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Abstract

Easy-to-evaluate approximate formulas are presented for the repelled-species cur-
rent collected by a spherical body in a collisionless, magnetized plasma, valid over
the full range of ratio of Larmor radius to sphere radius. The form is an appropriate
average of the lower and upper bounds obtained by prior analytic arguments. This
formulation enables rapid evaluation of the floating potential in hybrid Boltzmann -
Particle In Cell (PIC) codes with a background magnetic field. The treatment is vali-
dated by comparison of hybrid PIC (ion particle) code with full PIC (electron and ion
particle) code calculations. It is found that typically for no value of magnetic field is
it valid to approximate the electrons as fully magnetized but the ions as unmagnetized
in the absence of plasma drift.

1 Introduction

The calculation of the current drawn by a spherical electrode from a collisionless plasma is
important to understand the charging of dust particles or the characteristics of Langmuir
probes ; but it is a non-linear problem of considerable complexity and computational cost. It
can often be simplified by the assumption that the repelled species (usually electrons) adopt
a Boltzmann distribution [1] :

ne(r) = n∞ exp(
eV (r)

Te

) , (1)

where V (r) is the electrostatic potential, ne(r) and Te the electron density and temperature,

and n∞ the electron density at infinity. We denote by vte =
√

2Te

me
the electron thermal

velocity.
Using Liouville’s theorem, the repelled-species flux density to a stationary collector sur-

face of convex shape with potential distribution Vp(σ) (where σ denotes surface position) is
determined by the constancy of the distribution function along particle orbits, and is equal
to the free-space one-dimensional flux density scaled down by the same factor as ne:

Γconvex
e (σ) = n∞ exp(

eVp(σ)

Te

)
vte

2
√

π
(2)

provided that all incoming orbits at the probe actually connect back to the distant plasma.
(This is the meaning of “convex”). The total current to a spherical probe, possibly insulating,
is then given by integrating Eq. (2) over its surface :

Ie =

∫

Sphere

Γconvex
e (σ)dσ . (3)

The approximation that the distant electron distribution is effectively an (unshifted)
Maxwellian, which is required for this Boltzmann treatment, Eq. (1), is justified even for
flowing plasmas if vte is much larger than typical flow velocities. Therefore it is useful for
hybrid particle codes.
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The derivation of Eq. (2) however assumes that all the orbits striking the probe are
connected to infinity. When a background magnetic field is present this is no longer a good
approximation. The flux is reduced because some helicoidal orbits intersect the probe several
times. Orbit arcs that intersect the sphere at both ends are unpopulated. See Fig. (1).

Orbit connected to infinity

Orbit closed on the sphere

Magnetic axis

Figure 1: Schematic representation of the two kind of orbits intersecting the probe in the
presence of a background magnetic field. In a collisionless plasma orbits that close on the
sphere are empty. The magnetic field polarity is irrelevant for our purposes.

When the Larmor radius is much larger than the sphere radius rp, that is in the limit
B = 0, then no such empty orbits exist and one can use Eq. (2), giving for the total current
to an equipotential repelling sphere of radius rp :

IB=0
e = 4πr2

pn∞

vte

2
√

π
exp(

eVp

Te

) . (4)

In the opposite limit of infinitesimal Larmor radius, the electrons move one-dimensionally
along the field, and encounter only the projection of the probe area (2πr2

p, where the 2 is
due to the electrons coming from both sides of the probe) in the field direction. Therefore
the current instead becomes, for B = ∞ :

IB=∞
e = 2πr2

pn∞

vte

2
√

π
exp(

eVp

Te

), (5)

half as large.
The problem of correcting Eq. (3) in the intermediate case with finite electron Larmor

radius, was tackled by Rubinstein and Laframboise [2], who found and evaluated expressions
for lower and upper bounds (more restrictive than Eqs (4,5)) to the total electron current
Ie collected by a conducting probe. Sonmor and Laframboise [3] calculated numerically the
repelled species current in the case of negligible space-charge, that is, when the shielding
length λs is much larger than the probe radius. The shielding length can be considered to
be the factor occurring in the linearized approximation to the potential profile (the Debye-
Hückel formula) V ∝ exp(−(r − rp)/λs)/r ; often this is approximated as λ−2

s = λ−2
De + λ−2

Di ,
where λDe and λDi are the electron and ion Debye lengths. Here and in the rest of the paper,
quantities labeled by the index “i” refer to the ion species.
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The electron density even in most magnetized cases can still be described by Eq. (1).
The error in this expression is small, regardless of gyro orbit effects, in regions where most
of the electrons have insufficient total energy to overcome the repulsive probe potential. The
overall effect of the approximation on the potential profile will be ignorable provided the
probe potential is substantially more negative than −Te/e.

The purpose of this work is to develop an empirical expression that is easy to evaluate for
the electron collection flux, valid for a wide range of shielding lengths and magnetic fields.
This expression is implemented in the hybrid Particle In Cell (PIC) code SCEPTIC [4]. That
enables it to determine the floating potential when the plasma is magnetized. This upgrade
of SCEPTIC is benchmarked against full PIC simulations using the code Democritus [5].

As a concrete application of the new possibilities of SCEPTIC we compute the floating
potential of a stationary probe in the presence of a weak magnetic field, and compare it with
a modified Orbital Motion Limited (OML) theory where only the electrons are assumed to
be magnetized.

2 Current to a conducting, repelling spherical probe

2.1 Laframboise and Rubinstein’s Upper and Lower bounds

The electron current when 0 < B < ∞ lies between the values given by Eq. (4) and Eq. (5).
Rubinstein and Laframboise have shown that it is possible to improve the lower bound given
by Eq. (5) [2]. The idea is to assume that the effects of orbit depletion due to multiple
intersections with the probe occur in a neighborhood of the probe where the electrons have
already been decelerated by eVp. The distribution function at the entrance of this neighbor-
hood is then purely Maxwellian, and then one needs to find the fraction of purely helical
orbits (unaffected by local electric field) that when traced backwards from the probe extend
to infinity without intersecting the probe again.

Hereafter, the potentials named φ are scaled to Te

e
. For the electrons, the Liouville theo-

rem tells us that the distribution function of particles having a z-velocity directed towards
the probe at the neighborhood entrance is :

f(v) = n∞ exp(φp)
1

(vte

√
π)3

exp(−v2

v2
te

) (6)

We now need to calculate the electron current collected by a sphere at space potential (i.e.
φp = 0) in a Maxwellian plasma but accounting for the helical orbits. This was performed
the first time by Whipple [6], and can be recovered by setting D = 0 and χp = 0 in
Eq. (9) from [2]. The result is expressed in terms of the non-dimensional quantity ι equal
to the current divided by 4πr2

pn∞vte/2
√

π, plotted in Fig. (2). It only depends on the non-
dimensional factor βe, which is a measure of the magnetic field defined as the ratio of the
probe radius over a mean electron gyroradius rL.

βe =
rp

√

πTeme

2e2B2

(7)
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Figure 2: Electron (Ion) current collection by a spherical probe at space potential (normalized
to 4πr2

pn∞
vte(ti)

2
√

π
) as a function of the magnetic field βe (βi). If β = 0, the particle current

is simply the sphere area times the random flux density : ι(0) = 1. If β = ∞, the particle
current is reduced by a factor of 2 : ι(1) = 1/2.

The factor ι, illustrated in Fig. (2), can be approximated to within 0.3% by :

ι∗(z) = 1.000 − 0.0946z − 0.305z2 + 0.950z3 − 2.200z4 + 1.150z5 with z =
βe

1 + βe

. (8)

Eq. (8) has been obtained by polynomial fitting over the range z ∈ [0 : 1], and is therefore
different from the the Taylor expansion of ι at z = 0. Here and in the rest of the paper, Q∗

denotes the empirical formula corresponding to the physical quantity Q. In this precise case
Q is ι.

In the helicoidal orbit approximation we have for the electrons :

ILow
e = 4πr2

p

vte

2
√

π
ι(z) exp(φp) (9)

This expression will be equal to the “true” electron current Ie when the potential is actually
constant in the neighborhood of the probe. The effect of a repelling potential gradient upon
an orbit that we trace backwards from its intersection with the probe is to decrease its
probability of reintersecting with the probe. Since the reduction in current (the extent to
which ι is less than 1) is attributable purely to the depopulation of orbits that intersect
the probe more than once, reducing the fraction of such orbits increases the current to the
probe. In other words, the expression (9) is a lower bound for the collected current of repelled
species, while the expression (4) is an upper bound.

We recall here for completeness that an improvement of the upper bound given by Eq. (4)
can be made using conservation of canonical angular momentum about the B-axis. Ru-
binstein and Laframboise calculate the region where a particle’s presence is permitted by
energy and canonical angular momentum conservation, called the “magnetic bottle”. An
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upper bound on the collected current is obtained by assuming that a particle will strike the
collector if its magnetic bottle will. The result, given in analytic form in Eqs (36,37) of [2],
will not be used in this paper.

2.2 Empirical expression of Ie when λs = ∞
How close to each of the bounds the real current will be depends, a priori, on φp, the
potential distribution (through λs), and βe. If we assume that λs � rp, the potential is
Coulomb around the probe and λs is removed from the parameters.

Under this assumption, the electron current can easily be computed by direct orbit inte-
gration. We used SCEPTIC with a prespecified Coulomb potential, and calculated Ie for a
wide range of βe and φp. The results are plotted in Fig. (3), and their validity assessed by
comparison with a similar computation performed by Sonmor and Laframboise [3].
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Figure 3: Electron current collection (normalized to 4πr2
p

vte

2
√

π
exp(φp)) as a function of the

probe potential (φp) for different magnetic fields under the assumption of large λs calculated
by direct orbit integration with SCEPTIC. The dashed lines represent the Sonmor and
Laframboise results for the same computation (See Fig. (13) from [3]). Also plotted in solid
lines are the empirical values I∗

e given by Eq. (13).

To first order in rp the potential variation around the probe is linear and has a slope
dφ

dr r=rp
= −φp

rp
. What is more, in the limit βe � 1 the electrons see the probe as flat in their

last Larmor gyrations. The two parameters governing the demagnetization of the electrons,
and therefore the departure of Ie from ILow

e , are φp

rp
and rL. Elementary dimensional analysis

shows that the only relevant parameter for this problem is :

η = −φp

βe

(10)
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This argument is no longer valid when βe
<∼ 1, in which case demagnetization of the

electrons is expected to depend on φp and βe separately. However for such low magnetic
fields ILow

e is close to IUp
e = IB=0

e (See Fig. (3)), and still using η as unique parameter proves
satisfactory.

We express Ie in the form :

Ie = A(w)IUp + (1 − A(w))ILow with w =
η

1 + η
(11)

Here A is the demagnetization function, plotted in Fig. (4) using the data from Fig. (3).
For small η, A is indeed only a function of η. For large η this is not the case anymore, and
we chose A∗ in order to fit the points corresponding to βe = 2.
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Figure 4: Plot of the demagnetization function A as a function of η. The values of A
computed by direct orbit integration (points) only depend on η, except for large η where A
is a separate function of φp and βe.

A third order polynomial fit to the demagnetization function is :

A∗(w) = 0.678w + 1.543w2 − 1.212w3 (12)

In summary, an empirical formula for the electron current is given by :

I∗
e = 4πr2

p[A
∗(w) + (1 − A∗(w))ι∗(z)]

vte

2
√

π
exp(φp) (13)

2.3 Extension to λs 6= ∞
Fig. (5) shows the effect of a finite λs on the electron collection. For this qualitative purpose,
a Debye-Hückel potential distribution has been assumed.

φ(r) = φp

rp

r
exp(−r − rp

λs

) (14)
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Figure 5: Electron current collection (normalized to 4πr2
p

vte

2
√

π
exp(φp)) as a function of the

probe potential for different λs and βe, obtained by direct orbit integration in a Debye-Hückel
potential. Also shown in solid lines are the empirical values I∗

e .

The screening shortening increases the electron current, because the potential derivative
at the probe edge rises. For the potential distribution given by Eq. (14), dφ

dr r=rp
= −φp

rp
(1+ rp

λs
).

A first correction to I∗
e (Eq. (13)) is readily obtained by setting η = − φ

βe
(1 + rp

λs
).

This form however does not prove satisfactory if rL > λs. The physical reason being that
in this situation the electrons do not see a linearly varying potential in their last Larmor
gyration. A heuristic correction yielding the good limit at low rL

λs
is : 1 + βe

α
(1− exp(−αrp

λsβe
)).

We chose α = 4 in order to maximize the agreement with the data of Fig. (5).
The electron current I∗

e in a plasma of finite λs is therefore approximated by Eqs. (12,
13) with :

η = − φ

βe

(1 +
βe

4
(1 − exp(

−4rp

λsβe

))) (15)

3 Current to an insulating, repelling spherical probe

3.1 Expression of the electron flux

We have so far focused on the total collected current Ie. If the probe is insulating, or if the
current density to different positions on the probe is measured, important information lies
in the electron flux Γe as a function of the position on the sphere surface, parameterized as
shown in Fig. (6).

The function Γe(σ), where σ = (cos θ, ϕ) depends on βe, λs, and a priori on the whole
potential distribution φp(σ).

Fig. (7) shows Γe(cos θ) for a conducting probe at different values of βe. In this case the
problem is independent of ϕ. We see that Γe(| cos θ| = 1) = vte

2
√

π
exp(φp) regardless of the

7



Probe

r

z
Magnetic axis

θ
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Figure 6: Schematic of the coordinate system. B is parallel to z.

magnetic field. Since we also know that in the limit of a strong magnetic field Γe(cos θ) =
vte

2
√

π
exp(φp)| cos θ|, a natural approximate form to adopt for Γ∗

e is a downward pointing

triangle with value at | cos θ| = 1 independent of βe, and 2πr2
p

∫ 1

−1
Γ∗

e(cos θ)d cos θ = I∗
e , that

is :

Γ∗
e(cos θ) = [

2I∗
e

4πr2
p

− vte

2
√

π
exp(φp)] + 2[

vte

2
√

π
exp(φp) −

I∗
e

4πr2
p

]| cos θ| (16)
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Figure 7: Electron flux (in units of vte/2
√

π) to a conducting sphere of bias φp = −2 with
λs = ∞ at different magnetic field strengths computed by direct orbit integration, as well as
Γ∗

e (Eq. (16)).

The preceding analysis is only valid for an equipotential sphere. However if βe is large
enough, the electrons will see a uniform potential at the probe surface during their last
Larmor gyration before collection. In other words Γe(σ) will depend on the local potential,
φp(σ), but not on the value of φp at other angles. One can therefore use the following
extension to Eq. (16).
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Γ∗
e(σ) = [

2I∗
e (σ)

4πr2
p

− vte

2
√

π
exp(φp(σ))] + 2[

vte

2
√

π
exp(φp(σ)) − I∗

e (σ)

4πr2
p

]| cos θ|. (17)

I∗
e (σ) (Eq. (13)) is the total electron current that would be collected by a conducting probe

at bias φp(σ) with a shielding length λs(σ).
Eq. (17) is valid for an insulating sphere with arbitrary two-dimensional potential distri-

bution, provided the convention B ‖ z is adopted. Eq. (17) does not involve the magnetic
field polarity. In other words the electron flux density distribution to a probe with arbitrary
potential distribution, be it non symmetric about the magnetic axis, will be unchanged by
the operation B → −B.

3.2 Validity of Γ∗
e

for a concrete example

In the case of a plasma drifting parallel to B and z, the ion flux and hence the probe potential
are higher upstream than downstream. A crude approximation to this situation would be to
model the probe potential by the first two terms of a spherical harmonic expansion :

φp(cos θ) = −2(1 +
1

3
cos θ). (18)

We recall that φ is normalized to Te

e
. The coefficients of Eq. (18) are arbitrary, and only

serve the purpose of verifying Eq. (17).
Fig. (8) shows the electron flux collected by a probe in a plasma with uniform λs = 2

and potential distribution given by :

φ(r, cos θ) = φp(cos θ)
rp

r
exp(−r − rp

λs

). (19)

We see that even for rather small magnetic fields, it is a good approximation to assume
that Γe(σ) only depends on φp(σ). The difference between the total current calculated using
Eq. (17) and the corresponding “exact value” is systematically limited to 2%. Similar test
cases with a potential distribution depending on both cos θ and ϕ have been performed as
well, and lead to the same conclusions.

4 Application to hybrid PIC codes

4.1 SCEPTIC upgrade

SCEPTIC [4] is a 2d/3v hybrid Boltzmann-PIC code written in spherical coordinates cen-
tered on a spherical probe. The code is two dimensional in space, allowing the simulation of
an axially symmetric flow (The drift velocity and the magnetic field must be parallel).

The code can be run in the floating potential regime by imposing a probe potential such
as to equate the ion current with the electron current given by Eq. (4). For an unmagnetized
case this is unproblematic. By using Γ∗

e (Eq. (17)) for the electron flux, we can now include
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Figure 8: Electron flux to a sphere with non symmetric potential distribution given by
Eqs. (18,19) for different magnetic fields computed by direct orbit integration, as well as Γ∗

e

(Eq. (17)). It can be seen that the magnetic field polarity is indeed irrelevant.

a background magnetic field. The electron flux to each angular cell of the probe is computed
with a self-consistently calculated λs :

λs(θ) = − rp

rp

φ(θ)
dφ(θ)

dr
+ 1

. (20)

If one wishes to use Γ∗
e for an analytical treatment and has not access to a self-consistent

calculation for λs, the question arises of what value to choose for the shielding length. If λDe

is the electron Debye length, the linearized theory gives :

λ2
L = λ2

De

1

1 + ZTe/(Ti + miv2
d)

. (21)

The term miv
2
d (twice the ion drift energy) has been suggested by Hutchinson [8] in order

for λL to tend to λDe if vd � vti. As has been pointed out by Daugherty and al. [7] however,
the shielding length can by far exceed λL when λDe is smaller than a few rp. A slight

improvement can be made by choosing
√

r2
p + λ2

L as the shielding length [8], but this form

gives a shielding greater than rp, which is obviously wrong if λDe � rp.
We therefore tabulated λs as given by Eq. (20) for a wide range of parameters (λDe ∈

[0.05 : 3]rp, Ti ∈ [0.01 : 1]ZTe, vd ∈ [0 : 1]
√

ZTe/mi, βi ∈ [0 : 0.2]). The following expression
for λs, yielding the correct limit for λDe � rp, has a better accuracy than the linearized form
at low λDe as can be seen on Fig. (9).

λ∗
s = λL + λDe ln(1 +

rp

λDe

). (22)

Expression (22) has been crafted for weakly magnetized ions. It is independent of B be-
cause if βi is small the ions follow unmagnetized orbits, and the electron density is Boltzmann
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regardless of βe. We recall here the relation βe =
√

miTi/Z2meTeβi. If the ions become too
much magnetized we expect Eq. (22) to loose accuracy, but under those circumstances and
for reasonable floating potentials I∗

e tends to ILow
e , therefore using a slightly wrong shielding

length is not problematic.
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Figure 9: λs (Eq. (20)) against λ∗
s (Eq. (22)) for λDe ∈ [0.05 : 3]rp, Ti ∈ [0.01 : 1]ZTe,

vd ∈ [0 : 1]
√

ZTe/mi, βi ∈ [0 : 0.2]. The points at λ∗
s ' 0.2rp correspond to λDe = 0.05rp.

Using λL for the shielding length would therefore be extremely inaccurate.

The expression (22) readily gives the sphere capacitance under a form independent of the
magnetic field for βi ≤ 0.2 :

C∗ = 4πε0rp(1 +
rp

λ∗
s

) (23)

4.2 Validation with the full PIC-code Democritus

Democritus [5] is a full PIC code (both the ions and electrons are self-consistently ad-
vanced) written in cylindrical coordinates allowing to simulate axially symmetric flows as
in SCEPTIC. The probe is modeled by infinitely heavy particles with the immersed bound-
ary technique, and the mesh is adaptative in order to accurately resolve the probe-plasma
boundary.

As soon as the ions become magnetized, collisions and cross-field transport become es-
sential for the magnetic presheath to merge with the plasma at infinity [1]. Therefore a
full physical simulation of current collection by a collector in a magnetoplasma must be
collisional and requires a computational domain extended a few ion mean free paths (λmfp)
along the magnetic axis (and at least two mean Larmor radii in the perpendicular direction).
However since we are only interested in a code comparison we will relax this requirement,
and use for SCEPTIC a spherical domain of radius rb = 5rp, and for Democritus a cylindrical
domain of radius ρ = 5rp and length z = 10rp. We defer a complete collisional treatment to
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a future publication, therefore in the absence of information on the collisional dynamics in
the presheath we set the potential to φ(rb) = 0 at the outer boundary.

We performed the validation on a conducting sphere with two different sets of parameters
assuming mi/(Zme) = 100, Ti = ZTe, and λDe = 2rp. For the first set (S1) : vd = 0 and

Ωe = 15ωpe (i.e. βe = 5.98). For the second set (S2) : vd = 0.5
√

ZTe/mi and Ωe = 30ωpe

(i.e. βe = 11.97).
Table (1) compares the floating potentials as computed by Democritus and SCEPTIC. We

notice that when SCEPTIC computes the electron flux using Eq. (16) and an accurate value
for the shielding length such as the one given by Eq. (22) or a self-consistently calculated one,
both codes agree to within 2%. This error can be explained by structural differences between
the two codes such as the way the probe-plasma boundary is handled. Indeed because
Democritus uses the immersed boundary technique, the probe potential is not unequivocally
defined. Another relevant difference between the codes for the small domain we are using is
the outer boundary geometry (spherical versus cylindrical).

Democritus SCEPTIC 1 SCEPTIC 2 SCEPTIC 3 SCEPTIC 4
S1 -1.47 -1.44 -1.45 -1.69 -1.17
S2 -1.59 -1.60 -1.61 -1.98 -1.41

Table 1: Comparison of the floating potentials (in units of Te/e) as computed by Democritus

and SCEPTIC under different assumptions. SCEPTIC 1 : Electron flux given by Eq. (16)
using a self-consistently calculated value of λs on each angular cell (Eq. (20)). SCEPTIC 2 :
Electron flux given by Eq. (16) or Eq. (13) using a uniform λs given by Eq. (22). SCEPTIC
3 : Unmagnetized electron flux given by Eq. (4). SCEPTIC 4 : Strongly magnetized electron
flux given by Eq. (5).

The validity of Eq. (16) can be further assessed by examining Fig. (10), where we compare
the electron flux density (Γe) to the sphere as given by both codes. The flux given by
SCEPTIC is smooth since the only noise comes from the self-consistent evaluation of λs for
each angular cell, and as a general rule in PIC codes noise on the potential is much lower than
noise on particle position. The flux computed by Democritus has a slight drop at cos θ = ±1
; this non physical phenomenon can be explained by the fact that in order to keep the
computation tractable we use too long a time-step to resolve the electron Larmor gyration
accurately enough at the sphere edge. This however does not influence the total electron
current, which in the case of a conducting sphere is the important value. A comparison of
the total electron current to the sphere as calculated by both codes is given in Table (2),
and the agreement is better than 3%.
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Figure 10: Electron flux density to the sphere as given by Democritus and SCEPTIC nor-
malized to the ion thermal flux (vti/2

√
π) for Set 1 (mi/Zme = 100, Ti = ZTe, λDe = 2rp,

vd = 0, βe = 5.98) and Set 2 (mi/Zme = 100, Ti = ZTe, λDe = 2rp, vd = 0.5
√

Te/Zmi,
βe = 11.97).

Democritus SCEPTIC 1 SCEPTIC 2 SCEPTIC 3 SCEPTIC 4
S1 1.68 1.73 1.73 1.85 1.58
S2 1.28 1.28 1.29 1.38 1.23

Table 2: Comparison of the total electron current (Ie) normalized to the ion thermal current
(4πr2

pvti/2
√

π) as computed by Democritus and SCEPTIC under the same assumptions as
in Table (1).

5 Floating potential dependence on a weak magnetic

field in a stationary plasma

It has sometimes been argued that in the regime βi � 1 and βe � 1 one could calculate
the probe floating potential φf by assuming that the electrons are fully magnetized and
the ions are unmagnetized (Tsytovich and al. [9]). This is equivalent to saying that the
electron current is given by Eq. (5), and for a stationary conducting probe in the OML
regime (λDe � rp) the ion current is :

IOML
i = 4πr2

p

vti

2
√

π
(1 − ZφpTe

Ti

). (24)

A more accurate expression for φf is expected to be obtained by equating IOML
i (φf) (Eq. (24))

with I∗
e (βe, φf) (Eq. (13)).

As a concrete illustration of the new possibilities of SCEPTIC, we compared this analyt-
ical expression of φf with self-consistent computations accounting for the ion magnetization,
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b) vd = 0, Ar+
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Figure 11: Floating potential φf (In units of Te

e
) as a function of βi for Hydrogen and Argon

ions, Ti = ZTe and Ti = 0.1ZTe (All the cases are run with λs = 2.3rp). The values of
φf given by IOML

i (φf) = I∗
e (βe, φf) are plotted as lines, while the self-consistent figures

computed with SCEPTIC and accounting for both the electron and ion magnetization are
plotted as squares and diamonds. The lines and points do not agree except at extremely
small βi.

as shown in Fig. (11). In order to accurately resolve the ion current dependence on small
values of βi we use a computational domain of radius rb = 20rp, but still assume φ(rb) = 0.

Clearly assuming unmagnetized ions is more appropriate for heavy hot ions, since βe/βi =
√

miTi/Z2meTe. However even for Ar+ at a fairly high temperature (Ti = Te) this approxi-
mation breaks down at a very small magnetic field. In the opposite regime (H+ at Ti = 0.1Te)
the floating potential dependence on βi is monotonically decreasing, meaning that the ion
current drops faster than the electron current as the magnetic field rises. A regime such as
the one suggested in [9] (unmagnetized ions, strongly magnetized electrons) therefore never

exists, at least in a stationary plasma.

6 Summary

While the ion current collected by a negatively charged probe in the presence of background
magnetic field depends on the whole potential distribution in the sheath and presheath, it
has been shown that the shielding length λs (Eq. (20)) is the only space-charge figure relevant
to the electron collection.

This allows one to find an empirical expression for the electron flux density to a spher-
ical probe as a combination of the Upper and Lower bounds calculated by Rubinstein and
Laframboise [2]. This flux is given by Eq. (17), and its evaluation only requires λs, βe

(Magnetic field) and φp (Probe potential distribution).
Since the shielding length is rarely known a priori, we also provide an empirical formula
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for λs valid for the full range of plasma parameters (As long as the ions are only weakly
magnetized). This formula is an improvement over past treatments and could also be used
to calculate the probe capacitance at small Debye lengths.

Two applications of our treatment have been presented. It is first shown that it allows the
hybrid PIC code SCEPTIC to run in the floating potential regime for an arbitrary magnetic
field. This statement has been assessed by comparison with the full PIC code Democritus.
Second, we compare the “real” evolution of the floating potential φf with a rising magnetic
field with the analytical value calculated by equating the OML current for the ions with the
electron current given by Eq. (13). We find that even for heavy ions mi/me is too small to
have the electrons fully magnetized while the ions are still unmagnetized. This result could
be modified in a flowing plasma.
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