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Stopping, Straggling, and Blooming of Directed Energetic Electrons 
 

in Hydrogenic and Arbitrary-Z Plasmas 

 

    C. K. Li and R. D. Petrasso 

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 

 

From fundamental principles, the interaction of directed energetic electrons with 

hydrogenic and arbitrary-Z plasmas is analytically modeled.  For the first time the effects of 

stopping, straggling, and beam blooming, a consequence of scattering and energy loss, are 

rigorously treated from a unified approach.  Enhanced energy deposition occurs in the latter 

portion of the penetration and is inextricably linked to straggling and blooming. These effects, 

which have a strong Z dependence, will be important for evaluating the requirements of fast 

ignition and tolerable levels of electron preheat.  
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A basic problem in plasma physics is the interaction and energy loss of energetic 

charged particles in plasmas [1-3], including the effects of penetration, longitudinal 

straggling, and lateral blooming. This problem has traditionally focused on ions (i.e. protons, 

α’s, etc.), either in the context of heating and/or ignition in, for example,  inertially confined 

plasmas (ICF) [3-7]; or the use of these particles for diagnosing implosion dynamics [8]. 

More recently, prompted in part by the concept of fast ignition (FI) for ICF [9], workers have 

begun considering energy deposition from relativistic electrons in deuterium-tritium (DT) 

plasmas [9-14].  In this context, we recently calculated the mean penetration and stopping 

power for energetic electrons interacting with a uniform hydrogenic plasma of arbitrary 

density and temperature. Therein the randomizing effect of electron scattering, which has a 

cumulative effect of bending the path of the electrons away from their initial direction, was 

linked to energy loss [14]. In this paper we present calculations which show, for the first 

time, the effects of longitudinal straggling and transverse blooming, and their inextricable 

relationship with enhanced electron energy deposition. We demonstrate that, while the initial 

penetration results in approximate uniform energy deposition,  the latter penetration has 

mutual couplings of energy loss, straggling, and blooming that lead to an extended region of 

enhanced, non-uniform energy deposition. This present work is important for quantitatively 

evaluating the energy deposition in several current problems. In the case of FI, for example, 

there have been no evaluations which have treated either straggling or blooming upon the 

energy deposition, without which there can be no confident assessment of ignition 

requirements. The calculations herein therefore form the foundation for a baseline, at the 

very least, or an accurate assessment, at the very most, by which to evaluate these effects 

upon FI.  In addition to FI, these calculations are sufficiently general to be of relevance to 

other current problems, such as fast electron preheat [15] in ICF, or to energy deposition and 

penetration of relativistic electrons in astrophysical jets [16]. 
 

 To delineate these processes, we calculate the different moments by analytically 

solving an integro-differential diffusion equation [17], thereby determining the angular and 

spatial distributions of the scattered electrons. 
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where f(x, v, s) is the electron distribution function;  ni is the number density of fully ionized, 

uniform time invariant background plasma ions of charge Z; x is the position where 

scattering occurs; σ=σei+Zσee is the total scattering cross section with σei the Rutherford e-

ion cross section [18], and σee the Møller e-e cross section [19].  We solve this equation in 

cylindrical coordinates with the assumption that the scattering is azimuthally symmetric. 

After expanding the distribution in spherical harmonics and substituting into Eq. (1), two 

differential equations for the longitudinal and lateral distributions are obtained.  For the 

longitudinal distribution: 
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And for lateral distribution: 
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where the moments are defined as ∫
∞

∞−
= xx dsfxsF m

n
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n
m ),()( ll , n is the order of the moment, 

and j =1,2,3 represents x, y, z, respectively. 
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where (dσ/dΩ) is the total differential cross section of e-ion and e-e scattering [18,19,14], 

)(cosθlP  are the Legendre polynomials, and ( )slκ  are directly related to the basic transport 

cross sections [2]. Equations (2) and (3) are coupled to adjacent orders in n, and are solved 

with the boundary condition ⎟
⎠
⎞⎜

⎝
⎛−+= ∫ ')'(exp4)12()(

000 dsssF
S

nm
n
m ll l κδδπ ,                            

where 0)0( =n
mFl  for n≠ 0.  Solving for 1κ  and 2κ                                      

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
Λ

+
+Λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

+

eeei
i ZZrn ln

2

14ln4 42/)1(

2
2

2

2
0

1 γ

γ
γβ

πκ  ;                              (5) 

and  



 4

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −Λ

+
+⎟

⎠
⎞

⎜
⎝
⎛ −Λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

+ 2
1ln

2

14
2
1ln12 42/)1(

2
2

2

2
0

2
eeei

i ZZrn
γ

γ
γβ

πκ .                      (6) 

1κ is related to the slowing-down cross section [2], which characterizes the loss of  directed 

velocity in the scattering; and 2κ  is related to the deflection cross section which represents 

the mean-square increment in the transverse electron velocity during the scattering process 

[2]. β = v/c and γ = (1-β2)-1/2; r0 = e2/m0c2 is the classical electron radius. The arguments of 

the Coulomb logarithm are: ei
D

ei bminλ=Λ , and ee
D

ee bminλ=Λ , where λD  is the Debye 

length, and eibmin ( eebmin ) is the larger of ei
qb  ( ee

qb ) and eib⊥ ( eeb⊥ ) [14]. ei
qb  and ei

qb  are 

approximately the electron deBroglie wavelength, and 2
0 γβZrbei =⊥  and 

])2/[()1(2 222/)1(
0 γβγ γ +

⊥ +≈ rbee  are  the impact parameters for 90° scattering of electrons 

off ions or electrons off electrons [14]. The angular distribution function is obtained 
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from which 〉〈 )(cosθlP is calculated 
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where dE/ds is plasma stopping power taken from  Ref. [14], 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

2

2
0

22

0
2

2
0

2
0

/2
123.1ln2ln121

8
11

22
)1(ln2

cmkTr
Zncmr

ds
dE

e

Di β
γ

γ
γ

γ
γ
λγ

β
π  ,        (9)  

which consists of contributions from binary interactions with plasma electrons and from 

plasma oscillations. From these results, we solve Eqs. (2) and (3), and evaluate basic 

moments required for the calculation of the longitudinal and lateral distributions:   
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which was evaluated in previous work for the case of 1-MeV electron stopping in a DT 300 g 

/cm3 plasma at 5 keV. This results in a penetration (<x>) of 13.9 µm [14].   
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Because of azimuthally symmetry, 0=〉〈=〉〈 zy , and    
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In evaluating Eqs. (10), (11) and (12), one needs to evaluate 〉〈 )(cos1 θP  and 〉〈 )(cos2 θP , the 

first and second order mean Legendre polynomials. Substituting Eqs. (5) or (6), respectively, 

into Eq. (8), and using the stopping power [Eq. (9)],  both quantities are readily calculated. 
 

Range straggling is defined by 

22
R )E( 〉〈−〉〈=Σ xx .                                            (13) 

Beam blooming is defined by 

〉〈=Σ 2
B )E( y .                                                       (14) 

Both ΣR and ΣB are evaluated numerically using Eqs. (10), (11), and (12). Although the focus 

of this Letter is on hydrogenic plasmas (Z=1), the strong Z–dependence of scattering is 

directly reflected in the penetration, straggling and blooming (Table 1). In particular, with 

increasing Z the penetration <x>, but not the total path length ( ( ) dEdsdER eT

E

1

0

−

∫=
~

), rapidly 

drops and blooming effects (ΣB/<x>) notably increase. (The constancy in R is a result of the 

fixed ne used for the calculations of Table 1.) Figure 1 illustrates further details of ΣR and ΣB 

as 1-MeV electrons slow in a DT plasma, which demonstrates the importance of these effects 

as the electron energy degrades. As a consequence, an extended region of energy deposition 

occurs longitudinally (± ~3 µm) and laterally (± ~5 µm) about the mean penetration, 13.9 µm 

for this case. 
 

 

 

From a different point of view, Figure 2 shows the effective enhancement of the 

stopping power in the extended region in which straggling and blooming are important. The 

combined effects of ΣR and ΣB will result in an asymmetric energy deposition region about 
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the mean penetration. In contrast to earlier work [10] these calculations inextricably link 

energy loss, straggling, and blooming. Thus the assumption of uniform energy deposition 

over the entire path length of the electron’s trajectory [11] has only approximate justification.  
 

The insensitivity of scattering effects (ΣR/<x> and ΣB/<x>) and ρ<x> upon ρ is 

illustrated in Table 2.  This shows that density gradients, such as would occur towards the 

core region of an actual FI experiment, will not impact the general scope of these calculations. 

The slight increase in ρ<x> with ρ simply reflects the slight decrease in Coulomb logarithm 

of the stopping power [Eq. (9)] as ρ increases. Furthermore, these results are quite insensitive 

over a wide range in temperature [14].  
 

 

Table 3 illustrates the enhancement of scattering effects (ΣR/<x> and ΣB/<x>) as the 

electron energy decreases from 10 to 0.1 MeV. These effects are also important for the 

electron preheat problem [14], as shown in Tables 4, but for regimes of lower energy (10 to 

100 keV) and much lower density. Similar to Table 1, ΣR/<x> and ΣB/<x> are seen to 

increase with the Z of the plasma, where the selected materials are common to those used, or 

contemplated for use at either OMEGA or the National Ignition Facility (NIF), for ablators 

and/or the fuel [4]. Focusing on the NIF, and direct drive scenarios, the DT ice thickness for 

the capsule is approximately 300 µm, which is very comparable to the penetration of 100 

keV electrons.  For present NIF indirect drive scenarios, the Be ablator of the capsule is ~ 

150 µm thick, which is ~ 5 times larger than the penetration of 100 keV electrons. Finally the 

density jump assumed in the Tables (≈4) could, for example, reflect the effects of the passage 

of a strong shock. As illustrated in Table 2 for very different conditions, ρ<x> is again 

insensitive to the change in ρ, but <x> is notably affected.   
 
 

Figure 3 shows a schematic representation of FI capsule. The relativistic electrons are 

generated by an intense laser interacting at the critical surface. As the electrons are initially 

transported, they are subject to Weibel-like instabilities [20,21] which can cause both 

spreading and energy loss in this region.  However, for electrons that transport farther into 

the increased density portions of the capsule (nb/ne < 10-2), Weibel-like instabilities are 
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stabilized and the electrons then become subject to the scattering processes described herein. 

This stabilization can be understood since the gyro radius associated with the self-generated 

fields of the beam current is much larger than λD . This indicates the dominance of the binary 

interactions, and the motivation for exploring these processes in this paper. Thus in this 

regime, the interaction can be envisioned as the linear superposition of individual, isolated 

electrons interacting with plasma.  Hence these scattering processes, which involve energy 

loss, straggling and beam blooming become the ultimate mechanism that determines the 

details of energy deposition, whether in the dense core or outside, and therefore ultimately 

determine the effectiveness of capsule ignition. From a different point of view, the extent of 

beam blooming and straggling is critical for FI target design since the finite size of the highly 

compressed core requires accurate understanding and control of beam divergence which, if 

too severe, will preclude ignition. 
 

In summary, from fundamental principles the interaction of directed energetic 

electrons with hydrogenic and arbitrary-Z plasmas is analytically modeled.  For the first time, 

the effects of stopping, straggling, and beam blooming, a consequence of multiple scattering 

and energy loss, are rigorously treated from a unified approach. The sensitivity of these 

scattering effects, or the lack thereof, has been illustrated for several cases of different Z, 

densities, and initial electron energies, all of which span the range of relevance to many 

present and planned experiments.  For Fast Ignition or electron preheat, enhanced energy 

deposition is found to be inextricably linked to beam blooming and straggling. These effects 

will therefore be important for evaluating the requirements of fast ignition and tolerable 

levels of electron preheat.  
 

This work was supported in part by U.S. Department of Energy Contract #DE-FG03-

99SF21782, LLE subcontract #PO410025G, LLNL subcontract #B313975, and the Fusion 

Science Center for Extreme States of Matter and Fast Ignition Physics at University of 

Rochester.  
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TABLE 1. Interactions of 1 MeV electrons with DT, beryllium, aluminum and copper 

plasmas, assuming plasma Te= 5 keV and ne=7.2×1025 in every cases. For Cu plasma, 

bremsstrahlung loses are about 5%, and are ignored.  

 

 

  
 

Ζ        ρ       R       <x>     ρ<x>    ΣR    ΣB    
〉〈

Σ
x
R   

〉〈
Σ
x
B  

     (g/cm3) (µm)  (µm)   (g/cm2) (µm) (µm)     
 
 

 1      300    17.9   13.9    0.42     2.7    4.7   0.19   0.33 
 4      271    17.9   10.6    0.29     3.8    5.4   0.36   0.51 
13     249    17.9    6.3     0.16     4.2    5.1   0.67   0.81 
29     265    17.9    3.7     0.10     3.7    4.2   1.0     1.14 
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TABLE 2.  Interactions of 1 MeV electrons with DT plasmas of various densities.  

 
 
 
 

 

     ρ       <x>     ρ<x>     ΣR       ΣB     
〉〈

Σ
x
R   

〉〈
Σ
x
B  

(g/cm3)  (µm)  (g/cm2)  (µm) (µm)   
 
 
 

  100      39.7     0.40     8.0   13.4   0.20   0.34 
  300      13.9     0.42     2.7    4.7    0.19   0.33 
1000       4.5      0.45     0.9    1.5    0.20   0.33 
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TABLE 3. Interactions of 0.1-10 MeV electrons with DT plasma of 300g/cm3. ∆E is the 

percentage of energy loss when ΣR and ΣB are starting to become significant, as illustrated in 

Fig. 1. 

 
 
 

 

   Ε0        ∆Ε    <x>   ρ<x>      ΣR     ΣB     
〉〈

Σ
x
R    

〉〈
Σ
x
B  

(MeV) (%)  (µm) (g/cm2) (µm) (µm)   

 

 0.1     25    0.45   0.013    0.12   0.17  0.27   0.38 
 1.0     40    13.9    0.42       2.7    4.7   0.19   0.33   
 5.0     50    94.1    2.82     10.8   20.8  0.12   0.22 
  10     65     201    6.04     15.7   33.2  0.08   0.17 
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TABLE  4. Interactions of 10-keV and 100-keV electrons with DT, Be and plastic CH 

plasmas, common ablator or fuel materials of ICF. The plasma Te ~10eV. (For CH, the 

scattering effects are calculated for carbon ions and all plasma electrons). 

 

 
 

 

 Ε0               ρ         R       <x>      ρ<x>      ΣR       ΣB      
〉〈

Σ
x
R   

〉〈
Σ
x
B  

(keV)       (g/cm3)  (µm)  (µm)  (g/cm2)    (µm)  (µm) 
 

10      DT   0.25      6.0    4.72    1.2×10-4   1.09   1.60   0.23   0.33 
                    1.0    1.67    1.35    1.4×10-4   0.31   0.44   0.23   0.32 
           Be   1.85    0.84    0.57    1.1×10-4   0.18   0.24   0.31   0.42 
                    7.4    0.23    0.16    1.2×10-4   0.05  0.067  0.31   0.42 
          CH     1.0   1.16    0.72     7.2×10-5   0.26   0.35  0.36   0.48 
                    4.0    0.32   0.21     8.4×10-5   0.076  0.10  0.36   0.48  
100    DT   0.25     330    283     7.1×10-3    42.8   75.4   0.15   0.27 
                   1.0     86.0   75.0     7.5×10-3   11.1   19.1   0.15   0.26 
          Be   1.85    43.0   31.0      5.7×10-3   8.17   12.1   0.26   0.39 
                   7.4    11.3     8.5      6.2×10-3   2.20   3.27   0.26   0.38 
         CH    1.0     59.7   42.4      4.2×10-3  13.6   17.2    0.32   0.41 
                   4.0     15.6   11.0     4.4×10-3   3.57   4.49   0.32   0.41 
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FIG. 1 
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FIG. 1. ΣR and ΣB are plotted as a function of square root of the penetration for a 1-MeV 

electron beam in a DT plasma of 300g/cm3 at 5 keV. When the electrons have lost more than 

~40% of their initial energy, both ΣR and ΣB are approximately proportional to 〉〈xρ . 
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FIG. 2 
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FIG. 2. The stopping power is plotted as a function of the electron penetration for 1-MeV 

electrons in a DT plasma (ρ=300g/cm3 and Te=5 keV).  The heavy solid line represents the 

mean energy loss, while the two dashed lines indicate the straggling range over which energy 

is effectively spread. (In this plot, important contributions from blooming are not included; 

see text) The thin line illustrates the continuous slowing-down approximation [14], and is 

directly related to R, the total path length.     
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FIG. 3 

 

 

 

 

 

 

  

 

   

 

FIG. 3. Schematic illustration of beam blooming in a pre-compressed FI capsule. Two 

distinct regions for electron transport are illustrated: First, when nb/ne > 10-2 , the electron 

transport is highly filamented due to Weibel-like instabilities which dominate energy loss and 

beam blooming; however, for nb/ne < 10-2, for which λD  is clearly smaller than the energetic 

electron gyro radius associated with the beam current, the Weibel-like instabilities are 

stabilized and the electrons are then subject to the scattering, straggling, and blooming 

processes described herein.  The dashed lines schematically indicate electron beam 

trajectories without the effects of blooming and straggling (see text). 
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