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Massachusetts Institute of Technology
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Abstract

A family of exact solutions to the Grad-Shafranov equation, simi-

lar to those described by Atanasiu et al. [C. V. Atanasiu, S. Günter,

K. Lackner, I. G. Miron, Phys. Plasmas 11 3510 (2004)], is presented.

The solution allows for finite plasma aspect ratio, elongation and tri-

angularity, while only requiring the evaluation of a small number of

well-known hypergeometric functions. Plasma current, pressure and

pressure gradients are set to zero at the plasma edge. Realistic equi-

libria for standard and spherical tokamaks are presented.
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I Introduction

In this work we derive a set of analytic equilibria satisfying the

Grad-Shafranov (GS) equation [1]-[3] which are applicable to the toka-

mak configuration. The equilibria include the effects of finite aspect

ratio, finite beta, and a noncircular cross section. They are also char-

acterized by zero current and zero pressure gradient at the plasma

surface, thereby making them more experimentally relevant than the

well known Solovev equilibrium [4]. Recall that Solovev’s equilibrium

is characterized by finite jumps of pressure gradient and plasma current

at the plasma surface.

The solutions are mathematically similar to those presented by

Atanasiu et al. [5]. However, the philosophy is quite different. Atanasiu

et al. construct equilibria by summing over an infinite set of separable

solutions in the cylindrical variables (R,Z). The expansion coefficients

in their sum are determined by requiring that the boundary condition

Ψ = const. be satisfied on a pre-specified plasma shape. This is a

useful approach when trying to compare with experimental data.

In our approach we use just three terms in the infinite set of separa-

ble solutions. Thus, while we cannot specify a precise plasma shape, we

do have the freedom to specify certain macroscopic properties related

to the cross section, in particular the major and minor radii, the elonga-

tion, and the triangularity. The solutions therefore are mathematically

simple and because they are analytic they (1) serve as good bench-

marks for testing numerical magnetohydrodynamics (MHD) equilib-

rium codes and (2) provide a good model to test for stability without

having to worry about accuracy and resolution issues arising from nu-

merically computed equilibria. In fact, we have benchmarked our ana-

lytic solution against the equilibrium code FLOW [6] for several cases,
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including highly-shaped, tight aspect ratio equilibria, with excellent

agreement between the two.

To summarize, the main contribution of the paper is the derivation

of simple, analytic tokamak equilibria with realistic edge conditions

that can be easily evaluated using any of the standard computational

packages such as Mathematica.

The paper is organized as follows. In Section II we derive the gen-

eral analytic solutions to the Grad-Shafranov equation using our spe-

cific choices for the free functions. Section III describes the strategy

used to determine the finite number of unknown expansion coefficients

in the three term solution. We also compare our approach with that

of Atanasiu et al. In Section IV we apply the results to several experi-

ments of interest, specifically the National Spherical Torus Experiment

(NSTX) [7], ITER [8] and ARIES-ST (Spherical Torus) [9]. Lastly, in

Section V we carry out an exploration of the equilibrium parameter

space with the goal of deriving some simple empirical relations that

define where in this parameter space the interesting equilibria exist.

II The general equilibrium solution

Tokamak equilibria are described by the well known Grad-Shafranov

equation [1]-[3] given by

∆∗Ψ = −µ0R
2 dp

dΨ
− 1

2
dF 2

dΨ
, (1)

where ∆∗Ψ ≡ R2∇ · (∇Ψ/R2
)

and the magnetic field is related to the

poloidal flux Ψ by:

Bϕ =
F (Ψ)

R
, (2)

Bp =
∇Ψ× eϕ

R
. (3)
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We choose the free functions p(Ψ) and F (Ψ) to be quadratic in Ψ

as also suggested by Atanasiu et al. Specifically we set

p = paxis

(
Ψ2/Ψ2

axis

)

F 2 = R2
0B

2
0

[
1 + baxis

(
Ψ2/Ψ2

axis

)]
.

(4)

Here Ψaxis, paxis and baxis are constants related to the values of Ψ, p

and F on axis and R0 and B0 are the major radius and vacuum toroidal

field at the geometric center of the plasma. Note that for a vacuum

toroidal field baxis = 0 and Bϕ = B0(R0/R). With plasma pressure

the toroidal field is given by Bϕ = B0(R0/R)(1 + baxisΨ2/Ψ2
axis)

1/2.

On the magnetic axis R = Raxis, Ψ = Ψaxis, giving Bϕ = Baxis(1 +

baxis)1/2. Here Baxis = B0(R0/Raxis) is the vacuum field at R =

Raxis. We see that baxis is a measure of the plasma diamagnetism (if

baxis < 0) or paramagnetism (if baxis > 0).

The Grad-Shafranov equation reduces to

∆∗Ψ = −R2
0B

2
0

Ψ2
axis

(
baxis + βaxis

R2

R2
0

)
Ψ, (5)

where βaxis = 2µ0paxis/B2
0 . The choice of free functions given above

has the advantage of making the Grad-Shafranov equation a linear

partial differential equation.

The next step is to introduce normalized variables: Ψ = Ψaxisψ,

R2 = R2
0x, and Z = ay, with a being the minor radius of the plasma.

Equation (5) can then be rewritten as

4ε2x
∂2Ψ
∂x2

+
∂2Ψ
∂y2

+ (αx + γ)Ψ = 0, (6)

where ε = a/R0 and

γ =
(

aR0B0

Ψaxis

)2

baxis

α =
(

aR0B0

Ψaxis

)2

βaxis.

(7)
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The solution to Eq. (6) is found by separation of variables:

ψ =
∑
m

Xm(ρ)Ym(y), (8)

where x = −i(ε/
√

α)ρ. The Ym equation and its solution for an up-

down symmetric configuration is given by:

d2Ym

dy2
+ k2

mYm = 0

Ym(y) = cos(kmy).
(9)

Here, km is the mth separation constant, which can be real or imaginary

and is as yet undetermined. In the non-symmetric case, Ym(y) =

cm cos(kmy) + dm sin(kmy). Some more details on the non-symmetric

case are given later.

The Xm(ρ) equation reduces to:

d2Xm

dρ2
+

[
−1

4
+

λm

ρ

]
Xm = 0, (10)

with

λm = −i
γ − k2

m

4ε
√

α
. (11)

The solutions for Xm(ρ) of Eq. (10) are Whittaker functions [10], whose

mathematical properties are well known and which can be easily eval-

uated numerically using, for instance, Mathematica:

Xm(ρ) = amWλm,µ(ρ) + bmMλm,µ(ρ). (12)

The am and bm are unknown expansion coefficients and for our model

the Whittaker parameter µ = 1/2.

The mathematical properties of the solution are slightly subtle,

since both ρ and λm are purely imaginary quantities, while Xm must

be purely real. The subtleties can be resolved by setting ρ = iz, λm =
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iΛm and noting the following properties of the Whittaker functions for

µ = 1/2:

Mλm,1/2(ρ) = ρM(λmρ, λ2
m) = izM(−Λz,−Λ2

m) (13a)

Wλm,1/2(ρ) = ρln(ρ)M(λmρ, λ2
m) + λmW (λmρ, λ2

m)

= iz(lnz + i
π

2
)M(−Λmz,−Λ2

m) + iΛmW (−Λmz,−Λ2
m),

(13b)

where M and W are real functions for real arguments. The appearance

of the iπ/2 term in Wλm,1/2(ρ) implies that the expansion coefficients

must in general be complex if Xm is to be real. This difficulty can be

avoided by observing that iπ/2 multiplies Mλm,1/2(ρ) and can there-

fore be incorporated in the am coefficient. The end result is that the

solution for Xm can be rewritten as:

Xm(ρ) = Im
[
amWλm,1/2(ρ) + bmMλm,1/2(ρ)

]
, (14)

with am, bm and Xm being purely real. Hereafter, the “Im” notation

is suppressed for convenience, but we must keep in mind that we only

require the imaginary parts of the Whittaker functions when evaluating

them numerically.

Equation (8) represents the general mathematical solution to the

Grad-Shafranov equation in R, Z coordinates. For a boundary con-

dition we require that ψ = 0 on the plasma surface. Note that the

boundary condition implies that p, ∇p and Jϕ vanish on the plasma

surface.

Atanasiu et al. arrive at a similar solution, but slightly more gen-

eral, since they allow for linear terms in the definitions in Eq. (4),

which produce jumps in Jϕ and ∇p on the surface. Their approach

to determine equilibria is to specify a desired shape for the plasma
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surface and to then choose the infinite set of am, bm, and km to match

the boundary condition. Note that there is no guarantee that such

an expansion will always converge since the coordinates (R,Z) used in

the separation of variable solutions are in general not natural to the

shape of the surface. An analogy is to try and solve ∇2ψ = 0 on a 2-D

circular cylinder, not by using the natural polar coordinates (r, θ), but

instead using the sinusoidal and exponential solutions associated with

the rectangular coordinates (x, y). Sometimes this works, most other

times it doesn’t.

The convergence difficulty appears mathematically in the Atanasiu

et al. solution as follows. For a general plasma shape there is no natural

or obvious way to choose the separation constants km. Some cleverness

and intuition are required to select appropriate values. In spite of

this potential difficulty Atanasiu et al. do find interesting regimes of

parameter space describing realistic plasma equilibria by using a large

number of values for km (mMAX ∼ 30).

Our approach is different. We attempt to find interesting solutions

by keeping only a small, finite number of terms in the infinite series.

The minimum number is found empirically to be three terms. The free

constants (of which there are now a finite number) are chosen to sat-

isfy certain macroscopic constraints, such as aspect ratio, elongation,

triangularity, etc. The actual shape of the plasma is found by simply

plotting the resulting curve ψ(R,Z) = 0. This approach also faces the

convergence difficulty described above. Over certain ranges of param-

eters the plasma shape satisfies the specified geometric constraints at

the corresponding finite number of locations but its overall shape is

quite distorted from what one would like. An example of this problem

is given shortly. In any event we have been able to identify regions of
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parameter space that are of experimental interest including the effects

of both high β and tight aspect ratio.

We now describe in more detail how to calculate the coefficients in

the three term solution.

III Solution strategy

The solution given by Eq. (8) is a correct mathematical solution

of the GS equation for any value of the separation constant, and of

the parameters α and γ. However, in order to obtain a solution with

magnetic geometry appropriate to a specific problem, a special choice

is required for the parameters and separation constant(s). The focus

of the remainder of this work is on tokamak-relevant solutions. Even

though the exact plasma shape cannot be assigned in our solution, we

show in the following that good approximations to realistic tokamak

shapes can be obtained. In general, we will define to be “good” equi-

libria where the difference between the input shape and the boundary

shape is small enough. More precisely, in a “good” equilibrium the

error defined later in Eq. (24) will be . 1%; moreover, we also require

the equilibrium to have only one maximum of ψ inside the boundary.

Clearly, the “goodness” of an equilibrium depends on the input plasma

shape: equilibria which are good for some applications may be bad for

others, and vice versa.

The first step in the solution procedure is to specify the inputs to

the problem. The primary inputs are the inverse aspect ratio ε, the

elongation κ, the triangularity δ, and the parameters α and γ. The first

three are geometric parameters with their usual meaning as illustrated

in Fig. 1. The parameters α and γ also have physical meanings, with
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Figure 1: Definition of the dimensionless geometric parameters.

α ∼ βp, where βp is the poloidal beta, and γ ∼ 2(q/ε)2 (δBϕ/Bϕ)

is the normalized diamagnetism. These connections to the physical

quantities of interest make it possible to choose reasonable values for

α and γ.

The secondary input parameters of interest are the major radius

R0, the vacuum toroidal field B0, and the toroidal current I. The

quantities B0 and R0 are scaling parameters and thus can be chosen

freely. The current I can also be chosen freely by adjusting the value of

Ψaxis, which is a free parameter. Alternatively, rather than specifying
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I one can give a single value of the safety factor, for instance qaxis,

qedge, or q∗ = 2πa2κB0/(µ0R0I). This can again be accomplished by

adjusting the value of Ψaxis, since in general the safety factor scales as

q ∼ (B0R
2
0/Ψaxis)g(α, γ, ε, κ, δ). In the present work we assume that

R0, B0 and either I or qaxis are specified when needed.

Next, we write down ψ maintaining three terms in the summation:

ψ(ρ, y) =
3∑
1

[
amWλm,1/2(ρ) + bmMλm,1/2(ρ)

]
cos(kmy). (15)

Observe that there are six unknown expansion coefficients (i.e. the

am, bm) and three unknown separation constants (i.e. the km). The

coefficients are determined as follows.

Two conditions follow from fixing the inner and outer midplane

surface points at the desired locations:

Ψ(R0 + a, 0) = 0 (16a)

Ψ(R0 − a, 0) = 0. (16b)

Two conditions are needed to define the point of maximum surface

elongation:

Ψ(R0 − δa, κa) = 0 (17a)

ΨR(R0 − δa, κa) = 0. (17b)

Our empirical experience shows that it helps substantially to make

sure that the surface has the right convexity on the inboard midplane.

A simple way to do this is to consider a traditional analytical repre-

sentation of the plasma surface:

R = R0 + a cos
[
θ + δ̂ sin(θ)

]

Z = κa sin(θ),
(18)
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where

δ̂ = sin−1(δ). (19)

Evaluating and equating the inboard midplane curvature vector eR/Rc

for our solution to the traditional analytic solution leads to the follow-

ing condition:

1
Rc

≡ ΨZZ(R0 − a, 0)
ΨR(R0 − a, 0)

= − (1− δ̂)2

κ2a
. (20)

The last condition corresponds to the normalization requirement that

ψ = Ψ/Ψaxis = 1 on the magnetic axis. This actually translates into

two coupled conditions, one defining the location of the magnetic axis

(i.e. Raxis) and the other the normalization:

ΨR(Raxis, 0) = 0, (21a)

Ψ(Raxis, 0) = Ψaxis. (21b)

Equations (16), (17), (20) and (21) represent seven equations for seven

unknowns (i.e. the six unknown expansion coefficients plus Raxis).

Consider next the separation constants. These are chosen by a com-

bination of empirical experience and general considerations. First, we

observe that the simplest possible solution for Eq. (1) does not depend

on Z. By setting k1 = 0 we obtain λ1 = −iγ/(4ε
√

α). No universal

“good” choices for the other two constant have been identified. Several

different strategies have been considered and tested over a large num-

ber of equilibria. Our empirical experience has lead us to the following

approach for determining the remaining separation constants:

k2 = ik̂2 (22a)

k3 =
π

κ
k̂3, (22b)
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with k̂2, k̂3 real and of order unity. This choice corresponds to having

one of the Ym(y) purely growing (for m = 2) and one oscillating (for

m = 3). The approach has proved to be satisfactory over a large

number of equilibria, as long as appropriate values for k̂2, k̂3 are used.

It turns out that the optimal (in the sense of producing the resulting

geometry closest to the desired one) choice is problem-dependent, even

though some general rules can be determined. More details on this

issue are given in the next sections. For now, we will assume that

appropriate values for k̂2, k̂3 are given once the plasma geometry has

been chosen.

A summary of the conditions is written out explicitly in terms of the

normalized variables in Appendix A. Finding the unknown coefficients

then requires a trivial numerical calculation. Once the coefficients are

determined, the solution for ψ can be written as:

ψ(ρ, y) =(a1W1 + b1M1) + (a2W2 + b2M2) cos(k2y)

+ (a3W3 + b3M3) cos(k3y),
(23)

where Wj ≡ Wλj ,1/2(ρ) and Mj ≡ Mλj ,1/2(ρ). Hereafter, we assume

that once ε, κ, δ, α and γ are given, then the km and am, bm are

known.

If non-symmetric equilibria are considered, one should replace cos(k2,3y)

with c2,3 cos(k2,3y) + d2,3 sin(k2,3y). With this replacement, four more

unknown coefficients must be determined. In order to do that, four

additional equations must be defined on the curve ψ = 0. Moreover,

separate values for triangularity and elongation need to be assigned for

the two regions (Z > 0 and Z < 0) of the plasma.
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IV Applications

In this section we apply the analytic solutions to two configurations

of fusion interest: the standard tokamak (such as ITER) and the spher-

ical tokamak (such as NSTX and ARIES-ST). We also demonstrate the

difficulties with convergence to a “good” i.e. tokamak-relevant equilib-

rium by means of a simple example.

We first investigate the issue of convergence. As an example, con-

sider a standard aspect ratio tokamak with a circular cross section.

Three cases are examined. For each the geometric parameters are

held fixed: ε = 0.3125, κ = 1, and δ = 0. Also fixed is the parameter

γ = −0.68. Three values of α are tested: α = 6.11, α = 7.21, α = 5.65.

The corresponding values of the free separation constants are given by

k2 = 0.096i and k3 = 2.17. For each case the expansion coefficients are

determined as outlined in Appendix A.

The resulting flux surfaces ψ = const. are illustrated in Fig. 2.

Observe that only the first case represents a “good” equilibrium (again,

in the sense of being tokamak-relevant). The other two cases both

satisfy the geometric requirements but are uninteresting equilibria.

The conclusion is as follows. The equilibrium procedure always

results in a mathematical function that satisfies the original GS equa-

tion and the geometric constraints. However, “good” tokamak-like

solutions are only possible over interconnected ranges of values for α,

γ, k2 and k3. A determination of these ranges is discussed in the next

section. We also point out that similarly non tokamak-relevant results

are obtained if any single other parameter (γ, k2, k3) is changed by

a sufficient amount. Moreover, observe that uninteresting results are

obtained if α is changed by a relatively small amount (10− 20%) from

the optimal value.
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a

b

c

Figure 2: Magnetic surfaces for equilibria with “circular” cross section for

different values of α. From top to bottom, the equilibria correspond to

α = 6.11 (a), α = 7.21 (b) and α = 5.65 (c). All other physical parameters

are kept unchanged: γ = −0.68, ε = 0.3125, δ = 0, κ = 1, k2 = 0.096i,

k3 = 2.17.
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Table 1: Equilibrium data.

Parameter ITER ARIES-ST NSTX NSTX-separatrix

ε inverse aspect ratio 0.32 0.625 0.79 0.79

κ elongation 1.8 3.4 2.2 2.4

δ triangularity 0.45 0.64 0.5 0.5

α pressure parameter 4.48 3.07 3.56 3.56

γ diamagnetism parameter -0.5 -0.05 -0.1 -0.1

k2 second separation constant 0.90i 0.012i 0.024i 0.024i

k3 third separation constant 1.82 1.28 1.77 1.62

B0 toroidal field [T] 5.3 2.1 0.43 0.43

I toroidal current [MA] 10.1 11.15 0.43 0.41

R0 major radius [m] 6.2 3.2 0.85 0.85

a minor radius [m] 2 2 0.67 0.67

βt toroidal beta [%] 2.1 6.2 4.4 4.3

peak beta [%] 9.25 34 20.6 20.1

qaxis safety factor on axis 1 1 1 1

q95 safety factor at 95 % flux 4.8 12.3 19 18

q∗ kink safety factor 3.1 4.0 5.9 6.6

Next we shall calculate equilibria describing a standard ITER-like

tokamak, a spherical NSTX-like spherical tokamak and an ARIES-ST-

like spherical tokamak. For the NSTX case we also show an equilibrium

with a separatrix. The input parameters for these cases are listed in

Table 1. As one can see from the table, reasonable plasma character-
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istics are obtained with the analytic solution for all cases presented.

The shapes of the resulting equilibria are shown in Fig. 3. Dotted
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Figure 3: (Color online) Plasma shape for four analytic equilibria: ITER-like

(a), ARIES-ST-like (b), NSTX-like (c) and NSTX-like with separatrix (d).

The dots (in color in the online version) represent the analytic shape. The

same analytic shape is shown for (c) and (d). Due to up-down symmetry,

in each case only half of the plasma is shown.

lines represent the “input” shape obtained from Eq. (18). We see that

all boundary shapes are reasonably close to the desired one, with the

standard tokamak (ITER) shape being an almost perfect match.

We now consider in more detail the ITER equilibrium. Plots of

the most important physical quantities versus the major radius along
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Figure 4: Physical quantities along the midplane for a “good” ITER equilib-

rium. From top to bottom, the following are shown: toroidal current density

Jϕ, pressure p and safety factor q. The circles in the q profile correspond to

q95 ' 4.8.

the midplane are presented in Fig. 4. From top to bottom, the figure

shows the toroidal current density Jϕ, the plasma pressure p and the

safety factor q. In the q profile, the value q95 has been highlighted

with circles. All profiles are quite realistic. Note that the vanishing

of ∇p and Jϕ at the edge, combined with the linear dependence on Ψ
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produces peaked pressure and currents profiles, which in turn lead to

relatively low values of average β and high values of qedge. However

the peak values of β are quite substantial. The profiles obtained for

the ARIES-ST and the NSTX equilibrium show similar behavior.

It is useful to describe in more detail the separatrix case. Although

we prefer to leave the main focus of the present work on equilibria

without a separatrix, it is nonetheless interesting to discuss how equi-

libria with an X-point can be obtained. It turns out that once an

equilibrium without separatrix is given, it is a trivial task to obtain a

related equilibrium with a separatrix. By keeping all input parameters

constant and only increasing κ, a separatrix will appear next to the top

boundary of the plasma. If κ is increased further, the separatrix will

move downwards. Note that due to Eq. (22b) k3 also changes when

κ changes, since we keep k̂3 constant rather than k3. The equilibrium

shown in Fig. 3 (d) was obtained with the same input parameters used

for the spherical torus shown in Fig. 3 (c), with the exception of the

elongation, which was increased to κ = 2.4. For both equilibria, the

shape obtained from Eqs. (18) for κ = 2.2 is plotted as a reference.

The separatrix appearing on the top portion of the plasma is clearly

visible. Also the plasma shape is still close to the analytic shape, but

is not as close to it as the one in the equilibrium shown in Fig. 3 (c).

In general, the farther κ is from the optimal value for matching an

input shape, the farther the plasma shape moves from the input one.

For that reason, one should use this approach to obtain equilibria with

a separatrix only if that can be accomplished with small variations in

κ. Otherwise, different values for the input parameters other than κ

should also be chosen, by using the optimization approach described

in the next section.
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Finally, we point out that since there is no freedom in the choice of

the free functions, which are given by Eq. (4), advanced tokamak fea-

tures such as reversed shear cannot be reproduced with our solution.

However, we have shown that realistic standard-operational parame-

ters and profiles can be obtained.

One issue that we have not yet addressed is how to determine a

good set of values for the input parameters α, γ, k2 and k3 for a given

plasma geometry. That is discussed in the next section.

V Equilibrium parametric study

As discussed, the main limitation in the use of the analytic solution

described in this work is the fact that if the input parameters α, γ,

k2 and k3 are chosen arbitrarily, the resulting equilibrium will have

a somewhat unpredictable magnetic geometry. In order to obtain an

equilibrium suited for a particular application (specifically a tokamak-

like equilibrium), special choices are required for the input parameters.

During the course of our investigation, several different strategies have

been tried.

Our experience has shown that a satisfactory procedure is to choose

a value for γ (negative for a diamagnetic plasma), assume k2 to be

imaginary and k3 real, and then determine the values of α, k2, k3

by minimizing an appropriate error function. A reasonable choice for

the error function makes use of the traditional analytic plasma shape

given by Eq. (18). Since our goal is to match the shape of our three

term solution as closely as possible to the traditional shape we use the
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following definition of the error function:

E(α, k2, k3; γ) =

∑
i

√
[R3term(θi)−Rtrad(θi)]

2 + [Z3term(θi)− Ztrad(θi)]
2

∑
i

√
R2

trad(θi) + Z2
trad(θi)

,

(24)

where the sum typically includes 300 angles around half of the surface

(due to up-down symmetry, we only need to consider Z > 0). Due

to Eqs. (16), (17), (18) and (19) the only boundary points that are

enforced in our three term solution are also points on the traditional

plasma shape. For that reason it is at least in principle possible to

reduce the error function to zero. That is not possible in practice;

however, as shown in Section IV, the procedure does a reasonably good

job reproducing the desired plasma shapes. The parameters listed

in Table 1 have been determined by minimizing E using a built-in

minimizing routine in Mathematica.

To avoid a time consuming and some times frustrating effort search-

ing for appropriate input parameters we have compiled a large amount

of data obtained by minimizing E over a many cases and converted

the results into simple empirical fits for α, k2, k3 as functions of γ. We

have completed this task for all geometries discussed in Section IV.

Our results show that the γ dependence is not too strong and can be

approximated by a quadratic polynomial. Specifically we write:

α(γ) = C
(α)
0 + C

(α)
1 γ + C

(α)
2 γ2

k̂2(γ) = C
(k2)
0 + C

(k2)
1 γ + C

(k2)
2 γ2

k̂3(γ) = C
(k3)
0 + C

(k3)
1 γ + C

(k3)
2 γ2,

(25)

where we have used the definitions of Eq. (22), k2 = ik̂2, k3 = (π/κ)k̂3.

The coefficients for the approximated formulas in Eq. (25) are given

in Table 2. For the NSTX case, the formula holds for −3 ≤ γ ≤ 0,
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Table 2: Expansion coefficients in the approximated formulas for the free

equilibrium parameters.

ITER NSTX ARIES-ST

C
(α)
0 3.99 3.49 3.03

C
(α)
1 -0.985 -0.71 -0.82

C
(α)
2 -8.2 10−3 -0.012 -0.032

C
(k2)
0 0.063 4.2 10−3 1.6 10−3

C
(k2)
1 0.011 -0.14 -6.4 10−3

C
(k2)
2 4.4 10−4 -0.042 - 1.8 10−3

C
(k3)
0 1.03 1.235 1.38

C
(k3)
1 -0.025 -4.5 10−3 -0.021

C
(k3)
2 -1.6 10−3 1.1 10−3 -0.021

in the ARIES-ST case for −1 ≤ γ ≤ 0 and in the ITER case for

−7 ≤ γ ≤ 0. In the NSTX and ARIES case for values of γ smaller than

the specified limit the shape of the equilibrium moves progressively

away from the desired shape. The limits are not sharp transitions, but

only an indicative value of the range of validity of our approximation.

In the ITER case excellent approximations of the traditional plasma

shape can be obtained for larger values of −γ. However, the equilibria

become less realistic, since if the safety factor on axis is kept constant

the plasma current decreases for increasing −γ, moving away from

the target ITER values (see below). Therefore we have restricted our

attention to the case γ > −7. Once again, we stress the fact that

equilibria are also possible for γ > 0, but we have focused on the γ < 0

range, since it is the range more relevant to experimental tokamak

equilibria.
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To conclude the present discussion, we observe that a few general

rules can be given for the relation between the independent parameter γ

and the dependent parameters α, k̂2 and k̂3 for tokamak-like equilibria.

The most important parameter is α. In general, α+γ ' 3−4 is a good

starting point for the calculation. As for the separation constants,

k̂2 ' 0.01 − 0.2 and k̂3 ' 1.0 − 1.4 are fair approximations to the

optimal values i.e. to the values giving the minimum distance between

the equilibrium plasma shape and the input analytic shape.

Finally, we add an observation regarding the equilibria obtained

with input parameters given by Eq. (25). In general, all equilibria ob-

tained with such sets of parameters will have somewhat similar plasma

characteristics, if one considers the plasma parameters I, βt and q∗.

The main variation is observed in the poloidal beta, βp = βtq
2
∗/ε2. For

the ITER case, which extends over the largest range of values for γ, we

have calculated that for −7 ≤ γ ≤ 0 the plasma current varies between

6.3 . I . 10.3[MA], the toroidal beta between 2.0% . βt . 2.3%,

the kink safety factor between 3.0 . q∗ . 4.9, and the poloidal beta

between 1.8 . βp . 5.5. All results have been obtained by fixing the

safety factor on axis, qaxis = 1. In conclusion, the equilibria obtained

with the input parameters giving the optimal plasma shape mainly

differ among themselves because of the value of poloidal beta.

VI Conclusions

In the present work we have presented an analytic solution to the

Grad-Shafranov equation. With our solution, realistic tokamak-like

equilibria can be represented by evaluating only a small number of well-

known special functions. It has been shown that the method is fairly
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flexible, and that equilibria with the geometry of existing and future

tokamaks can be obtained. In general, once the plasma geometry (ε, δ,

κ) has been chosen, four input parameters (γ, α, k2, k3) must still be

assigned. Empirical relations have been presented that give α = α(γ),

k2 = k2(γ) and k3 = k3(γ) for several geometries of fusion interest.

In order to use our solution to produce an equilibrium, it is only nec-

essary to be able to numerically evaluate Whittaker functions. In our

calculations we have used the Mathematica package, in which Whit-

taker functions are readily available. The key step in the calculation

consists of solving the system of algebraic equations (16), (17), (20)

and (21), a trivial task for any numerical solver.

The analytic solution of the GS equation is useful in two respects.

First, it constitutes a robust benchmark for numerical equilibrium

solvers, since it can be evaluated to any desired degree of accuracy

with standard numerical tools. Second, an exact equilibrium can be

used as an input for the stability analysis of a tokamak. By using

an exact equilibrium, no uncertainties are present in the input, and

this allows for a more accurate evaluation of the error in the stability

analysis, and of the convergence properties of the tools used for the

stability analysis itself.
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A Determination of the expansion coeffi-

cients

The solution is determined as follows. Assume we are given val-

ues for ε, κ, δ, α and γ as well as trial values for k2,3 and corre-

spondingly λ2,3 = −i(γ − k2
2,3)/(4ε

√
α). Next set k1 = 0 yielding

λ1 = −iγ(/4ε
√

α).

Now define ρ− = i
√

α(1− ε)2/ε, ρ+ = i
√

α(1+ ε)2/ε, ρδ = i
√

α(1−
δε)2/ε, and ρa = i

√
α(Raxis/R0)2/ε. The conditions, in the same order

as they appear in the main text are given by:

[(a1W1 + b1M1) + (a2W2 + b2M2) + (a3W3 + b3M3)]ρ− = 0

[(a1W1 + b1M1) + (a2W2 + b2M2) + (a3W3 + b3M3)]ρ+
= 0

[(a1W1 + b1M1) + (a2W2 + b2M2) cos(k2κ) + (a3W3 + b3M3) cos(kκ)]ρδ
= 0

[(a1W
′
1 + b1M

′
1) + (a2W

′
2 + b2M

′
2) cos(k2κ) + (a3W

′
3 + b3M

′
3) cos(kκ)]ρδ

= 0
(

1
ρ−

ε(1− ε)
2

)[
k2
2(a2W2 + b2M2) + k2

3(a3W3 + b3M3)
(a1W ′

1 + b1M ′
1) + (a2W ′

2 + b2M ′
2) + (a3W ′

3 + b3M ′
3)

]

ρ−

=
(1− δ̂)2

κ2

[(a1W
′
1 + b1M

′
1) + (a2W

′
2 + b2M

′
2) + (a3W

′
3 + b3M

′
3)]ρa

= 0

[(a1W1 + b1M1) + (a2W2 + b2M2) + (a3W3 + b3M3)]ρa
= 1

(A.1)

Here Uj denotes Wj or Mj with Uj ≡ Uλj ,1/2(ρ) and U ′
j = dUj/dρ.

Note that there are seven unknowns: a1, a2, a3, b1, b2, b3 and ρa.

The equations are linear in the unknowns with the exception of ρa. A

linear solver (for the first five equations) coupled with a root finder (for

the last two) makes this a trivial numerical problem for Mathematica.
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