step is to eliminate the  terms in Eq. (B26) by left 

multiplying the first equation by 

wiωτ
( ) 12 −⎡ ⎤⎢ ⎥⎣ ⎦S , the second equation by , and 

adding.  The resulting equation can then be explicitly solved for  by left 

multiplying by 
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In the final sub-step we left multiply the first equation in Eq. (B26) by , 

the second equation by , and add.  Substituting for  then yields the 

desired boundary relation for the vacuum fields on the plasma surface 
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Here, 
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Admittedly a large amount of linear algebra has been required including the 

evaluation of a number of matrix inverses.  However, the linear algebra is 

straightforward computationally and the matrices are not very large since we are 

only evaluating elements on a surface rather than in a volume.  Furthermore, 

each matrix depends only on the geometry of the wall and the plasma surface.  

Thus, once the geometry is set there is no need to re-compute the matrices as the 

plasma parameters change. 

 

The analysis requires one more step for completion, relating the vacuum fields 

on the plasma surface ( ) ( )1 1 and V �V  to the plasma displacement ξ . 

 

4. Relating the vacuum fields to the plasma displacement 

 

Recall that our ultimate goal is to derive an expression for the resistive wall 

boundary condition in terms of ξ  and its normal derivative.  This final relation 

should have only constant and linear terms in .   ω

 

The derivation of the desired relation begins by noting that the normal and 

tangential components of magnetic field on the vacuum side of the plasma-

vacuum interface can be conveniently related to the following two plasma 

quantities:  
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As in Appendix A the expression for the perturbed parallel magnetic field can be 

rewritten in terms of flux coordinates as follows 
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where, as before, we have assumed straight field line coordinates:  

( ) ( ) (/ q )φ χ ψ⋅∇ ⋅∇ =B B . 

 

To determine the desired relations we use the following jump conditions 

across the plasma-vacuum interface. 
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 (B33) 

 

The next step is to carry out Fourier analysis.  A straightforward calculation 

shows that the first jump condition can be written as 
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Here, k  is a diagonal matrix with dimensions (2  that operates 

only on the surface elements of X  corresponding to  with 

.  The second jump condition is slightly more complicated and is 

given by 
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As above, each of these matrices has dimensions (2 . 1) (2 1)M M+ × +

 

In the last step we use Eqs. (B34) and (B35) to form the combination of 

quantities given in Eq. (B29).  This yields 
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Equation (B37) is the desired expression for the resistive wall boundary 

condition.  It consists of the 2  coupled linear algebraic equations required 

for closure of the overall MHD stability analysis and is the analog of Eq. (3) for 

the model problem.  Note the linear dependence on . 

1M +

ω
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Figure Captions 

 

Fig. 1 Resistive wall geometry 
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