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Effects of energy loss on interaction dynamics of energetic electrons with plasmas 
 
 

C. K. Li  and R. D. Petrasso 
 

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 
 

    An analytic model is developed for energetic electrons interacting with plasmas. This model rigorously 
treats the effects of energy loss upon the Coulomb interactions and reveals several new and important 
features never before unrealized, including the inextricable coupling of scattering and energy loss which 
previous calculations erroneously treated as independent. The unique transparency and generality of 
these calculations allows for straightforward applications in the cases of partial and even total energy loss 
of energetic electrons: for example, the quantitative evaluation of energy deposition of the energetic 
electrons in various plasmas, including inertial confinement fusion plasmas.  
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     The interaction of energetic electrons with plasmas is a 
fundamental problem with important implications for both 
basic physics and practical applications [1-6]. Such an 
interaction involves electron energy loss and scattering, 
leading to electron energy deposition and trajectory 
bending in the plasmas. In the context of a single electron 
interacting with plasmas, for example, such scatterings 
stochastically cause electron spatial distributions, 
consequently resulting in modifications of the detailed 
energy deposition structure [7-9].  
     In addressing electron scattering in plasmas, the 
conventional assumption has been that energetic electrons 
scatter off plasma ions while losing their kinetic energy to 
the plasma electrons.  Because of the significant mass 
difference between electrons and background ions, the 
energy loss to the ions has been neglected. In addition, the 
two physics processes (i.e. energy loss and scattering) 
have been treated independently and subsequently 
combined in a simple way.  For example, the mean-square 
of the deflection angle has been calculated simply by 
averaging over the solid angle 
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where Nc = is the number of the collisions (which is a 
function of the electron energy loss and can be 
independently evaluated) [10]. The treatment of the 
scattering is exclusively manifested by the integral 
∫θ2(dσ/dΩ)dΩ. It has been demonstrated that this approach 
is justified and is accurate for energetic electrons 
interacting with thin solid foil [11] since an electron 
suffers only a relatively small number of collisions (~102-
103), and the energy loss of each individual collision is 
very small compared to its total kinetic energy due to the 
nature of small-angle dominant Coulomb interactions. 
Because of this, the energy-dependence in the 

scattering cross sections can be essentially overlooked. The 
same is true for high Z plasmas because e-ion scattering so 
dominates (∝ Z2, and Z > 1 for any metal foils) over e-e 
scattering [7-9]. 

 However, such a “thin” approximation is unjustified 
and inaccurate when it is applied in the case where (for 
example, during plasma heating) an electron loses a 
significant amount or all of its energy and suffers a very 
large number (over ~106 collisions), or when an electron 
interacts with hydrogenic sittings (Z=1, for which the e-e 
scattering could be comparable with the e-ion scattering). 
An example of this is elucidated by Fig. 1 where e-ion 
(Rutherford) and e-e (Møller) scattering cross sections are 
plotted as a function of the energy loss [ΔE=(E0-E) /E0] for 
1-MeV electrons in hydrogenic sittings. When ΔE changes 
from beginning to end (0 → 100% of the energy loss), 
these cross sections increase over 4 order of magnitudes, 
indicating that the effects of energy loss on scattering can 
not be ignored, and that a rigorous approach to the 
inextricable coupling of the energy loss to scattering is 
necessary.     
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FIG. 1.  The normalized Rutherford cross section (e-ion scattering) 
and Møller cross section (e-e scattering) are plotted as a function of 
the fraction of the energy loss for 1-MeV electrons. Both cross 
sections show the significant increase in scattering as an electron 
loses energy. 
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    In this paper, we explain the importance of the effects 
of energy loss upon scattering in the interaction regime 
described above based on a unified approach derived from 
fundamental principles [7-9]. This model naturally links 
the inextricable coupling of scattering and energy loss, and 
will reveal several of its new and important effects. 
       In accordance with our approach [7-9], an integro-
differential diffusion equation is solved to rigorously 
determine the angular and spatial distributions of the 
scattered electrons: 

 
∂f
∂s

+ v ⋅∇f = ni f x, ′v ,s( )− f x,v,s( )⎡⎣ ⎤⎦∫  σ v − ′v( )d ′v ,  (2)           (2) 

where f(x, v, s) is the electron distribution function;  ni the 
number density of fully ionized, uniform time invariant 
background plasma ions of charge Z, x the position where 
scattering occurs; σ = σei+Zσee the total scattering cross 
section with σei the Rutherford e-ion cross section [12], 
and σee the Møller e-e cross section [13].  The equation is 
solved in cylindrical coordinates with the assumption that 
the scattering is azimuthally symmetric. Specifically, the 
angular distribution is [7-9] 
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where )(cosθlP  is the Legendre polynomial. In this 
solution, the energy loss is manifested by the plasma 
stopping power [14,15]  
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where β = v/c and γ = (1-β2)-1/2, r0 = e2/m0c2
 is the 

classical electron radius, λC =h /m0c is electron Compton 
wavelength, and λD = (kT/4πnee)1/2 is Debye length. Note 
that Eq. (4) is valid when  β >>α (=1/137), however, its 
classical counterpart would be accurate enough when β < 
α, such as in the case of low-energy electron preheating 
inertial confinement fusion (ICF) targets. While the 
effects of scattering are characterized by the “macro” 
transport cross sections 
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The dominant terms are ℓ=1  
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which is related to the slowing-down cross section and 
characterizes the loss of directed velocity (momentum) in 
the scattering [4]; and  ℓ=2  
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which is related to the deflection cross section and 
represents the mean-square increment in the transverse 
electron velocity during the scattering process [4]. It 
should be noted that such simple analytic versions of 
transport coefficients [Eqs. (6) and (7)] are only valid for  
γ ≤ 10 [7-9], because in order to have a small angle-
dominant, Rutherford-like Møller cross section, several 
approximations have been made. Equation (8) gives the 
ratio of such a simplified Møller cross section [7-9] to 
Rutherford cross section 
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This ratio is plotted in Fig. 2 for hydrogenic plasmas 
(Z=1), (dσ/dΩ)ee is slightly larger (~20%) (dσ/dΩ)ei for γ 
< 7 (consistent with Fig. 1), while significantly smaller for 
γ > 10. Figure 2 also shows that for a non-relativistic case 
(γ = 1), one has (dσ/dΩ)ee ≡ (dσ/dΩ)ei [12]. This clearly 
indicates that directly applying a non-relativistic result to 
the cases of relativistic electron-plasmas interactions, such 
as fast-ignition ICF [17], results in significant inaccuracy. 
       The inextricable mutual couplings between energy 
loss and scatterings are explicitly reflected by the 
integrands [Eq. (3)] 
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The integration is a function of electron residual energy 
(E).  Because there is no restriction on electron energy 
loss, Eq. (8) is valid in the case of an arbitrary amount of 
even total energy loss. As shown in Fig. 3, the angular 
distribution converges rapidly to large angles, and its 
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FIG. 2. The ratio of e-e scattering cross section to e-ion scattering 
cross section is plotted as a function of the γ. 
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FIG. 3.  The normalized angular distribution is plotted for two 
cases: energy loss ΔE ~50% and ΔE ~90%. 
 
shape is strongly dependent on the energy loss. 
Specifically, when energy loss is ~ 90%, for example, the 
resulting angular distribution is characterized by a 
distribution with small-angle multiple scatterings plus 
large-angle single scatterings on the tail. In contrast, 
however, for energy loss ≤ 50%, the distribution is 
dominated by the small-angle scatterings. 

We will see how the “thin” approximation has the 
result of decoupling the effects of energy loss and 
scattering, as discussed in Eq. (9) 
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Where t is the thickness of the plasma and when it is 
“thin”, we find that ( )∫∫
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(The linkage of energy loss to scattering is implied by the 
relationship between the distance an electron transverses 
and energy loss, since the father an electron transverses, 
the more energy it loses and the more scatterings it 
suffers.) The approximation in Eq. (10) makes sense when 
ΔE is very small such that dσ/dΩ in Eq. (5) can be treated 
as independent of the energy, which in turn results in an 
energy-independent scattering parameter κℓ  which factors 
out the integration in Eq. (9), indicating that scattering and 
energy loss have been treated separately. This 
approximation, as discussed above and shown by Fig. 1, is 
of course unjustified in the case of total or even 
significant energy loss of energetic electrons in the 
plasmas which this paper is focused on.                            
      To further illustrate the effects of energy loss on 
scattering, we calculate the mean-square deflection angle 
<θ 2> from Eq. (9). For the sake of simplicity, a small-
angle scattering Fokker-Planck approximation is used by 
expanding the Legendre polynomial to the power of θ2 
and keeping only the first two terms [16], i.e. 
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The 〉〈 2θ  is now ready to evaluate based on the dominant 
contributions from ℓ=1 and ℓ=2 
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Figure 4 compares the 〉〈 2θ calculated from Eq. (12) and 
Eq. (1). As shown, a significant difference occurs when 
the electrons have lost more energy. 
     Another important result from this unified model is 
that the phenomenological ad hoc cutoffs (required to 
prevent mathematical divergence due to two-body 
Coulomb interactions) has been effectively removed 
because of the inclusion of energy loss in the electron 
scatterings. In practical applications the choosing of a 
suitable model for plasma screening and performing this 
phenomenological cutoff is a non-trivial undertaking. The 
ad hoc cutoffs directly reflect the approximations made in 
the theoretical formulation. Depending on the different 
plasma densities and temperatures, for example, bmax is 
usually determined by either Debye length, or Thomas-
Fermi screening length (λTF = 0.885a0/ Z1/3) or mean inter-
particle distance (λ = λInt = n -1/3).  The Debye length from 
an exponential screened Coulomb potential [10],  
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FIG. 4.  Mean-square deflection angle 〉〈 2θ  calculated from the 
unified approach which has taken into account the effect of energy 
loss on electron scattering (solid line), and compared with the 
conventional “thin” approximation (dashed line). 
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describes the shielding distance at which the potential 
falls to its e-folding from its maximum. The Thomas-
Fermi screening length, (a resulted derived originally 
from nuclear screening, with corrections for the effects of 
plasma temperature and density) is a reasonable 
approximation for ideal gas. Its accuracy requires that 
each Debye sphere has one single ion (for reference, in 
relation to the typical plasma discussed here, ρ =300g/cm3 
and Te = 5 keV, with one Debye sphere having about 72 
ions). Also, the mean inter-particle distance is an 
approximation for dense plasmas when the Debye length 
is even smaller than the mean inter-particle distance. 
      However, such a model constraint is largely relaxed 
due to the effective cancellation embedded in Eq. (8). For 
example, the electron deflection is a function of product 
of energy loss (dE/ds) with scatterings (κ1),  
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The effective cancellation of the Coulomb logarithms in 
the numerator and denominator of Eq. (15) significantly 
reduces the sensitivity of the selection of plasma 
screening models. The physics behind such a cancellation 
can be understood as the deflection occurring 
simultaneously with the slowing down and scattering-off 
in the encountering plasma mediums. The result is 
illustrated in Fig. 5, where the normalized transport cross 
sections [κ1(E)(4πni)-1(r0

2/γβ2)-2] are plotted as a function 
of the energy loss [Fig. 5(a)], and differences exist for 
different models. As shown in Fig. 5(b) where 
κ1(E)(dE/ds)-1 is plotted as a function of energy loss, 
negligible differences will still render the effects of 
different models on the choice of  bmax insignificant.  
     In summary, we have used an analytical model to 
delineate the effects of energy loss on the interactions of 
energetic electrons with plasmas. Our model rigorously 
examines the effects of energy loss upon the Coulomb 
interactions and reveals several new and important aspects 
never before realized, including the inextricable coupling 
of scattering and energy loss which previous calculations 
erroneously treated as independent of each other. The 
unique transparency and generality of these calculations 
allows for straightforward applications in the cases of 
partial to even total energy loss of energetic electrons: for 
example, the quantitative evaluation of the energy 
deposition of energetic electrons in various plasmas, 
including inertial confinement fusion plasmas. 

This work was supported in part by U.S. Department of 
Energy Contract #DE-FG03-99SF21782, LLE subcontract 
#PO410025G, LLNL subcontract #B313975, and the 
Fusion Science Center at the University of Rochester.  
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FIG. 5. Using different screening models (Debye, Thomas-Fermi, 
and inter-particle distance), the normalized κ1 are plotted as a 
function of the electron energy in DT plasma (ρ = 300g/cm3 and Te 
= 5 keV) (a). As is shown, the difference indicates that the 
importance of properly choosing the screening parameters if the 
elastic scatterings are treated independently. However, as is seen in 
(b), these differences are dramatically reduced when we take the 
approach that energy loss and scattering coupled.  
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