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Abstract
This paper describes progress in plasmatron fuel reformers and applications to internal
combustion vehicles.  Several plasmatron configurations and their performance with a
variety of fuels are described.  Fuels investigated range from methane and propane to
gasoline, diesel and biofuels.  Applications described include lean spark ignition
operation, NOx trap regeneration, diesel particulate filter regeneration and ignition timing
control in advanced combustion mode engines.
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1) Introduction and organization of report

This report documents work done on the program entitled “Onboard Plasmatron
Hydrogen Production for Improved Vehicles.” This program was funded by US
Department of Energy, Office of FreedomCar and Vehicle Technologies, from May 27,
1999 through Dec 31, 2005, through grant DE-AC03-99EE50565.  The PI of the program
was Dr. Daniel Cohn at the Plasma Science and Fusion Center at MIT, with Dr. Leslie
Bromberg as Co-PI. The technical point of contact at DoE Office of FreedomCar and
Vehicle Technologies was Dr. Sidney Diamond.

Although there were many tasks, the main goals of the program were:

• Develop plasmatron fuel reformers for aftertreatment applications
• Test plasmatron fuel reformers for diesel engine aftertreatment
• Test plasmatron fuel reformer for gasoline engine operation.
• Reform biofuels using plasmatron fuel converters
• Study performance for high flow rates.
• Technology transfer to industry

This report covers the work on the tasks described above.  The main highlights of this
work are:

• Technology has been transferred to ArvinMeritor, who is applying large
resources to develop products for aftertreatment and for lean SI operation.

• Effectiveness of the technology has been demonstrated for NOx trap
regeneration and for SI combustion enhancement, as well as advantages of
hydrogen rich gas sulfur removal from NOx traps.

• Developed understanding of the operation of the plasmatron through modeling
and experiments.

• Demonstrated ability of reform a large variety of fuels, including gasoline,
diesel, ethanol, bio-diesel, bio-oils, methane and propane, and other
alternative fuels.

• Demonstrated ability to operate over a wide range, and scaled device to
operate at large flow rates.

These topics and others are described in the following sections.  The report is organized
as follows: first the different plasmatron fuel reformers used during the program are
described in Section 2, as well as the facility and analytical instrumentation developed for
the program.  Then applications of the plasmatron are described.  Section 3 describes
applications to SI engines, including tests carried out in collaboration with ORNL.
Section 4 and 5 describe applications for aftertreatment, first to NOx trap regeneration
followed by DPF regeneration in Section 5. Section 6 describes application for
plasmatron fuel reformers to HCCI (Homogeneous Charge Compression Ignition) engine
control. Section 7 describes the modeling effort, including fluid dynamics and well as
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chemistry. Section 8 describes the experimental results of reformation using the
plasmatron fuel reformer, during steady state operation.  Section 9 describes transient
operation of the plasmatron fuel reformers for the fuels investigated, with the exception
of propane, whose transient operation was integrated with the steady state investigation in
section 8. Finally, section 10 provides a brief summary of the work.

Section 11 presents the bibliography as well as the references cited throughout the report.
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2) Plasmatron description

There is a need for a compact, efficient hydrogen generator for onboard applications
[Ste74, Hou74, Mac76, Jam94, Bro97, Coh97, Bro99a, Kir99, Gre00, Bro00b, Bro01a,
Bro01b, Kir02, Bro02, Ath03, Bro03].  Such a device could also find applications, in
addition, to the stationary manufacturing of synthetic fuels which starts with the
generation of synthesis gas [see, for example, Bro00a]. The development of a
homogeneous (without the use of a catalyst) process would be attractive, as the cost of
the catalyst and the reactor is a major component of plants used to generate hydrogen rich
gas for natural gas upgrading. It may be particularly useful for smaller scale plants.

Homogeneous plasma-based reactors have been studied in the past [Mul86, Ful95,
Gau98].  Their performance has been lacking, and thus industrial generators of synthesis
gas use catalytic processes.

The plasma assisted fuel converters [Coh98, Bro99e, Bro99f, Cze01a, Cze01b, Sob01,
Dem02, Sob02, Cze03a, Cze03b. Cze03c] use continuously generated plasma as means
of facilitating the reformation of hydrocarbon fuels. By increasing the reaction rates,
plasmatron fuel converters can reduce size requirements for effective reforming, increase
speed of response and increase fuel flexibility. A wide range of fuels can be converted to
hydrogen rich gas. The boost provided by the plasma can facilitate partial oxidation
reactions with negligible soot production and efficient conversion of hydrocarbon fuel
into hydrogen-rich gas. Plasmatron fuel converters can alleviate problems associated with
catalytic reformation, such as response time limitations, sensitivity to fuel composition,
poisoning, soot formation and a narrow operational temperature range.

The process used in plasmatron fuel converters [Coh98, Bro99e, Bro99f] is partial
oxidation, where there are as many atoms of oxygen as there are atoms of carbon in the
air/fuel mixture.  Under ideal circumstances, the oxygen carbon atoms would combine
and form carbon monoxide molecules, releasing all the hydrogen atoms as hydrogen
molecules.  Under ideal stoichiometric partial oxidation conditions, the partial oxidation
reaction is

CnHm + n/2 O2    nCO + m/2 H2

In this case there is just enough oxygen around to convert all the carbon in the fuel into
CO. The partial oxidation reaction is exothermic.  In the case of liquids fuels (gasoline,
diesel), approximately 15% of the heating value of the fuel is released in the partial
oxidation reaction.

In practice it is necessary to have more atoms of oxygen than atoms of carbon, and thus
the oxygen to carbon atom ratio (O/C ratio), is larger than 1. The process of partial
oxidation is exothermic, but with relatively slow kinetics.  The use of plasma enhanced
partial oxidation process has been proposed and investigated in the past.
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There have been many designs of plasmatrons used during this program.  However, all
the plasmatron designs are based on one of three types: 1) high current, thermal
plasmatron (gen 1);  2) low current, non-thermal plasmatron with central electrodes (gen
2); and 3) low current, non-thermal plasmatron with large area electrodes (gen 3).  The
purpose of this section is to provide a description of the different types of plasmatrons.

a) Thermal plasmatron (gen 1)

All plasmatrons provide ohmic heating of gases to elevated temperatures. At these
temperatures the gas is partially ionized.  Plasmatrons provide highly controllable
electrical heating of this gas.  The increased temperatures, ionization levels and mixing
provided by plasmatron heating accelerate reformation of hydrocarbon fuels into
hydrogen rich gas.  The high temperatures can be used for reforming a wide range of
hydrocarbon fuels into hydrogen-rich gas without the use of a catalyst.  It thus is possible
to eliminate problems associated with catalyst use, such as narrow operating temperature,
sensitivity to fuel composition, poisoning, and response time limitations.

By increasing the reaction rates, plasma heating could significantly reduce size
requirements for effective reforming, increase speed of response and increase fuel
flexibility.  A wide range of operation is possible, from partial oxidation to steam
reforming.  The boosting of the reaction rate would occur by creation of a small very high
temperature region (5000-10000 K) where radicals are produced and by increasing the
average temperature in an extended region.

The additional heating provided by the plasma can ensure a sufficiently high number of
chemically reactive species, ionization states, and elevated temperatures for the partial
oxidation reaction to occur with negligible soot production and with a high conversion of
hydrocarbon fuel into hydrogen-rich gas.  The effective conversion of hydrocarbon fuel is
aided by both the high peak temperature in the plasma and the high turbulence created by
the plasma.

A plasma boosted reformer can be made very small because of the high power density.
The rapidly variable plasmatron parameters (energy input, flow rate, product gas
composition, etc) make this technology very attractive for application to the dynamic
demands for hydrogen-rich gas production in vehicles.  It should be possible to
practically instantaneously produce hydrogen-rich gas for use during cold startup.
Throughout the driving cycle, rapid changes in hydrogen-rich gas flow can be
accommodated by variation of plasmatron parameters. [Coh97]

Figure 1 shows a diagram of a multi kilowatt plasmatron. The device operates at
atmospheric pressure, with air as the plasma forming gas.  The plasmatron operates in DC
mode. The plasmatron consist of copper cathode with a hafnium tip, and a copper tubular
anode [Rud79]. The electrodes are separated by an electrical insulator. The cathode and
anode are water cooled, and this cooling represents a sink of energy.  Measurements on
the cooling water temperature rise indicate that the plasmatron is about 70–80% efficient.
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Hafnium of the cathode tip allows operation on air as the plasma forming gas without
excessive oxidation. The hafnium tip has a high electron emissivity and relatively long
lifetime at current less than ~100 A.

The plasma arc ignites across the electrode gap.  Air is injected tangentially upstream
from the electrodes to produce a vortex that elongates the plasma inside the tubular
anode. The anode root of the arc is in constant rotation in order to minimize electrode
erosion. The hydrocarbon fuel and additional air are injected downstream from the
electrodes. The mixture of hot air and vaporized hydrocarbons enter the plasma reactor
where the reaction takes place.

Figure 2.1 shows a photograph of the plasmatron without a reaction extension cylinder,
operating on air at about 1.5 kW. The plasma jet is pointing upwards. During reforming
operation, fuel and additional air are injected downstream from the stainless steel flange
shown in Figure 2. 1.

Figure 2.1. Diagram of thermal plasmatron used for the engine experiments.
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Figure 2.2.  DC arc microplasmatron operating in air without fuel.
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Figure 2.3.  Microplasmatron with reaction extender cylinder and two heat exchangers
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Figure 2.2 shows a photograph of the plasmatron without a reaction extension cylinder,
operating on air at about 1.5 kW. The plasma jet is pointing upwards. During reforming
operation, fuel and additional air are injected downstream from the stainless steel flange
shown in the Figure 2.2.

Figure 2.3 shows a microplasmatron fuel converter that includes a reaction extender and a
heat exchanger. The heat exchanger can be used to simultaneously cool down the
hydrogen-rich gas and to preheat the incoming air and fuel. Preheating the air/fuel
reduces the electrical energy requirement to the plasmatron and increases the hydrogen
yield.  Work is continuing in the development of high efficiency, high temperature heat
recuperator.  Simple calculations show that the use of preheat can half the electrical
power requirements to the plasmatron.

A typical microplasmatron fuel converter includes a steel tube 4 cm in diameter and 15
cm long thermally insulated by fiberglass felt and steel screens. The samples of hydrogen
rich gas are cooled down and analyzed using gas chromatography (GC). Table 2.1 shows
the typical plasmatron range of operating parameters for a DC arc device. Materials that
could be used in various components of the plasma boosted reformer are copper,
zirconium and molybdenum. Conversion efficiency, electrode life, size, and weight are
key feasibility issues and require detailed experimental investigation.

Table 2.1.  Parameters of conventional DC Arc plasma boosted reformer.

Power 1.5-10 kW.
Voltage 120-140 V DC
Current  15-75 A DC
Flow rates
      Air 0.5-1.5 g/s
      Fuel 0.3-0.5 g/s

The setup used in the experiments described below with the engine is shown in Figure
2.3. The plasmatron is followed by a reaction extension cylinder, a simple heat exchanger
(not cooled for the present experiments), and a gas-to-water heat exchanger, used to cool
the reformate.

Summary of thermal plasmatron features

The thermal plasmatron, because of the high power , can handle very easily transients,
with very fast startups, even from room temperature conditions.  In addition, the thermal
plasmatron can drive slightly endothermic, or slightly exothermic reaction.  Thus, it is
possible to achieve good reformation at relatively low values of oxygen to carbon ratios.

However, because of the high power, the energy consumption is high, and plasmatron
fuel reformers based upon this system have a substantial hit on the system efficiency.  In
addition, because the system operates at relatively low voltages by high currents, the
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electrodes, and in particularly the cathode, have substantial erosion.  Typically, a cathode
would last for a day or two (20-50 hours).

Finally, the system requires cooling water for aggressively cooling the electrodes. The
use of cooling water put a constraint on the potential use of thermal plasmatron fuel
converters to mobile sources.

b) Low current plasmatron fuel converters (gen 2)

Plasmatron fuel converters provide low current electrical discharges in flowing gases of
hydrocarbon fuels and air (and/or other oxidants).  The resulting very local generation of
reactive species in the flowing gases along with increased mixing accelerates reformation
of hydrocarbon fuels into hydrogen rich gas. Although thermal plasmatron fuel
converters may also be utilized for increasing enthalpy, further accelerating the reaction
rates, the second generation, low current plasmatron does not increase the enthalpy of the
gas substantially. The conditions of the low current, second generation plasmatron,
however, still facilitate the reforming of a wide range of hydrocarbon fuels into
hydrogen-rich gas without the requirement of using a reformer catalyst.  It is possible to
eliminate problems associated with reformer catalyst use, such as narrow operating
temperature, soot formation, sensitivity to fuel composition, poisoning, and response time
limitations.

Figure 2.4 shows a diagram of a low current, second generation plasmatron reformer. Air
and fuel are continuously injected in a plasma region provided by a discharge established
across an electrode gap. The device operates at atmospheric pressure, with air as the
plasma forming gas. Use of a discharge mode with non-equilibrium features allows for
operation at relatively small electrical powers, at much reduced current relative to earlier
compact arc plasmatron fuel reformers developed at MIT. When operating DC, the
cathode can be a spark plug. The ground electrode of the spark plug would have been
removed. The anode can be a steel or copper cylinder. Neither electrode is water cooled.

Table 2.2 shows the typical plasmatron parameters for a low current, low power compact
plasmatron fuel converter.

The plasma source is followed by a reaction extension cylinder. A simple heat exchanger
can be used downstream from the reaction extension cylinder, both to cool the reformate
and to preheat the incoming air and/or fuel.
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Figure 2.4. Low current, nonthermal plasmatron fuel converter (gen 2).

Table 2.2
Parameters of low current compact plasmatron fuel converter

The required electrical energy input to the compact plasmatron fuel converter is on the
order of 2% of the heating value of the input fuel.

The low current device has been used to convert natural gas, gasoline and diesel fuel into
hydrogen rich gas. The device showed no evidence of soot, even after extended
operation. Typical reforming efficiency in partial oxidation mode of operation was

Power 50–300 W
Current 15–120 mA
H2 flow rate 30–50 liters/min
Height 25 cm
Volume 2 liter
Weight 3 kg
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around 60-70% (ratio of heating value of the hydrogen rich gas to heating value of the
fuel). Diesel fuel streams with power levels of 5 to 20 kW have been processed into
hydrogen rich gas.  It is projected that reforming efficiencies of 80% will be attainable
with improved devices. Previously, diesel fuel has been successfully reformed using a
compact plasmatron reformer using arc plasmas [Bromberg3].  However, arc plasmatron
reforming utilizes substantially higher electrical powers and currents.

Projected parameters for higher throughput versions of low current compact plasmatron
fuel converter systems are an H2 flow rate of 500 liters per minute, and electrical power
requirements of 50-1000 W.

Summary of gen 2 plasmatron features

The second generation plasmatron operated adequately although at much lower power
than the thermal plasmatron (gen 1). It required operation at slightly value of oxygen to
carbon ration, especially during startup. It was able to operate without soot production.

However, the fact that the electrode is on the middle of the system, the place where it
would be most convenient to injected liquid fuels, makes the system hard to design, and
to avoid conditions where the fuel spray hits the walls. It has been determined that droplet
coalescence is one of the largest reasons for soot formation.

In addition, as the axial electrode is much smaller than the other one, it suffers from
erosion, although not in the scale of the thermal plasmatron.

c) Wide area electrode, low current plasmatron fuel reformer
(gen 3)

Figure 2.5 shows a diagram of the gen 3 plasmatron fuel converter used in the latest
phases of this program, both experimental and modeling effort.  It consists of an axially
symmetric set of concentric electrodes with an axial gap.  There is a gaseous input across
the gap, and since it has a large swirl flow associated with it, it is referred as the swirl
gas. The purpose of this flow is to push the discharge, which originates across the gap, to
the volume of the plasmatron.  This flow has both a radial component that pushes the
discharge towards the axis of the device, as well as a swirl component that rotates it.

The discharge is created by a constant current AC power supply, as is the case with the
second generation plasmatron.  The power supply can produces very high voltages (on
the order of 10-20 kV) under conditions where the plasma is not present, as well as
relatively low voltage to maintain the discharge.  During the current maintaining phase,
the voltage is on the order of 500-2000 V, and it is time varying.   As the discharge
lifetime increases, its length increases, with an associated increase in the discharge
voltage. The electric field away from the sheaths is on the order of 400 V/cm, the gas
temperature is on the order of 2400 K and the electron energy is on the order of 1 eV
[Anz04]
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The setup used in the experiments, as well as the experimental results with methane, have
been reported elsewhere, and will only briefly be described here.

The plasmatron shown in Figure 2.5 has three different gaseous flows, introduced
through the wall gas, the swirl (plasma) gas, and the axially injected gas. The wall gas is
injected in the axial direction at an axial location similar to the axial nozzle, with no
swirl.  The swirl (plasma) gas is injected downstream from the wall air and the axial gas,
with a large amount of vorticity.  The swirl gas moves the discharge into the fuel region,
and provides the rotation motion that moves the arc roots on the electrodes (to minimize
electrode erosion).

There are several other inputs to the plasmatron.  There is an axially directed centered
input that is commonly used for liquid fuels. The liquid nozzle is surrounded by a fast gas
flow, making up an air-assisted injector.  The nozzle and axial injection has not been used
in the present experiments, as previous experiments with propane indicated that best
performance is obtained when the hydrocarbon fuel is mixed with the swirl gas.

There is a third input of gases, an axial gas that is injected at the same axial location of
the air assist injector, but at large radii.  The wall air is injected mainly in the axial
direction. In the cases of the experiments described in this paper, and the modeling to
analyze them, the axial gas is composed exclusively of air.

Typical parameters of the gen3 plasmatron are shown in Table 2.3. It is the gen-3
plasmatron that has been used for testing with NOx traps, A device similar to the gen-3 is
being developed by ArvinMeritor for combustion enhancement in spark ignited engines.

Table 2.3   Characteristics of a gen-3 plasmatron diesel converter.

Electric power W 200
O/C 1.2
Diesel flow rate g/s 0.8
  Corresponding chemical power kW 36

Reformate composition (vol %)
H2 7.6
O2 1.3
N2 64.0
CH4 2.4
CO 13.0
CO2 4.4
C2H4 2.2
C2H2 0.0
H2O 7.1

Energy efficiency to hydrogen, CO and light HC 65%
H2 flow rate l/min (STP) 20
Soot (opacity meter) 0.0%
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Figure 2.5  Diagram of a gen-3 plasmatron optimized for diesel reforming.

Figure 2.6.  Photograph of plasmatron fuel reformer used for experiments with propane,
natural gas, gasoline and bio fuels during the last year of the program (gen 3a)

Figure 2.6 shows a photographs of the plasmatron used in the later stages of the program
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Summary of the gen 3 plasmatron features

The gen 3 plasmatron is reliable, easy to use, and can operate over very wide range, with
no noticeable electrode wear.  The flexible introduction of the air and the fuel allows for
operation over wide throughputs as well as O/C ratios, with good conversion and no soot
production.

However, the system is quite complex, requiring 3 air flows.  There has been work to
investigate the use of flows produced by a simple set of controllers. For the best
performance, the 3 air inputs needed to be controlled independently.

d) Plasmatron development at ArvinMeritor
At the ArvinMeritor Columbus Technical Center, the diesel plasmatron fuel reformer has
been further developed for after-treatment applications.  With a reformer catalyst, the
hydrogen concentration in the reformate was about 22% with low soot production of
around 20 mg/m3.  The plasmatron was enclosed in a metallic housing that minimizes
electromagnetic interference (EMI) radiation, which could adversely affect operation and
control of the plasmatron. For on-board applications, a 250W power supply with full
computer control of the power level, requiring minimal cooling, has been developed, for
both 12 and 24 volt vehicle electrical systems.  A compact high voltage transformer is
utilized in this design. This version of the plasmatron was tested extensively on the
bench, prior to installation on vehicles.

Figure 2.7. Gen H plasmatron developed at ARM.
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Figure 2.7 shows the Gen-H Fuel Reformer which is ArvinMeritor’s implementation of
the MIT plasmatron .

e) Description of the experimental setup

The plasmatron reformer facility used in the latest sets of experiments is a modification
of a plasmatron fuel reformer that had been optimized for diesel fuel operation. The unit
was operated mainly at 50-500 W of electrical power. The power supplies were operated
as constant current sources operating between 200 kHz and 260 kHz.

Figure 2.8 Schematic layout of the plasmatron setup

Figure 2.8 depicts the experimental setup used. The plasmatron was mounted on a steel
reaction chamber that allows the homogeneous partial oxidation reactions to take place
with enough residence time. The dimensions of this chamber are 5 cm diameter by 12.5
cm long. The products of reaction from this chamber go into a 5 cm diameter by 17.5-cm
long chamber packed with nickel-based catalyst on an alumina substrate. The chamber is
thermally insulated by a half-inch thermal insulation made of porous alumina ceramic.

Two sample ports are used for sampling the reformate gases. The first one is located on
the reaction chamber immediately upstream from the catalyst and the second one is
located at the exhaust, downstream from the catalyst chamber. Both sampling lines are
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water cooled. The temperature inside the reactor is measured by a thermocouple located
inside reaction extension cylinder.

Calibrated mass flow controllers are used to control the multiple air inputs into the
plasmatron. The atomization air flow rate was monitored by a TSI air flow sensor.  The
TSI sensor was also used to confirm that the two other mass-flow controllers (for the wall
air and for the plasma air) were within certification.

The gaseous fuel (methane, propane) flow is measured using a calibrated rotameter, while
the air flows are measured and controlled with mass flow controllers. It was difficult to
use a mass flow controller with gaseous fuels because the low flow rates of the fuel made
very difficult to maintain proper calibration. Two rotameters in parallel were used to
provide the required methane flow, with both operating near the middle of their range.
Under these conditions, the methane flow was accurate within 10-20%.  The rotameters
are compensated for pressure variations that occurs as the swirl air is varied.  There is no
variation in pressure at the rotameters when the wall air is varied.

For liquid fuels, the approach used in the plasmatron fuel reformer work has been to form
a fine spray from the liquid fuel, followed by air assist atomization.  We expect to have
droplet size on the order of < 20 µm. The liquid fuels in the present tests have been
introduced into the plasmatron through a nozzle that forms a fine spray of droplets.  The
nozzle used in these experiments is a B-37 nozzle. The characteristics of this nozzle are
given in Table 2.4.

Table 2.4.  Characteristics of B37 nozzle

40 60 80 100 200
Flow rate (gph) 0.37 0.45 0.52 0.59 0.83
Flow rate (cc/s) 0.38 0.46 0.53 0.61 0.85
Sauter Mean Diameter (µm) 54 39.4 34.5 32.1 26.5

Table 2.4 is shown for water, and thus it is only indicative of the performance for the case
of liquid fuels, which may be lighter or more viscous. The stream of droplets is further
atomized by the fast flowing atomization air, which has a velocity on the order of 180
m/s at the exit of the air atomization nozzle (at 50 lpm STP flow rate, corresponding to ~
1 g/s).

The fuel pump used to pressurize and monitor the flow rate was a variable displacement
pump attached to a variable speed drive from Fluid Metering. The pump was calibrated
by capturing and then weighing the fluid for a given amount of time. The adjusted
parameter was the speed of the drive. The pump provides constant flow rate for pressures
lower than about 200 psi, and we have stayed below this limit, operating close to 50 psi.
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The system is controlled by a LabView software developed in our laboratory. The
software continuously acquires and stores several parameters such as temperature, air and
fuel flow rates during operation.

The composition of the gas is determined using both a gas chromatograph and a mass
spectrometer.

The mass spectrometer is a Pfeiffer OmniScan 200.  The device has a 200 micron ID
capillary sampling line that is directly introduced into the reactor, at a location close to
the exit of the reactor.  The volume of the reactor upstream from the sampling point,
including the plasmatron head volume, is about 1000 cm3. The reactor volume is used in
the calculations in the accompanying papers. The capillary is heated in order to prevent
condensation in the column.  The length of the capillary is about 1.5 m, and results in a
time delay of about 3 s.  This is a pure time delay.  The device can take samples at a rate
of 3 Hz, and the length of the capillary does result in small but measurable diffusion. Real
time concentration of oxygen, methane, water and hydrogen can be obtained.
Unfortunately, because of interference between N2 and CO (with both masses of 28), it is
not possible to reliably monitor either. The accompanying paper describing the startup of
the plasmatron methane converter further described the MS system. The mass
spectrometer is calibrated by placing gas standards through the plasmatron, and then
measuring the signal.  The signal is compensated by the pressure in the mass
spectrometer.

The GC is an Agilent MTI-2000 model with two columns, one for permanent gases and
the second one for hydrocarbons.  The GC is calibrated using gas standards from BOC
gases in the range approximately similar to those that are being measured. The GC
sampling point is near the mass spectrometer location.

Special attention was given to measure the composition of the gas as accurate as possible.
The results indicated that the GC has a reproducibility of about 8%.  The mass flow
controllers are calibrated at the manufacturer (Omega), and are supposed to have an
accuracy of 1% through the middle of the range.  The rotameters used in the experiments
have an accuracy of about 5%. It was determined that the key parameter for the
reforming, the O/C ratio, could vary by about 15%, and it differed from the
measurements of the composition of mixed reagents, and that calculated from the inputs.
However, during a given set of runs the deviation remained relatively constant, as some
of the parameters were being slightly varied while the other remained constant. Thus,
although comparison between experiments carried out in different days have the
uncertainty in the O/C ratio of ~15%, results from a given set of results during the same
set of experiments have decreased relative uncertainty.

There are one or multiple temperature sensors (thermocouple) located near the axis, at
several places along the reaction extension cylinder.
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Transient analysis with a mass spectrometer

In order to be able to use the mass spectrometer as quick, real time concentration
analysis, it was necessary to develop both software and hardware.  This section describes
the mass spectrometer setup, which has been used for determining the transient behavior
of plasmatron fuel reformers.

Description of the mass spectrometer

Typical conditions of the sample gas near the entrance to the capillary are shown in Table
2.5 for a capillary with an ID of 250 microns. It should be noted that the surface heat
transfer coefficient, h, is so high that the gas in the capillary reaches the wall temperature
very fast (in distances much smaller than 1 mm).  Thus it is a safe assumption that the
sample is at the same temperature as the capillary. The temperature of the capillary varies
along its length. One section of the capillary is inside reactor, there is a section between
the reactor and a heated blanket, and finally is the heating blanket section. At one end of
the capillary, the temperature is determined by the gas in the plasmatron, at atmospheric
pressure conditions. At the other, the pressure is vacuum, and the temperature is that of
the heated capillary. The temperature of the heated capillary is 150 C (423 K).

Table 2.5.  Values for a typical case for the capillary

Next we calculate the velocity of the sample gas and the pressure along the capillary.  It
is assumed that the pressure drop is given by the Darcy relationship

dp/dx = f  /D u2/2

where f is the friction factor (also known as the fanning factor) and u is the local speed of
the gas.  The friction factor depends on the Reynolds number.  For laminar flows, as in
the case of flows in the capillary, the friction factor is given by

p Pa 101000
m dot kg/s 2.5644E-07
T K 1300
density kg/m^3 0.27433337
v m/s 51.2442538
cp J/kg K 1196.13342
nu m^2/s 0.00018873
nuf viscosity 8.804E-05
k W/mK 0.08331839
Re 88.7052633
Pr 0.74328058
Nu 169.079181
h W/m^2 K 92437.0406
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f = 64/Re

Figure 2.9.  Pressure drop as a function of the distance along the capillary

16 cm of the capillary are inside of the plasmatron methane reformer exhaust tube, for
direct sampling of the reformate. Two cases are analyzed.  During calibration, the
temperature of the first 16 cm of capillary is at room temperature (298 K), while during
those times when the reformer is operating, the first 16 cm are at approximately1300 K,
the temperature of the reformate..  After this region, there are 40 cm of capillary at room
temperature, needed to plumb the distance between the reformer and the mass
spectrometer. The rest of the capillary, inside a heating blanket and 1 m in length, is
heated to 150 C (423 K). It is assumed that a 200 micron capillary is used.

The results are shown in Figures 2.9 and 2.10.  Figure 2.9 shows the pressure along the
capillary for both cases.  The pressure has been calculated by dividing the capillary into
small segments and calculating the pressure drop and the fluid properties at each
segment.  The flow rate is varied until the pressure becomes small and the flow becomes
sonic (choke flow) at the capillary end that is in the mass spectrometer. The flow rate for
the case of high temperature is 0.31 cc/min, while during calibration the flow rate is 1.24
cc/min (at STP). This result indicates that the pressure at the mass spectrometer should a
strong function of the temperature of the gas being sampled.  Because of this effect, the
operating pressure during the experiments has been in the low 10-6 mbar region,
somewhat lower than the recommended optimal pressure of the instrument.

Capillary (heated to 423 K after 0.6 m)

0

20000

40000

60000

80000

100000

120000

0 0.5 1 1.5 2

Distance along capillary (m)

Pr
es

su
re

 (
Pa

)
T=1300K, 0.31 cc/min

T=298K, 1.24 cc/min



23

Figure 2.10  Velocity as a function of the capillary distance for the case at 298 K for the
first 10 cm, 423K for the other 90 cm, and for a flow rate of 0.6 cc/min, for a 200 micron
capillary.

The corresponding velocity of the sample along the capillary is shown in Figure 2.10, for
the case with the room temperature inside the reactor.  The discontinuity in the velocity
and pressure at 0.6 m is due to the sudden change in gas temperature as the sample enters
the section of the capillary that is inside the heating blanket. The velocity is increasing
very rapidly towards the end of the capillary, and it should be sonic at the end of the
capillary, where the model breaks down. The flow for which this happens is called the
critical flow.  For higher flows, the sonic region occurs inside the capillary, while for
lower flows the pressure at the end of the capillary is substantially higher, and not
consistent to the fact that the capillary ends in a high vacuum system (a few times 10-6

Torr).  In these calculations it is assumed that the sonic boundary occurs at the end of the
capillary.  In principle, this is not necessary, as the flow can become molecular in nature
(rather than viscous) through a section of the capillary.  But in that case the time delay
would be shorter than when the sonic boundary is at the end of the capillary, and thus this
calculations provides an upper bound to the time delay.

Figure 2.11 shows the critical flow rate as a function of the capillary size, for the cases of
both temperatures.   The critical flow rate is proportional to the fourth power of the
diameter of the capillary.

The temperature effect on the flow rate is substantial (about a factor of 4), from about 1.2
cc/min for 298 K to 0.3 cc/min for the 1300 K case). As the temperature increases, with
viscosity a strong function of temperature, the critical flow through the capillary
decreases.
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Figure 2.11.  Flow rate as a function of the capillary size, for the cases of high and low
temperatures in the plasmatron methane reformer exhaust.

Calculations vs experiments

The experimental results indicated that there was a 3 s delay at the high temperature, and
a 0.5 s broadened rise time. In the experiments it was not possible to determine whether
the broadening is due to the time response of the plasmatron methane reformer, or due to
the resolution of the MS system (including the sampling).

The volume of the reactor is estimated to be 0.5 l (2in diameter, 10 in long), with a factor
of 2 increase due to the volume in the exhaust tube upstream from the sampling point.
Then, with 300 liter/min flow rate, it is estimated that the transit time through the reactor
is about 0.2 s at room temperature, and that two transit times (for 2 e-foldings, for the
case of mixing) is on the order of 0.4 s. For the warm reformate, the2-transit times are on
the order of 0.1 s.

The transport delay time through the capillary is calculated through the integral

τdelay = integral (dl/v)

where dl is the step length along the capillary and v is the sample velocity along the
capillary, calculated above.

The calculated time delays as well as the critical flow rates are shown in Table 2.5 as a
function of the ID of the capillary, for both the lower temperature operation as well as the
high temperature..
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Table 2.5  Characteristics of MS capillary using simple model

In order to reduce the response time to less that 5 s, it is necessary to use a 200 micron ID
capillary. The flow rates are increased by more than 1 order of magnitude from that using
a 100 micron capillary.

The experimentally measured pressure by the internal gauge is on the order of 1.9 10-6

mbar, or about 1.5 10-6 Torr.

In addition to the delay, there is a broadening of the transient, due to diffusion.  To
estimate the magnitude of the diffusion, assuming that the gas is hydrogen with a
diffusion coefficient of about 10 cm2/s, and assuming a transport time as shown in table
1, the diffusion time that is calculated is small.

It should be noted that there were discrepancies between the observed and measured.  For
one, when the plasmatron methane reformer was started, and the temperature of the
exhaust increased to about 1300 K, there was not a large drop in the pressure of the
capillary, as would have been predicted by the results shown in Table 2.5  However, the
calculations have been useful in guiding the choice of the capillary, and in understanding
the nature of the delay and the loss of resolution due to diffusion.

Using the experimental results it is possible to determined the e-folding of the
concentration.  The easiest and fastest method to change the concentration in for
determining the time response of the mass spectrometer is by turning down the plasma
during reforming, and looking at the changes in the ion currents.  This is faster in our
setup than changing the inputs (due to long piping).  Using the results determined in the
accompanying paper for propane [Bro05e] the e-folding of the concentration is found to
be about 0.5 s, or 1 s for a 90% change. Thus it is not possible with the present setup to
determine responses faster than this.  As will be seen below and in [Bro05e], this is about
the time constant of the changes.

Calibration with CFD code.

The simple model was tested using a commercially available CFD code, FLUENT.  The
calculations for a 1 m long capillary, 250 micron diameter, at 298 K, indicated a mass
flow rate of 3.3 10-7 kg/s (needs double precision to converge). Using the simple model
described above, the calculated mass flow rate is 1.15 10-7 kg/s, or about a factor of 3

Capillary ID microns 102 152 203 254

τdelay (298 K) s 3.5 1.6 0.9 0.6
Flow rate cc/min 0.078 0.39 1.24 3.03

τdelay (1300 K) s 12.35 5.50 3.13 1.99
Flow rate cc/min 0.02 0.10 0.31 0.76
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lower.  In order to make the two agree, the Reynolds model for the friction factor f was
decreased until the two agreed.  They did agree for a multiplier of 0.35.
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3) Plasmatron applications to spark-ignition engine

Decreasing emissions from motor vehicles and increasing efficiency is a necessary step
toward improving air quality and decreasing greenhouse gases.  Internal combustion
engines for transportation constitute the single largest consumer of imported oil and are
also a major source of ozone-producing gases such as NOx that affect urban areas. A
variety of potential improvements are presently being investigated: lean-burn engines;
increased compression ratio; improved catalyst formulations; use of close coupled
catalysts; new types of exhaust treatment; electric and fuel-cell powered vehicles; and
alternative fuels.

A concept that could substantially reduce emissions is onboard hydrogen generation
using microplasmatron fuel converters. Plasmatrons are electrical gas heaters that make
use of the conductivity of gases at high temperature.  Microplasmatron fuel converters are
compact, rugged, can be used with a variety of fuels and provide rapid response. Large
reductions in emissions from SI engines are possible using the hydrogen-rich gas
produced by plasmatron conversion of hydrocarbon fuel.  Increased flame speed in the
cylinder extends the lean limit of SI engine operation [Hey88]. The combination of
increased flame speed and lower flammability limits of hydrogen can thus stabilize
combustion during lean operation.

Very lean operation could reduce engine NOx production by a factor of one hundred
relative to stoichiometric operation [Bre7, Mac76, Hom83]. Hydrogen addition could
also be used to reduce NOx emissions by facilitating use of increased exhaust gas
recirculation (EGR) [Kur79]. Onboard production of hydrogen is also attractive for
reduction of cold start emissions, as well as for catalyst regeneration and post treatment.

Hydrogen addition can also be found useful to increase the octane of the fuel, as both
hydrogen as well as CO have high octane numbers [Top04]. The increase octane
provided by the hydrogen rich gas can be used to increase the compression ratio of the
engine or allow for turbocharging, further increasing the efficiency of the engine. Finally,
the hydrogen rich gas may be useful during cold start, both minimizing the cranking, as
well as potentially decreasing the hydrocarbon emissions due to cold start.

Concepts for use of plasmatron generated hydrogen-rich gas in spark ignition engines
have been discussed in papers [Rab95, Coh96, Coh98, Bro99a]. Engine experiments have
also performed using bottled synthesis gas [Bre73, Mac76, Hom83, Kir99], and with
conventional reformers operating on methane [Smi97] or ethanol [Dob98,Hod98]. This
program reports the first use of a compact plasma boosted reformer to convert gasoline
into hydrogen rich gas which is then combusted in an internal combustion engine
resulting in a large decrease in air pollutants [Gre00, Bro99b].
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a) SI engine test setup and plasmatron performance

A gen-1 compact plasma boosted reformer was installed and tested on a production in-
line four-cylinder SI gasoline-fueled engine (1994 General Motors Quad-4) at Oak Ridge
National Laboratory (ORNL)). The Quad4 has a 2.3 L displacement, 9.2 cm bore, 8.5 cm
stroke and compression ratio of 9.5.  This engine is port-fuel-injected and does not utilize
a turbocharger or exhaust gas recirculation.  The engine was coupled to a 130 kW (175
hp) eddy-current (Power Dyne, Inc.) dynamometer for engine speed and load control.
Engine control management was carried out with a TEC-II control system
(Electromotive, Inc.)  The TEC-II provided access to all calibration parameters (raw fuel
curve, enrichment, spark advance, and exhaust O2) for proper engine operation. The
TEC-II control allows the user to set desired air/fuel ratios (lean, rich, and
stoichiometric).  It can also adjust the fuel automatically to maintain stoichiometric
air/fuel ratio by monitoring the exhaust gas oxygen.

Along with engine operating parameters and in-cylinder pressure, engine out regulated
emissions (CO, HC and NOx) and PM were measured at each operating point.  Total
mass concentration and rate of PM was measured with a Tapered Element Oscillating
Microbalance (TEOM, R and P Co. Model 1105).  A scanning mobility particle sizer
(SMPS, TSI, Inc.) measured PM size and number. CARB Phase II certification grade
gasoline was used for engine and plasmatron operation.  The gasoline equivalent air/fuel
ratio was measured with a universal exhaust gas oxygen (UEGO) sensor (Horiba MEXA
110) in the exhaust stream.  Therefore during reformate addition the reported equivalence
ratio is actually slightly higher because of partial combustion in the microplasmatron.

The microplasmatron was operated with a constant gasoline throughput of 0.25 g/s.  The
reformate was cooled down to room temperature by a low pressure shell-in-tube heat
exchanger.  The composition of the microplasmatron output was continuously monitored
using a conventional tailpipe emissions monitor (Horiba MEXA 554).  Table 3.1 shows
the measured parameters of the microplasmatron during experiments conducted at ORNL
and MIT.  The electrical power input to the microplasmatron was about 2% of the heating
value of the fuel processed. This microplasmatron incorporated several design
improvements which will be discussed in a later publication.

Experiments were conducted at two engine operating conditions: the first one at 2300
rpm and 4.2 bar brake mean effective pressure (BMEP); and the second one at 1500 rpm
and 2.6 bar BMEP.  Maximum brake torque (MBT) spark timing was defined for both
operating conditions at stoichiometric conditions with the engine in closed-loop control
mode.  Once the MBT spark timing was defined for each condition, spark timing
remained fixed as air/fuel ratio was increased with the engine in open-loop control mode.
BMEP was also kept constant as air/fuel ratio was increased.
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Table 3.1  Operating conditions for the microplasma reformer.Microplasma reformer used for engine tests
at MIT at ORNL
(GC) (Horiba)

Power, W 270
Fuel flow rate, g/s 0.25

Composition of reformate
CO 20% 18-21%
CO2 3.5% 4%
CH4 0.5%
C2H4+C2H6 0.2%
H2 16%
N2 60%
HC (ppm) 260-410

Reformate was introduced into the engine via the intake manifold downstream of the
throttle.  The overall hydrogen addition was relatively small, being about 4% of fuel
heating value at the 2300 rpm condition and about 9% at the 1500 rpm condition.  The
maximum reformate flow rate was determined by heat removal limitations of the
plasmatron reactor.  Bench top tests are being conducted in the laboratory to remove this
limitation.

b) Results
Figures 3.1 and 3.2 show the Coefficient of Variation of the gross Indicated Mean
Effective Pressure (COV of IMEP) as a function of equivalence ratio for the two
operating conditions. Both cases of baseline operation (without reformate addition) and
the case with reformate addition are shown in the figures. The equivalence ratio in these
figures has been determined from the exhaust gas composition. The presence of hydrogen
in the engine substantially reduces the COV of IMEP, even at the 2300 rpm condition,
when the reformate addition is a small fraction of the total fuel.
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Figure 3.1.  COV of IMEP as a function of exhaust equivalence ratio (1500 rpm, 2.6 bar
BMEP).

Figure 3.2. COV of IMEP as a function of exhaust equivalence ratio (2300 rpm, 4.2 bar
BMEP).

Figures 3.3 and 3.4 show the NOx emissions as a function of the COV of IMEP.  The
plots illustrate the reduction of NOx emissions within acceptable levels of cycle-to-cycle
combustion variations (3 to 5% COV of IMEP).  The NOx concentration decreases with
the reformate addition for a given COV of IMEP, even with relatively small reformate
addition. At a COV of 5%, NOx is reduced by a factor of about a hundred by the addition
of plasma boosted reformer generated hydrogen at 1500 rpm engine operation. Higher
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reformate addition may be necessary, especially for the higher load cases.  The plasma
boosted reformer is presently being modified to provide increased hydrogen generation.

Figure 3.3.  NOx emissions as a function of the COV of IMEP (1500 rpm, 2.6 bar
BMEP).

Figure 3.4.  NOx emissions as a function of the COV of IMEP (2300 rpm, 4.2 bar
BMEP).
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Figure 3.5.  Hydrocarbon emissions as a function of the COV of IMEP (1500 rpm, 2.6
bar BMEP).

The corresponding concentration of hydrocarbons is shown in Figures 3.5 and 3.6, for the
1500 and 2300 rpm operating conditions, respectively.  Decreases in HC emissions of
about 20-30% are possible.  Larger effects could be possible with the additional of
increased amounts of hydrogen rich gas.

Figure 3.6.  Hydrocarbon emissions as a function of the COV of IMEP (2300 rpm, 4.2
bar BMEP).

Particulate mass emissions as measured by the TEOM showed very low values for both
the baseline and reformate addition cases.  Figure 3.7 shows the relative mass emissions
decrease from the baseline stoichiometric case.  Although the TEOM was approaching its
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lower sensitivity limits, the trend is still clear; decreasing equivalence ratio leads to lower
PM mass emissions.  In addition to PM mass, PM size distribution was measured.  Figure
3.8 shows that there appears to be an increase in particle number with decreasing
equivalence ratio. Although this seems to contradict the PM mass emissions decrease, the
proportion of larger diameter (and heavier) particles decreases with decreasing
equivalence ratio.

c) Discussion

The addition of reformate stabilized lean operation resulting in lower NOx emissions.
Similar results should be obtainable with reformate addition at high EGR levels.
Actually, the exhaust gas has a larger heat capacity than air (due to the higher
concentration of tri-atom molecules in the exhaust gas), and therefore NOx reduction with
EGR should be larger than with air [Hey88].  Tests are being planned to investigate the
effects of EGR with reformate addition.

In a similar fashion to other reformer concepts such as those used for reforming ethanol
[Dob98,Hod98], the plasma boosted reformer is also ideally suited for cold-start
operation, due to the fast turn on time of the plasma. Even in the absence of air/fuel
preheat in the plasmatron system, the overall efficiency of the system should be
comparable to that in present engines.  The time of operation without preheat and with a
high fraction of fuel to the plasmatron is limited to the cold start and is thus very small.
During cold start a high fraction of the fuel would be converted into hydrogen-rich gas.
As soon as the catalyst is warmed up, the fraction of processed fuel would be decreased.

Figure 3.7.  Relative PM emissions as a function of equivalence ratio (1500 rpm, 2.6 bar
BMEP).
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Figure 3.8.  Particle size distribution for four different equivalence ratios (designated by
labels) at 1500 rpm, 2.6 bar BMEP. P designates microplasmatron assist.  Note the
overall numbers are very low.
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4) Plasmatron application to aftertreatment I: NOx trap

Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber
after-treatment systems. [Bro03] At ArvinMeritor tests were performed on a dual-leg
NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a
vehicle.   A NOx adsorber system was tested using the plasmatron reformer as a
regenerator and without the reformer (i.e., with straight diesel fuel based regeneration as
the baseline case.  The plasmatron reformer was shown to improve NOx regeneration
significantly compared to the baseline diesel case.  The net result of these initial tests was
a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures.
This fuel penalty improvement is accompanied by a dramatic drop in slipped
hydrocarbon emissions, which decreased by 90% or more.  Significant advantages are
demonstrated across a wide range of engine conditions and temperatures.  The study also
indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel
based regeneration is not effective, such as those typical of idle conditions. Two vehicles,
a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber
regeneration tests.

a) Introduction
In order to meet stringent US emissions regulations for 2007-2010 diesel vehicle model
years, after-treatment technology is being developed. Both particulate and NOx emissions
after-treatment technology will be necessary, as it seems that engine in-cylinder
techniques alone will be unable to meet the regulations.

The purpose of the present work is to develop hydrogen based technology for addressing
after-treatment issues.  In this paper recent developments in both the technology for on-
board generation of hydrogen as well as applications to NOx after-treatment issues will be
discussed.

Potential on-board generation of hydrogen from renewable energy biofuels for the
transportation sector is also discussed.  This application could provide a means to
alleviate oil dependency and reduce greenhouse gas emissions.

b) Plasmatron technology for NOx aftertreatment

An absorber catalyst can be used for first trapping the NOx in diesel engine exhaust, and
then chemically reducing it during regeneration periods. The process of trapping could be
either catalytic absorption or adsorption, or conventional absorption or adsorption
[Cam99]. The catalyst for NOx treatment is very sensitive to poisoning by sulfur.  In
order to solve this problem, a sulfur trap is under development [Par99a, Parks99b], in



36

conjunction with the development of NOx absorber catalysts that are more sulfur tolerant.
In this case, the sulfur and the NOx traps are regenerated simultaneously

Experimental studies of combined SOx and NOx traps have been carried out recently by
Goal Line Technologies [Par99a, Par99b]. These studies examined both the use of diesel
fuel and hydrogen as reducing agents for trap regeneration.  Greater than 90% NOx
removal was obtained.  Further work is needed to determine effects of sulfur on catalyst
lifetime and the differences in the use of diesel fuel and hydrogen rich gas for catalyst
regeneration.

Goal Line Environmental Technologies has recently claimed a 98.9% reduction in NOx
and Hydrocarbon (HC) emissions from diesel engines at their test facility last spring.
Using their proprietary catalyst system, attached to a Cummins 50-kW/86-bhp diesel
engine, NOx and HC have been reduced to 0.4 grams per brake horsepower-hour
(g/bhph), an emissions reduction that is a full order of magnitude lower than the U.S.
EPA’s 2002 emission reduction requirement of 4.0 g/bhph for diesel engines.

A similar process may be used for trapping/regenerating particulates. The harmful or
noxious emission can be trapped in one system, and then released and treated in a
downstream unit (engine or another catalyst).

A recent patent by Daimler Benz [Boe99] describes the regeneration of one of the
catalyst while the other is in the adsorbing mode.  This patent discusses a motor vehicle
exhaust emission control system that has tandem adsorber catalysts connected in parallel
for alternate adsorption and desorption.  NOx from the engine goes to the operating
adsorber catalyst while the other adsorber catalyst is in the desorption mode. An
oxidizing converter is located upstream of the adsorber part and near the engine for
oxidation of the NO contained in the exhaust to form NO2, so as to permit an increase in
the NOx adsorption rate for the nitrogen adsorber parts. A reducing agent is used to
regenerate the catalysts.

c) Advantages of Compact Plasmatron Fuel Converters
The use of compact plasmatron fuel converters in systems for regeneration of these
catalysts could provide a number of significant advantages. Hydrogen rich gas is a
significantly stronger reducing agent than diesel or gasoline.  Use of hydrogen rich gas
could potentially provide:

• Higher regeneration effectiveness
• Reduced poisoning of catalyst (since diesel fuel is not used for regeneration)
• Reduced emissions of hydrocarbons, since it is easier to prevent release of hydrogen

and CO than hydrocarbons due to faster catalytic removal
• Reduced loss in overall fuel efficiency due to lower requirements on amount of

reducing gas and greater ease of reuse of hydrogen rich gas in the engine.
• Shorter regeneration time due to greater reducing capability of hydrogen rich gas and

high concentration of reducing gases.
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• Reduced adverse effects of sulfur (hydrogen-sulfur interactions could reduce sulfur
poisoning effects)

Compact plasmatron reformers are very well suited for the required hydrogen-rich gas
generation due to:

• Robustness when operating with diesel fuel
• No soot production
• High efficiency
• Low cost
• Small size and weight
• Rapid reformer response
• Warm up capability provided by hot gas, since the hydrogen rich gas from the

compact plasmatron fuel converter is hot; catalyst warm-up time could be decreased,
or the catalyst could be further heated up during regeneration.

d) Catalyst regeneration estimation

Figure 4.1 shows a schematic diagram of a compact plasmatron fuel converter feeding
hydrogen rich gas to a NOx-absorber/adsorber and/or a particulate trap catalyst. In the
case of the NOx absorber catalyst, the injection of hydrogen rich gas reduces the nitrogen
in NO and NO2 to N2. Hydrogen rich gas produced from partial oxidation (which can
consist of approximately 20% H2, 20% CO with the balance mainly N2) is a powerful
reducing agent.

In catalyst regeneration by direct injection of hydrogen rich gas, the exhaust flow from
the engine is diverted from the catalyst to be regenerated. The diverted exhaust flow may
be sent to a second catalyst.  Hydrogen rich gas is then rapidly injected onto the catalyst.
Some of the gas from close-cycle operation of the NOx-absorber catalyst needs to be
released, in order to prevent pressure buildup in the closed system. The gas from the
catalyst during regeneration can be sent to the engine, a second catalyst and/or the
plasmatron fuel converter.

There are several variations in which the compact plasmatron fuel converter can be
combined with the catalysts.  In one variation, the compact plasmatron fuel converter is
integrated with the NOx-absorber catalyst. If there are two NOx-absorber catalyst units,
then two compact plasmatron fuel converters are required. An alternative approach
consists of a single plasma fuel converter, directing the hydrogen rich gas into the unit
that is being regenerated. This method of operation saves on the cost of the plasma fuel
converter units, but requires a high temperature valve. A high temperature EGR valve
could be used for this purpose.  If the gas from the NOx-absorber catalyst being
regenerated is to be recycled, either in the engine, in the compact plasmatron fuel
converter or in the other NOx-absorber catalyst unit, then it is necessary to have a valve
at the exhaust to control the flow of the gases.
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Figure 4.1  Schematic diagram of a compact plasmatron fuel converter/absorber catalyst
system for the treatment of engine exhaust emissions.

It is also possible for the plasma fuel converter to operate while the engine is operational.
The hydrogen rich gas could be used in the engine and may result in reduced engine-out
emissions.  During absorber catalyst regeneration, part or all of the hydrogen rich gas
from the plasma fuel converter can be redirected into the absorber catalyst unit. The
hydrogen rich gas production rate by the compact plasmatron reformer could also be
increased.

The devices described above could also be used, with a modification of the absorber
catalyst, to treat other emissions.  It may be useful to employ a system that uses a
particulate trap that is regenerated by the injection of hydrogen rich gas, with or without
an oxidant.  In this embodiment, the hydrogen rich gas could also be used, along with
some free oxygen, for burning the particulates deposited in the particulate trap.  Or if the
temperature of the trap is high enough, it could be used for gasification of the particulate,
without the use of an oxidant.  The absorbing and or gasification processes could be
either homogeneous of catalytic in nature.
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Illustrative parameters for a compact plasmatron-fuel converter system regenerating an
absorber catalyst are shown in Table 4.1.  It is assumed that the hydrogen throughput
requirements are twice stoichiometric, and that the CO that is produced in the compact
plasmatron fuel converter does not help reducing the catalyst.  Hence, there is a margin of
a factor of 4 in the flow rate of reducing agent relative to the best possible conditions.
The actual amount needs to be experimentally determined.  Based on the illustrative
parameters in Table 4.1, if all of the chemical energy in the fuel used for regeneration
were lost, the loss in chemical energy would be around 2% of the mechanical energy
produced by the engine.  Taking engine efficiency into consideration, this loss then
translates into less than 1% loss relative to total fuel chemical energy to produce the
mechanical power. The required hydrogen-rich gas generation level has been
demonstrated in initial tests by the use of low current plasmatron fuel converters for
conversion of diesel fuels.

Table 4.1
Compact plasmatron fuel converter/absorber system

Illustrative parameters

Plasma technology can be used to accelerate chemical reactions.  Two modes of
operation have been explored for promoting fuel reformation into synthesis gas
(hydrogen and carbon monoxide).  The first uses thermal plasmas, where electrons, ions
and neutral particles are generally in thermal equilibrium, and at high average
temperature. This technology has the disadvantages of high current operation (associated
with high electrode wear), and high energy consumption. The second mode of operation,
using special low current plasmas, has the advantage of low power consumption and long
electrode life.  However, successful operation of the plasma process is more sensitive to
design and operation.  In this section, operation of a low current plasmatron as a device
for converting hard to reform fuels to synthesis gas is described.

Fuel conversion is accomplished using the process of partial oxidation.  In this mode,
enough oxygen is supplied in order to capture each carbon atom in the fuel as carbon
monoxide, with the hydrogen released as hydrogen molecules. The nitrogen from the air
(as air is used as the oxidizer), is inert at the temperatures and pressures of operation, and
thus goes unaffected in the reactor.

Engine NOx production g/bhp-hr 6
Engine power hp (kW) 30 (23) 60 (45) 120 (90)
Engine NOx rate g/hr 180 360 720

Low power plasmatron
Average electrical power requirement W 9 18 35
Plasmatron duty cycle % 4% 8% 16%
Plasmatron peak power W 220 220 220
Average chemical power of diesel fuel to plasmatron kW 0.5 0.9 1.8



40

The use of the plasma allows for a robust reaction initiation for air/fuel mixture.  The
advantages of this technology include

• fast start up and rapid response,
• relaxation or elimination of catalyst requirements
• effective reforming in compact devices, attractive for onboard applications
• efficient conversion from liquid hydrocarbons to synthesis gas

The technology can be used for a broad range of fuels, from light, low viscosity liquids,
such as ethanol, to high viscosity liquids, such as diesel and bio-oils.

The small size enables the use of fuel reformers for multiple applications on vehicles.
These applications include:

• Diesel engine exhaust after-treatment
• Use of renewable energy bio-oils
• Fuel supply and ignition control in HCCI (homogeneous charge compression

ignition) engines
• Spark ignition engines using hydrogen enhanced ultra-lean turbo-charged

operation

Figure 4.2.  Compact low power plasmatron fuel converter used for these tests

For diesel engine exhaust after-treatment, onboard hydrogen production can be used in
the regeneration of either NOx or particulate traps. The NOx trap regeneration application
will be discussed later in this paper. In the HCCI application, the use of fuel reformation
to supply a portion of the fuel allows adjustment of engine charge temperature and fuel
ignition characteristics providing a means of ignition control. In the spark ignition engine
application, hydrogen rich gas addition allows ultra lean operation and can facilitate the
use of high compression ratio and strong boosting. Hydrogen enriched combustion in a
turbo-charged high compression ratio engine can provide both increased efficiency and
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reduced emissions. System optimization studies indicate that a substantial increase in fuel
efficiency (up to a 30% increase in net efficiency) and decrease in NOx emissions are
achievable.

Present plasmatron reformers have volumes on the order of 1-2 liters, with an electrical
power consumption of about 250 W.  Figure 4.2 shows a photograph of a recently
developed plasmatron. The plasmatron is followed by a reaction section which provides
time for the development of homogeneous reactions.  When high hydrogen yields are
desired, a catalyst can be placed downstream from the homogeneous zone.

At present, goals for the diesel plasmatron reformer development includes increased flow
rates, operational and configuration optimization and increased simplicity, among other
goals.

e) Biofuel reformation

At MIT, plasmatron reforming technology has been used with for a wide range of
biofuels.  These fuels include corn, canola and soybean oils (both refined and unrefined),
and ethanol.

Reformation was achieved with a plasmatron fuel reformer optimized for diesel fuel
operation.  The device operated at 200 W of electrical power, and at stoichiometry for
partial oxidation (O/C ratio ~ 1.1). The available energy from the reformate flow rate was
about 20 kW (LHV of the reformate gas, as calculated from the LHV of compounds
measured in the gas analysis). Some of the oxygen required for the reformation is
provided by the fuel itself;  the O/C ratio includes this oxygen,

Figure 4.3.  Hydrogen yield as a function of the O/C ratio, for corn and soybean oils
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Figure 4.3 shows results from the reformation as a function of the O/C ratio, for corn and
soybean oils.  The hydrogen yield is defined as the ratio of the flow rate of hydrogen in
the reformate to the flow rate of hydrogen in the fuel.  A hydrogen yield of 1 thus means
that all the hydrogen in the fuel has been released as hydrogen in the reformate.  High
hydrogen yields are possible (greater than 80%), even at relatively high O/C ratios.

The results in Figure 4.3 were carried out with a plasmatron reformer that incorporated a
nickel catalyst on a crushed alumina substrate.  In the absence of a catalyst (for a
homogeneous reaction), the hydrogen yields are about 40%, coupled with high
concentration of light hydrocarbons (~4-5% C2H4)

Figure 4.4.  Hydrogen concentration in dry gas for ethanol reforming, as a function of
flow rates, for O/C ~ 1.2

The presence of soot was determined using an opacity meter.  Virtually no soot was
observed in these experiments.

Similar experiments for ethanol are shown in Figure 4.4, for different powers and varying
flow rates.  Ethanol conversion is difficult to perform homogeneously because of the low
exothermicity of the partial oxidation reaction. Figure 4.4 shows the hydrogen
concentration of the partial oxidation of ethanol, for O/C ~ 1.2.

f) Diesel reformation

The plasmatron fuel converter has been further developed for use with diesel fuel.  The
goal of reformation of diesel by the plasmatron fuel converter is the conversion of the
heavy diesel compounds into hydrogen, carbon monoxide, and light hydrocarbons for use
in after-treatment applications. The diesel reformate produced by the plasmatron fuel
converter has little residual oxygen and little or no soot. The diesel plasmatron can be
cycled on and off quickly( ~ 3-5 sec).  For diesel after-treatment applications the dynamic
performance of the plasmatron fuel reformer is important because of the low duty cycle
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of operation.  For NOx catalyst regeneration applications, the plasmatron may be turned
on for a few seconds every half minute or so.  For diesel particulate filter applications, the
plasmatron could well be operated for a few minutes every few hours resulting in much
smaller duty cycles.

Results for diesel conversion without a catalyst are shown in Table 4.2. Typical O/C
ratios are 1.1, with opacity readings of 0.0% (below the resolution of the device), for flow
rates on the order of 1 g/s.  The energy conversion efficiency, defined as the lower
heating value of the reformate divided by the lower heating value of the fuel, is about
70%. The lower heating value of the reformate is calculated using the measured
composition of the reformate.

Table 4.2  Diesel reforming without a catalyst

If higher yields of hydrogen are desired, a catalyst can be placed downstream from the
homogeneous zone. The absence of oxygen in the reformate due to the partial oxidation
process minimizes the occurrence of hot spots within the catalyst. This alleviates one of
the catalyst durability issues.

Hydrogen is a powerful reductant, and its use for the regeneration of NOx traps has been
researched in catalyst reactor labs. The goal of the work presented next is to determine
the advantages of H2 assisted NOx trap regeneration, using the plasmatron fuel reformer
as the source of on-board hydrogen.

g) Hydrogen assisted NOx Trap Regeneration at ArvinMeritor

The objective of this testing was to determine the advantages of H2 assisted NOx trap
regeneration [Par02] and to establish the feasibility and effectiveness of H2 assisted NOx
traps in a bus and light duty vehicle installation. Initially preliminary experiments were
carried out in a test cell using simulated reformate bottled gas.  Subsequently due to the
promising results, tests using an actual plasmatron fuel reformer have been performed,
both in a test cell and on board vehicles. Plasmatron diesel fuel reformer systems have

Electric power W 250
O/C 1.1
Diesel flow rate g/s 0.8
  Corresponding chemical power kW 35

Concentration (vol %)
H2 8.2
O2 1.4
N2 68.7
CH4 2.6
CO 14.3
CO2 4.7
C2H4 2.4
C2H2 0.0

Energy efficiency to hydrogen, CO and light HC 70%
Soot (opacity meter) 0
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been installed in a Ford F-250 truck to investigate light-duty applications, as well as in a
Gillig transit bus, to test heavy-duty applications.

Figure 4.5.  Test set-up for hydrogen assisted NOx traps

                                    (a)                                                 (b)
Figure 4.6.  Test cell installation of hydrogen assisted NOx traps: a) Cummins engine; b)

dual leg (14 liter/leg) traps and switching valve

h) Test cell setup and results

A schematic of the test cell NOx trap system is shown in Figure 4.5. The system is a dual
leg arrangement of NOx traps, with a single valve that simultaneously switches the
exhaust and reformate flows, so that while one leg is undergoing regeneration off-line,
the other leg is adsorbing NOx. A single plasmatron is used to feed hydrogen rich
reformate to both traps. The regeneration of a NOx adsorber requires a reducing
atmosphere (zero oxygen). Due to the free oxygen in diesel exhaust, any leakage past the
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switching valve increases the required reformate flow since this oxygen must be
consumed by reaction with the H2 and CO in the presence of the precious metals on the
NOx adsorber surface in order to reach a reducing environment. Therefore zero exhaust
leakage past the switching valve is ideal. Flow bench tests of the switching valve and
adsorber system indicated a 3% leakage rate. For the Cummins ISC 8.3L engine used in
this testing, the available plasmatron reformate flow rate was marginal at a high engine
exhaust flows with 3% leakage. An exhaust brake valve was added to each leg as
indicated in the schematic. When the brake valve was closed on the regenerating leg the
exhaust flow leakage was reduced to an acceptable 1%.

Figure 4.7.  Bus Road Load vs ESC 13 mode

A photograph of the actual test cell setup at Analytical Engineering, Inc. (AEI) is shown
in Figure 4.6. Extensive instrumentation was utilized including a chemi-luminescent NOx
analyzer, NOx sensors, multiple thermocouples, and a V&F hydrogen analyzer. The fuel
reformer, switching valve, and brake valves were all computer controlled. A MY2000
Cummins 8.3L engine was used in these tests. Zero sulfur diesel fuel was used in this
testing to avoid sulfur poisoning of the traps. Also the engine oil used was a special low
sulfur formulation for the same reason. Even with these measures some minor adsorption
degradation was observed over the course of testing.

Two sets of engine operating points were used in this testing: the European Stationary
Cycle (ESC) 13 modes and a calculated Bus Road Load curve. Figure 4.7 compares the
operating points. The ESC 13 Mode test is a steady state mode weighted substitute for
transient emissions testing. Since the NOx adsorbers used in these tests were low
temperature (barium based) adsorbers [Wan01, Fan02], only the ESC modes below 50%
load were tested. The exhaust temperatures at the ESC modes above 50% load were too
high (> 450 ˚C) for these traps to adsorb effectively. Due to the potential low temperature
application of H2 assisted NOx trap regeneration, a series of calculated bus road load
points (37K lb. GVW) were also tested. Below bus speeds of 45 mph, the road load
points were at lighter loads with lower exhaust temperatures than the ESC points. All of
the operating points were tested for NOx regeneration using both reformate and diesel
fuel injected into the exhaust as reductants for performance comparison.
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Figure 4.8.  NOx adsorption comparison.  Bus Road Load, at same fuel penalty
(reformate vs diesel)

Figure 4.9.  Fuel penalty for Bus Road Load, at same NOx adsorption

Two comparisons of performance were tested: (1) %NOx adsorbed at the same fuel used
penalty, and (2) fuel penalty for the same NOx adsorbed. These two comparisons are
made for both the bus road load points and the tested ESC modes. Figures 4.8, 4.9, 4.10,
4.11 show these results. All of the reformate regenerations were for a 5 second duration
with the fuel reformer processing 0.8 g/s of fuel. The NOx trap adsorption time was varied
with load to keep the minimum instantaneous NOx adsorption greater than 70%. For the
diesel injection regeneration at constant fuel penalty the total injected fuel quantity was
kept at 4 g and the adsorption time was the same as the reformate case. For equivalent
NOx adsorption with diesel injection regeneration the injection rate was constant and the
regeneration time varied as well as the adsorption time. Clearly reformate regeneration of

0

5

10

15

20

25

30

150 200 250 300 350 400

Exhaust Temperature - degC

F
u

el
 P

en
al

ty
 -

 % FP Diesel FP Reformate

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300 350 400

Exhaust Temperature - deg C

N
o

x 
A

d
so

rb
ed

 -
 %

Diesel Reformate

Upstream DOC Added



47

NOx traps is superior at all the operating points tested both in terms of %NOx adsorbed at
the same fuel penalty and the fuel penalty for equal NOx adsorption.

Figure 4.10. NOx adsorption comparison. ESC Modes at same fuel penalty (reformate
vs diesel)

Figure 4.11. Fuel penalty for ECS Modes, at same NOx adsorption

The reformate regeneration advantage at low exhaust temperatures is especially obvious
in the bus road load comparisons. Below 180˚C the diesel injection regeneration falls
from 70% adsorption to zero at 158˚C. Reformate regeneration still achieves 90% NOx
adsorption at 158˚C. At idle conditions with adsorber inlet temperature at 113˚C
reformate regeneration resulted in 38% NOx adsorption. The addition of an oxidation
catalyst upstream of the NOx trap increased the NOx adsorption to 75% at 113˚C with
reformate regeneration. Note that direct injection of diesel fuel into the exhaust for NOx
trap regeneration at these low temperatures is totally ineffective. In addition other testing
with different NOx trap formulations and simulated reformate has shown regenerations at
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exhaust temperatures as low as 80˚C.  The ESC modes show a 15 to 50% better NOx
adsorption at the same fuel penalty with reformate versus diesel regeneration. At the
same NOx adsorption the ESC modes show a 40 – 60% fuel penalty advantage of
reformate versus diesel regeneration. These fuel penalty comparisons include only the
fuel used for regeneration and do not account for required parasitic loads such as
electrical and air pumping power. However at most engine operating conditions, these
parasitic loads account for a fuel penalty of 0.5%. Only at idle and very light loads are
these parasitics significant. Even then the maximum parasitic fuel penalty is about 5%.

In addition to the fuel penalty advantage, reformate regenerations of NOx traps produce a
dramatic reduction in hydrocarbon slip as shown in Figure 4.12. For equivalent NOx
adsorption, reformate regenerations reduce hydrocarbon slip through the adsorbers by
90–95% at exhaust temperatures of 275˚C and above. Below 275˚C exhaust temperatures
the reduction in HC slip is still 65% or more.

Additional testing completed after this work indicates that by optimizing the regeneration
time and reformate flow rates the reformate NOx trap regeneration fuel penalties reported
here can be lowered another 50% from an average of 4% fuel penalty to 2% fuel penalty.

Figure 4.12.  Reduction of hydrocarbon slip when using reformate vs diesel for NOx
trap regeneration.

i) Vehicle installation and results

The H2 assisted NOx trap system installed on a Ford F250 pickup truck, with a 7.3L
Powerstroke engine, is illustrated in Figure 4.13. This is a single leg with bypass system
using 14 liters of NOx  adsorber with electrically actuated brake valves to switch flow
legs. The reformer and brake valves are computer controlled and NOx concentrations are
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measured with Horiba NOx sensors. With reformate regeneration of the NOx trap, this
system is capable of 70% NOx adsorption.

Figure 4.13.  F250 hydrogen assisted NOx trap installation

Figure 4.14.  Hydrogen assisted NOx trap installation in a bus

The Gillig transit bus installation is shown in Figures 4.14 and 4.15. The bus uses a dual
leg system with 21 liter of NOx adsorber per leg. There are separate pneumatically
actuated switching valves for the exhaust flow and reformate flow. A single Gen-H
plasmatron fuel reformer is used. A PC, utilizing LabView based software, controls the
regeneration including the fuel reformer air-fuel ratio and the switching of the exhaust
and reformate flows on a time based cycle. NOx emissions are measured with NGK NOx
sensors. The engine in this bus is a MY1994 Cummins C8.3L. Due to the high accessory
loads, engine out NOx concentrations as high as 800-900 ppm are observed. This system
is capable of NOx reductions of 80-90% (without optimization).

brake valves reformate injection NOx trap 14L bypass DOC
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Figure 4.15  Picture of part of plasmatron diesel reformer system in the back of the bus

j) ArvinMeritor/MIT Results summary
•  NOx trap regeneration fuel penalty reductions of roughly 50% versus diesel

injection were achieved
• Idle operation NOx trap regenerations achieved
• Hydrocarbon slip during regeneration reduced by 90%
• Dual leg NOx trap system installed and operating on a transit bus: 80-90% NOx

reduction
• Single leg bypass NOx trap system installed and operating on a Ford F250 truck:

70% NOx reduction

k) Cummins/MIT NOx trap regeneration tests

The scope of work required testing with one of the truck manufacturers.  The generation
2 plasmatron diesel reformer was tested at Cummins during the summer of 2001,
described in Section 2.b.

For testing in a vehicle, it was necessary to perform plasmatron diesel reformer
characterization when operating in a mode compatible to that of regeneration of a diesel
aftertreatment device.  Those tests, where the plasmatron was operated by periodically

NOx trap: 21L/leg

fuel reformer box
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pulsing (5 s on, 55 s off) are presented in section 9.c.  For the tests, the generation 2
plasmatron was used.

Figure 4.16  Effect of reductant on cycle average NOx conversion efficiency, cycle
testing at 150 C.

The results were kept confidential to Cummins, However, they did provide some
information on the test results.  It is shown in Figure 4.16. The figures shows substantial
improvement, at moderate space velocities, over those with the use of diesel fuel as the
reductant.  Only one temperature, 150C was reported to us from Cummins.
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5) Plasmatron application to aftertreatment II: DPF trap

Particulate and emissions from diesel vehicles have been determined to be hazardous to
health. In addition, particulate emissions may aid to the global warming trends because of
the reduced reflectivity of large masses of ice/snow. Diesel emissions have been
regulated in the developed countries.  Tighter regulations already in the books require
substantially decreased emissions in the next 5 years.

A promising technology to accomplish the required reduction is the Diesel Particulate
Filter (DPF).  The filters are porous ceramics through which the gases flow relatively
unimpeded, but the solids in the exhaust are trapped.  Eventually there is sufficient
buildup of the particulates in the trap that the gas flow is impeded, and regeneration needs
to take place.

Two types of traps exist, with or without a catalyst coating.  Uncoated DPF are attractive
because of reduced cost, and because it is likely that some method of active regeneration
will be required even if used rarely. The uncoated DPF need to be regenerated by the
combination of temperature and oxygen.  Combustor technology has been developed.
However, there may be important advantages to regenerate the DPF using hydrogen rich
gas, in which the reformate is combusted in the trap itself, hopefully by the soot. The
potential advantages are reduced thermal stress, lower temperature of trap regeneration,
reduced possibility of uncontrolled regeneration that may result in the destruction of the
trap and lower fuel penalty by the use of controlled burn. These advantages may result in
enhanced reliability and increased lifetime. For both catalyzed and non-catalyzed traps,
there has to be sufficient oxygen in the flow through the DPF in order to combust the
soot. For any active regeneration method, the system should be able to operate over a
wide range of non-stationary conditions.

In order to “ignite” the particulate matter, it has also determined that a temperature in the
range of 600-650 C was required in the presence of oxygen. Measured activation energies
varies from ~60 kJ/mol to 170 kJ/mol. The temperature rise of the gas across the DPF
(and the temperature of the DPF unit) depends on the oxygen content, the mass loading of
the field and the flow rate. The temperature excursion due to the soot combustion can be
as low as a few degrees to high temperature excursions that can result in the destruction
of the trap.

Two modes of regeneration have been observed in uncatalyzed traps. Visual evidence of
the mode modes has been obtained by Haralampous [Har03, Han03]. The first mode
results in a uniform regeneration of the trap, with mild temperature excursions and
relatively long regeneration times because of the low temperatures.  This mode of
regeneration built in margins, results in a more uniform regeneration, but increases the
fuel consumption due to the fact that the temperatures need to be maintained longer, in
the case of non-self-sustaining regeneration.  The second regeneration mode results in a
self-sustained or near-self sustained burn, with higher temperatures, non-uniform and
faster regeneration (in some cases resembling a propagating front). The nature of the
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regeneration process is determined mainly by the trap soot loading, the free oxygen
content of the exhaust and the exhaust flow rate.

In the second mode of operation the regeneration is performed by increasing the
temperature of the exhaust to the point where the soot ignites and starts a self-sustaining
burn. Once started, it is uncontrolled.  If there is too much soot in the trap or if the free-
oxygen concentration is increased (from lower torque operation, for example) the
temperatures of the combustion process can exceed the temperature limitations of the
filter.  A single event may result in unintentional destruction of the filter.

Low temperature regeneration may result in more uniform regeneration.  Non-uniform
regeneration that results in partial regeneration of the DPF has been modeled and tested
by Haralampous et al. [Har03], and others.  The flow through the DPF, even if uniformly
loaded, changes during regeneration.  If some regions are cleaned prior to others, the flow
pattern downstream of the clean channel can be substantially modified, with an
increasing fraction of the flow occurring through the clean region.  Non-uniform channel
regeneration affects both the radial and axial flow patterns.  Axial flow pattern
maldistribution occurs when the upstream region of a channel is cleansed faster, after
which the gas flows across the cleansed region instead of the downstream, soot-loaded
channel.

The first mode of operation is attractive in that the rate of combustion, and the
temperature of the regeneration process, is dominated by the exhaust gas and not by the
self-sustained combustion of the soot.  From the above discussion, low temperature, slow
uniform regeneration has attractive features.

Tests with active regeneration are taking place both in the US [And04] as well as in
Europe [Fay04].  Active techniques at present seem to be necessary for those vehicles
with substantial idling, where the exhaust temperatures are too low for self-sustained
DPF regeneration. These concepts depend on thermal management to increase the
temperature of the DPF, as well as active introduction of fuel upstream in the exhaust.
The fuel is injected upstream from a diesel oxidation catalyst (DOC) that is located
upstream from the trap.  The fuel is consumed in the DOC, increasing the temperature of
the exhaust. The oxygen content downstream from the DOC is sufficient for soot
combustion.

Alternative methods to the catalytic combustor involves a conventional combustor.  This
technology is being tested by Arvin Meritor.

Fuel reformers are being considered for on-board applications, for hydrogen generation
for use with fuel cells, for use in NOx trap regeneration, and for combustion
improvement in SI engines. The MIT team is developing plasmatron fuel reformers, both
for gasoline and diesel applications. Both catalytic and homogenous reformers are being
investigated.  Plasma based reformers are robust, fast response and have wide operating
capability. It is the purpose of this section to illustrate the options investigated under this
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program of using reformate from a plasmatron fuel reformer for the controlled
regeneration of DPFs. [Bro05g, Bro05h]

(a)

(b)
Figure 5.1.  Reformer operating as a (a) combustion for DPF regeneration (b) Generation
of hydrogen rich gas

a) Plasmatron Technology for DPF Regeneration

Active techniques for the regeneration of diesel particulate filters use a burner to achieve
the temperatures at the catalyst required for filter regeneration.  Plasmatron technology
can be used as a fuel igniter as well as means to produce hydrogen rich gas. Plasmatron
technology can serve as a powerful igniter and thus is attractive because it is possible to
combust the diesel fuel using oxygen present in the diesel exhaust, even at conditions
when the engine is operating at high load (with reduced oxygen content).  Diesel loads
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rarely operate above equivalence ratios around 0.7, because of soot production, and thus
about 1/3 of the oxygen remains free in the exhaust.

By using the plasmatron unit as a powerful igniter, either very lean mixtures or very rich
mixtures can be processed.  Very lean conditions can occur when only the thermal
process of the fuel is desired.  Rich conditions will result in the generation of hydrogen
rich gas.

The advantage of combusting the fuel in the exhaust is that it is possible to achieve
combustion while minimizing the amount of extra air introduced into the system. The
hydrogen rich gas with exhaust gas as oxidizer results in a further net decrease of the
amount of free oxygen in the exhaust, decreasing the combustion rate of the soot on the
DPF and decreasing the possibility of uncontrolled regeneration.  This technology is also
attractive because the plasmatron hardware may already exist on-board the vehicle for
regeneration of NOx absorber traps.

Figure 5.1 (a) shows a schematic of the use of a reformer as a powerful combustor,
operating with exhaust as the oxidizer. There is thermal output from the combustor, but
no hydrogen or light hydrocarbons.  In figure 5.1(b) the reformer operates under
conditions close to partial oxidation (free oxygen to carbon ratio of 1), producing
hydrogen, CO, light hydrocarbons and limited thermal output (~ 1/4 of the thermal output
of the fuel is combusted in the reformation process). These two are extremes, with the
plasmatron operating anywhere in between, generating both easily combustible gases as
well as thermal output.

Two options of location of the DPF and NOx trap exist. The DPF can be upstream from
the NOx trap, or the other way around.  Modeling of the system is required to determine
the optimal configuration.  Care must be taken that the temperature required for
regeneration of the DPF does not damage the NOx trap, as well as the issues having to do
with desulfation of the NOx trap.

b) Calculations of Reformer Requirements

For the calculations presented here, the size of the engine is 6 l, operating between 600
and 2400 rpm, with a inlet manifold pressure of 1-3 bars, It is assumed that the entire
exhaust flow is treated, as opposed to partial regeneration of a section of the DPF
[Bro05g].

The exhaust temperature assumed throughout the engine map is shown in Figure 5.2.
For simplicity, it is assumed that the exhaust is insensitive to engine speed and only
depends on torque.

It is assumed that the soot burns at temperatures between 600- 700 C. The reformate is
mixed with the exhaust to increase the temperature to this range.  The flow rates through
the plasmatron are calculated, at different O/C ratios.
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Because the reformate is combustible, the rates that are calculated will be larger than
those actually required.  The actual flow rates will thus be lower.

Figure 5.2.   Exhaust temperature as a function of the engine equivalence ratio.  It is
assumed that the exhaust temperature is insensitive to the engine speed.

In addition, it is assumed that turbocharging does not increase the temperature of the
exhaust, due to the presence of an intercooler.

Two scenarios for the regeneration with hydrogen rich gas can be envisioned.  The first
one assumes that it is the thermal content of the hydrogen rich gas that results in the
regeneration of the DPF.  In this manner it does not really matter where the hydrogen rich
gas is combusted.  The second scenario assumes that the hydrogen rich gas reacts in the
region of the soot (and even is ignited by the soot), resulting in direct deposition of the
heat at the soot location.  In this scenario, the temperature of the exhaust is low prior to
the combustion of the hydrogen rich gas, and thus the velocity of the gas is slower,
allowing for increased contact time between the free oxygen and the hydrogen rich gas
with the soot. In the second scenario, it is desired that the hydrogen rich gas not be
consumed homogeneous prior to the region with the soot. Homogeneous combustion of
hot hydrogen rich gas in the exhaust is discussed in the section below.

In both scenarios, the temperature of the gas, assuming combustion of the hydrogen rich
gas, is ~ 600 C, thus able to start regeneration of the soot.  Because of the light soot
loadings assumed, the temperature downstream from the soot is not significantly larger
than upstream (i.e., the soot is burning at a low rate).

The reformate power required to bring the temperature of the exhaust to regeneration
conditions in the DPF is shown in Figure 5.3.  The reformate power refers to the
combustion power if the reformate is fully oxidized.  The power increases linearly with
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speed, at any equivalence ratio. The reformate power also increases with decreasing
equivalence ratio, as the exhaust temperature prior to addition of the reformate is cooler
in the cases of low equivalence ratio, and thus increased reformation is required to
achieve the regeneration temperature.

The range of power is large, from a minimum of ~ 3 kW to about 30 kW, for a dynamic
range of  ~10.  However, this is larger than it need be, since the engine will not work
often the region of high rpm and low torque. Thus, the dynamic range requirements are
~5.  This dynamic range does not include operation at higher manifold pressure,
discussed below. It is the possibility of operating a plasmatron over this wide range of
condition that makes it attractive for the DPF regeneration application.

 Figure 5.3.  Power in reformate (rate of heating value, in Watts), required for reaching
regeneration conditions, as a function of the equivalence ratio and the engine speed, for

naturally aspirated conditions.

Figure 5.4 shows the fuel flow rates through the plasmatron for achieving regeneration
through the engine map for the case of 3-bar operation of the engine (with an intercooler).
The behavior is very similar to that shown in Figure 5.3 for naturally aspirated engine,
with the largest fuel flow rate requirements at high speed, low torque. The highest fuel
flow rate through the fuel processor is 5 g/s, which corresponds to a maximum power of
about 160 kW. However, the engine is unlikely to operate under conditions of high speed,
low torque and high manifold pressure.  Thus, turbocharging does not result in substantial
changes in the required dynamic range from the fuel processor.

The time required for regeneration is determined by the PM burn rate, which depends on
the temperature and oxygen concentration.  The effect of the hydrogen rich gas is
unknown and will be determined in the experiments.  Calculations of combustion rate of
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the soot can be made using the Arrhenius formulation with the activations energies
described above, but cannot be used as a predictive tool.

The development of plasmatron fuel reformers demonstrated the capability to operate
from about 0.3 g/s to 2 g/s, with activities to achieve 4 g/s fuel flow rate. Most of this
work has been carried out with gasoline, but could be extrapolated to diesel. Thus, the
capabilities of the present devices match the requirements for DPF regeneration.

Figure 5.4.   Rate of fuel flow rate through the reformer (in g/s) required to achieve
regeneration conditions as a function of the equivalence ratio and the engine speed, for 3-
bar inlet manifold pressure.

c) Testing Procedure

Testing was designed to be carried out in using an ’02 Cummins ISB 300 5.9L inline 6
engine.  The engine characteristics are: maximum power ~ 225 kW, maximum torque ~
895 N•m, compression ratio: ~17, bore diameter: 102.02 mm and piston stroke: 120 mm.
The engine setup is described elsewhere.

The cordierite DPFs to be tested were obtained from Corning.  They are conventional
units 5.66 in diameter, 10 in long traps with a cell density of 100 cpsi.

Full trap and partial traps will be tested.  For full trap, the entire trap will be loaded and
regenerated, maybe with multiple units. Partial traps will be constructed from 2 in
diameter sections of the trap. Experience indicates that if 5 cm (2 in) sections of the PDF
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are used, the edge effects are not important [Ogu04]. Using partial trap allows for quicker
soot loading, facilitating the tests in a wider range of conditions.

The engine produces a raw exhaust with a PM emission of 0.1 g/kW hr. A 5 cm diameter
(2 in) partial unit is about 1/32 of the volume of a DPF that consists of 4 14.4 cm
diameter (5.66 in) units. The volume of the partial unit is on the order of 0.3 liter, while
the single trap is about 2.5 liters.  Typical loadings on traps prior to regeneration are on
the order of 10 g/liter.  Thus, the time required in order to load the partial unit, at 40 kW
(50 hp), is 45 minutes, if all the flow is through the partial unit.  Forcing all the flow
through a single partial unit may, however, result in large pressure drop.

It should be noted that it has been determined that the loading rate of the trap is
important, as the loading of the soot is nonuniform at the higher loading rates [Staerker].
At the high flow rates (320 kg/hr) through the trap, the particle trap experienced loading
that peaks off-axis, while at lower exhaust flow rates of 60 kg/hr the soot is deposited
uniformly.  This is counterintuitive, because at the higher flow rates the Reynolds number
is higher and thus increasingly turbulent, which results in a uniform flow profile (but
increasingly non-uniform soot profile in the trap).

In order to load the single full unit, at the same engine loading, it would take over 2
hours.  Although acceptable, partial units would allow the quick exploration of a large set
of parameters.

The present plans call that, after trap loading, a reduction in the flow through the partial
unit to the nominal flow. The partial trap will be regenerated from hydrogen rich gas
provided from bottled gas.

Figure 5.5.   Hydrogen concentration in exhaust if reformate reaches equilibrium in the
reformer, as a function of the engine equivalence ratio.
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To regenerated the DPF at 1200 rpm, half-torque conditions, about 20 kW of reformate
are required.  Since the flow through the partial unit is 1/32 of this, only about 0.5 kW of
reformate is required for the regeneration.  This corresponds to a reformate flow rate of
0.2 cfm. With a 300 ft3 bottle, tests can be carried out for 24 hours of regeneration.

If instead a trap with a single 5.66 in DPF is used, the flow rates would be 8 times larger,
and the bottle of gas would be consumed in about 3 hours.

After the testing with the partial unit, with some optimization of the process, tests with a
full unit or multiple full units can be carried out.  The process would require long periods
for time for loading the trap with PM, followed by regeneration.

The hydrogen gas from the plasmatron is by nature hot, on the order of 800 - 1000 C.
Because of finite mixing in the exhaust, some of the gas will retain its hot temperature,
making it more ignitable by the warm soot particles.  To test the effect of temperature, the
reformate will be heated using electrical heaters.  Again, the reduced flow rate would
help in the design of the heaters.  In order to preheat the gas to those temperatures,
approximately 100 W of electrical heating needs to be provided.  This will be done in the
absence of oxygen.

Finally, it should be mentioned that in the homogeneous plasmatron fuel reformer, the
reformate does not reach equilibrium.  Thus the concentration of hydrogen in the case of
a homogeneous plasmatron reformer is about 1/3 that of equilibrium, or about 8%.  The
rest of the hydrogen in the fuel is converted to light hydrocarbon, such as methane and
ethylene, that are also relatively easily ignitable (combust with low production of soot).
The advantage of this is shown in Figure 5.5 which shows the concentration of hydrogen
in the exhaust, from a reformate that reaches equilibrium, if well mixed with the exhaust.
If the reforming reaction reaches equilibrium, the concentration of hydrogen reaches
explosive limits in the exhaust, especially at the lower engine equivalence ratio, when the
oxygen excess is maximum.  However, by operating a non-equilibrium reformer and
decreasing the concentration of hydrogen in the reformate, the explosive conditions are
avoided.

d) Homogeneous Oxidation of Reformate in the Exhaust

In this section, the issue of hydrogen oxidation in the exhaust is considered, to determine
whether hot hydrogen-rich gas injected into the exhaust (that contains free oxygen) will
spontaneously combust prior to reaching the trap.

Model

For simplicity, it is assumed that the 6 liter engine operates at 600 rpm, and that it is
operated at idle (at an equivalence ratio of 10%, without EGR).  Thus, the concentration
in the engine exhaust is 18.7% O2, 78.2% N2, 2% H2O and 1% CO2 (assuming methane as
the fuel).  To this exhaust, which is assumed to be at 423 K (150 C), hydrogen rich gas is
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injected. These conditions correspond the worst case, with the highest amount of free
oxygen and the largest demand of hydrogen rich gas. In this section it is assumed that the
hydrogen rich gas is the result of equilibrium partial oxidation of methane, at different
O/C ratios.   Methane is used because of the existence of chemical reaction mechanisms
that have been benchmarked for operation at the fuel-rich conditions of the reformer.

Figure 5.6.  Schematic model of the process

The model is schematically shown in Figure 5.6.  It is assumed that the equilibrium
reactor and the exhaust are introduced into a perfectly stirred reactor (PSR).  A model
that uses a plug flow reactor is described below, but the constrains of the code made the
assumption of the perfectly stirred reactor easier to input. The model shown in Figure 5.6
overestimates the consumption of hydrogen, since as the hydrogen is consumed, the PSR
model implies that the temperature upstream from the reactor increases, driving
additional hydrogen consumption. The goal is to determine the conditions for which the
exhaust will result in substantial amounts of hydrogen oxidation. A more detailed model
will be presented in a section below.

The conditions chosen correspond to about 40 g/s exhaust gas, with 10 g/s from the
reformate (corresponding to about 1.5 g/s fuel in the plasmatron).  This is a large number,
but the goal is to determine under the worst of conditions, what is the effect of the
hydrogen combustion

Results from the PSR Model

Three cases have been assumed, with oxygen to carbon ratios of 1.333, 1.43 and 1.54.
They correspond to methane flow rates of 1.5, 1.39 and 1.29 g/s, for a total flow rate of
10 g/s. The results are shown in Table 5.1.  “T equil reactor” represented the temperature
from the equilibrium reactor, and it is the equilibrium temperature of the partial oxidation
reaction.  The temperature of the exhaust is held constant at 423.  T PSR represents the
temperature of the perfectly stirred reactor (and the outlet from that reactor).

Equilibrium
Reactor

Perfectly Stirred
Reactor
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Table 5.1.  Results for the PSR case

For the first two cases, with relatively low O/C, the hydrogen flow rate out of the PSR
reactor is approximately the same as the hydrogen rate into the PSR.  That is, there is no
oxidation of the hydrogen in the flow rate.  The same is the case for the CO that is also
produced.    The last case, though, with a relatively high O/C, results in almost all
consumption of the hydrogen rich gas.  The temperature of the system becomes very
large, as the hydrogen rich gas has substantial thermal content, increasing the reaction
rate of hydrogen. There is oxidation at reformate/exhaust temperatures exceeding 700 K.

This case represents the most pessimistic and unrealistic case, since it requires substantial
mass and temperature equilibration in the exhaust pipe.  This flow resembles more the
plug flow model, which will be described next.

Plug Flow Reactor Simulation

In this section, an alternative reactor is used as a model.  This reactor simulates more
closely the processes inside the system. The PFR is a more appropriate model for the
behavior of the hydrogen rich gas in and environment with free oxygen in the exhaust of
a vehicle.

Figure 5.7.   Schematic diagram of model for hydrogen oxidation in exhaust pipe.

The model is shown schematically in Figure 5.7.  It includes, as in the previous section,
an equilibrium reactor that represents the reformer, a second input to the PSR that
represents the engine.  The PSR is used with very short residence time (0.001 s) as a
mixing, nonreacting reactor. The PSR is then followed by a plug flow reactor (PFR).  It is
assumed that the PFR has a diameter of 5 cm (2 in) and a length of 30 cm (12 in).  This
distance corresponds to the length between the injection point of the hydrogen rich gas in

O/C 1.33 1.43 1.54
Fuel flow rate g/s 1.49 1.39 1.29
T equil reactor K 1157 1255 1359
T exhaust K 423 423 423
T PSR K 628 654 1489

PSR H2 input mols/s 0.164 0.147 0.130
PSR H2 out mols/s 0.164 0.147 0.001
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the exhaust and the aftertreament unit. In this case, the amount of reformate is decreased
to 3 g/s (down from 10 g/s in the previous section), with an O/C ratio of 1.33.

The temperature of the exhaust is varied, until there is homogeneous reaction (i.e.,
combustion) in the exhaust.  A case just above the temperature at which the air/fuel
mixture ignites is shown in Figures 5.8 and 5.9.  Figure 5.8 shows the temperature of the
reformate/exhaust gas as a function of the distance along the plug flow reactor, when the
temperature of the engine exhaust is 973 K.

Figure 8.  Temperature as a function of distance in the PFR, assuming that the engine
exhaust is at 973 K

Half way along the exhaust pipe the fuel (hydrogen rich gas) ignites.  The corresponding
composition of the reformate/exhaust gas is shown in Figure 5.9. It is interesting to note
that hydrogen burns faster than CO.

Figure 9.  Hydrogen and CO concentration of the gas in the PFR as a function of
distance, for the case of engine exhaust temperature of 973 K.



64

For an exhaust temperature of 923 K (i.e. 50 K lower than the temperature for which the
hydrogen rich gas ignites), there is no reaction in the length of the PFR. The hydrogen
and CO concentrations remain the same to within 3 significant digits.

The temperatures required for ignition of the hydrogen rich gas are substantially higher
than those commonly found in the operation of diesel engines. Thus, it is not thought that
hydrogen rich gas from an equilibrium reformer will combust homogeneously in the
exhaust.

Non-Equilibrium Reformer

The last case uses the experimentally derived concentrations for a homogeneous
plasmatron operating on diesel, utilizing the PFR described in the section above. The
model is described in Figure 5.10.  It is assumed that the concentration of the reformate is
8% H2, 10% CO, 3% CH4, 1% C2H6, 4% CO2, 6% H2O and 68% N2. These numbers are
typical of operation of the generation 3 plasmatron. In addition, it is assumed that the
temperature of the reformate prior to mixing with the exhaust is 1100 K. The flow rates
are the same as with the PFR (3 g/s of reformate and 40 g/s of exhaust).

Figure 5.10. System without equilibrium reactor for reformer.

As in the previous section, the temperature of the engine exhaust is varied until there is
combustion in the exhaust pipe. It is found that the temperature of engine exhaust has to
be increased to 1073 in order to see ignition of the reformate/exhaust flow. Results at this
temperature are shown in Figures 5.11 and 5.12.

Reformer
Reactor

Plug Flow
Reactor

Engine
Exhaust

Non-reacting
mixing
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Figure 5.11.  Concentration in exhaust as a function of distance for an exhaust
temperature of 1073 K, for reformer composition similar to that of present day
homogeneous plasmatron reformers.

At an exhaust temperature of 1073, there is combustions.  At 50 K lower temperature,
there is no reaction at all. The temperature profile is shown in Figure 5.12.

Figure 5.12.  Temperature corresponding to the case in Figure 11 as a function of
distance

The ignition conditions of the non-equilibrium reformate requires engine exhaust
temperatures comparable to the temperature of the reformate.  The temperature in this
case is even higher than that described above for the equilibrium reformer, and they are
not reached in normal operation of a diesel engine.

The results indicated in this memorandum are for homogeneous (gas phase) reactions.
The object is that the hot carbon particles can induce combustion of the hydrogen rich gas
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locally, substantially increasing the particulate temperature and thus the combustion of
the particulates.
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6) Plasmatron aided HCCI operation

It has been suggested above that hydrogen rich gas could be an ideal fuel for the cold
start phase of an engine that when warm operates in HCCI mode.  During the cold start
the engine could operate as an spark ignition engine, with the low emissions
characteristics of engine operating in lean mode.

In this section, the characteristics of the plasmatron for HCCI applications are discussed.
Two of the features of the plasmatron fuel converter features could be useful for control
in HCCI combustion are:

1. the exothermicity of the reaction can be used for heating the incoming air with fast
response (since the heat is deposited directly in the gas, avoiding heat transfer through
metallic or ceramic walls in the heat exchanger, with a resulting time delay.)

2. the octane value of the fuel can be controlled by either use of hydrogen and CO as a
fuel additive, or by the production of C2 compounds, mainly ethylene when operating
the thermal plasmatron fuel  converter at low O/C ratios.

a) Temperature control

As described above in the prior art section, the partial oxidation reforming is exothermic,
releasing a small fraction of the heating value of the fuel (around 15%).  This heat can be
used for controlling the temperature of the gaseous charge that is injected in the engine.
The temperature is one of a small number of knobs that can be used for controlling the
ignition timing in HCCI.

The temperature excursion of the gas into the cylinder depends on the amount of air that
is mixed with the reformate.  The composition of the air/reformate fuel ratio can be
descried using the equivalence ratio of this mixture.  The equivalence ratio of the
air/reformate fuel mixture is defined as the ratio between the reformate fuel/air mixture to
that for stoichiometric combustion of the reformate fuel/air mixture. Assuming that 15%
of the heating value of the fuel is released, for a fuel of composition near CnH2n, Figure
6.1 shows the temperature excursion of the air/reformate mixture as a function of the
equivalence ratio.

During the engine cold start, when the conventional methods of establishing the charge
temperature do not work (i.e., EGR or a heat exchanger driven by the exhaust gas), the
plasmatron fuel converter can be used to instantaneously increase the charge temperature
to the levels required. When the conventional methods are used to increase the
temperature of the gas in the cylinder, very low levels of plasmatron fuel reformation
could be used to select rather precisely the charge temperature, with a device with fast
response..
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To increase the charge temperature to the temperatures that are desirable, above 100C,
the equivalence ratio of the gaseous mixture should be around 0.1.  Since the engine
could run at equivalence ratios around 0.5-0.6 to minimize emissions, the maximum
required fuel to be processed by the plasmatron fuel converter for startup  is on the order
of 20% of maximum load. The minimum torque of the engine during startup, when
operating the fuel converter for maximum hydrogen yield, is around 20% of maximum
torque. At lower loads, the charge temperature would be lower than required for HCCI
operation. To operate the engine at lower powers, it would be required to operate the
plasmatron in a mode with higher O/C ratios, therefore combusting a fraction of the fuel.
Operating the plasmatron in this mode has the advantages of both decreasing the heating
value of the reformate fuel (therefore decreasing the engine load) and increasing the
enthalpy of the reformate, thus increasing the temperature of the air/reformate fuel
mixture.

On the other hand, during the warm phase operation, relatively small values of fuel need
to be processed to control the temperature.  Assuming that a temperature excursion of 5 K
is desirable, then the equivalence ratio of the charge is on the order of .01.  If the engine
operates at a equivalence ratio of 0.6 (assuming that the engine can be operated at high
load in the HCCI mode), then about 2% of the fuel needs to be processed by the
plasmatron fuel converter.

Figure 6.1 Temperature excursion of the gaseous charge to the cylinder as a function of
the equivalence ratio of the air/reformate fuel mixture.
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b) Octane control

In addition to helping control the temperature in the charge, the plasmatron can be used to
generate fuels of different octane value.  When operating at O/.C > 1.2, the reformate has
a composition similar to synthesis gas, with about 20mol% H2 and CO, and small
concentration of CO2, C2’s, water, and the balance nitrogen.  The synthesis gas can be
used to increase the octane value of the fuel (since hydrogen has a very high octane
value, while CO is similar to that of methane), but requires its use not as a additive but as
a substantial fraction of the fuel.

When the O/C is smaller that 1.2-1.3, it is possible to generate substantial concentration
of C2 compounds, which have very low octane number. In this case, the reformate
composition may include a ethylene concentration that can be as high as a few percent.
Since the concentration of hydrogen and CO is on the order of 20%, but since the heating
value of ethylene is about 4 times that of the reformate, then

Under ideal circumstances, the process can be written as:

CnH2n + m/2 O2 + 2m N2  mCO + mH2 + (n-m)/2 C2H4 + 2m N2

In practice, the process is somewhat less efficient, but for the process of illustration the
above is adequate.

The concentration of hydrogen and CO in the reformate, as a function of the
concentration of ethane in the reformate, are shown in Figure 6.2.  Since a fraction of the
fuel is pyrolyzed into ethylene, the required oxygen, and therefore nitrogen, are reduced.
The reduction in the nitrogen concentration is the main reason why the hydrogen and CO
concentrations remain relatively constant.

Also shown in Figure 6.2 is the ratio of the heating value of the ethane in the reformate
compared to that of hydrogen and CO.  Ethane has about 4 times the heating value per
mol than does hydrogen or CO.
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Figure 6.2.  Concentration of hydrogen and CO, as a function of the C2 concentration in
the reformate.  Also ratio of the heating value of the ethane to that of hydrogen and CO
combined.

The reformate can be introduced into the engine to control the ignition timing. Figure 6.3
 shows the fraction of that needs to go through the reformer as a function of the reformate
equivalence ratio, as defined above (ratio between the air to engine /fuel reformate to the
air/fuel reformate for full combustion of the reformate).  There is additional fuel injected
into the engine, since the reformate is mainly an additive.  It is assumed that the overall
equivalence ration in the cylinder  (fuel+reformate fuel) is 0.7.

In order to process only about 10% of the fuel, the reformate equivalence ratio is about
0.05 (i.e., about 20 times more air than required for full combustion of the air).  The
ethane concentration in the cylinder is also shown.  For 10% of the fuel to the reformate,
the ethane concentration is about 0.1%.  It is not known the ethane concentration required
to control the ignition timing.

The fuel octane rating can therefore be changed via the addition of reformate from a
plasmatron fuel converter.  The higher the ethylene concentration in the cylinder, the
lower the octane number (i.e., the more prone to self ignition).
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Figure 6.3.  Fraction of the fuel that goes through the reformer as a function of the
reformate equivalence ratio.  Also shown is the ethane concentration in the cylinder.

The rate of heat release in the engine, needed to avoid knock, can be controlled by the
establishment of substantial temperature gradients in the air, as suggested by Noda
[Nod01]. In that work It was envisioned that EGR would aid in the generation of the
temperature gradients. The use of the reformate can aid in the generation of temperature
gradients by not-ideal premixing of the air and the plasmatron reformate.

Although hydrogen has a very high temperature for self-ignition, the presence of
hydrogen in the combustion chamber may also help ignition, due to the very small energy
required for ignition.  Under appropriate set of conditions, the local ethylene ignites the
local hydrogen that in turn ignites the local fuel, without the need of flame propagation.

Finally, the reformate non-uniformity in the charge to the cylinder can also be used to
control ignition.
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7) Modeling

In this section, modeling of the plasmatron is described.

There are two aspects of the modeling that have been performed, somewhat
independently, to attempt to understand the experimental results. The first model
involved fluid dynamics, without chemistry.  The reason why chemistry is not included in
this model is that the Reynolds average numerical simulation (RANS) is used.  The
composition of the plasmatron is very inhomogeneous, both in time and spatially.  The
RANS describe only average quantities, including concentration, but chemistry will not
take place until they are mixed at the molecular level (i.e., a pocket of fuel passing
through a volume element will not interact with a pocket element of fuel passing through
the same element at a different time, even though the code says that in average there are
both air and fuel at this locations). Thus the steady state CFD model will not model the
plasmatron appropriately.

The second model described the chemistry, using CHEMKIN. Mixing effects are
investigated using PSR as well as the PaSR model. Both models will be described in this
section.

a) Fluid dynamics modeling

The fluid model is used to understand the mixing upstream from the region where
chemistry occurs, to try to determine mixing parameters (such as k, the turbulent kinetic
energy, and ε, the turbulent energy dissipation rate.

Methane plasmatron CFD modeling

In the experiments the generation 3 plasmatron is used.  The geometry of the plasmatron
used in the experiments is shown in Figure 2.5.  Details of this model and results are
described in [Bro05e].

For the case of methane, only two independent airs are used: the wall air and the swirl air
(no axial air is used in the experiments described in Section 8.a). The wall air is injected
in the axial direction at the same axial location where the methane nozzle is located. The
swirl air is injected downstream from the wall air and the methane, with a large amount
of vorticity.  The swirl gas moves the discharge into the central region of the plasmatron,
and provides the rotation motion that moves the arc roots on the electrodes to minimize
electrode erosion.

Two locations for introduction of the methane have been investigated: the methane can
be introduced through the axial nozzle, upstream from the plasma, without any air; or the
methane can be premixed with the swirl air and injected as the plasma gas.
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Downstream from the plasmatron head there is a 5 in long section of the reaction
extension cylinder which is also included in the model.

The axisymmetric, steady state solution of the fluid dynamics in the plasmatron methane
reformer has been calculated using a commercially available CFD code, FLUENT. The
model includes compressibility of the air, using ideal gas. Wall temperatures are at the
same temperature as the gas (300K). Inlet conditions in all three ports (swirl air, wall air
and methane) are as mass flow rate. The outlet condition is atmospheric pressure.

The effect of changing the grid structure has been investigated to determine the
convergence of the problem, by using a grid that has four times the node density, and it
has been determined that the mesh is appropriate for the problems investigated in this
paper.

The model uses a turbulent model based upon the k-epsilon RNG model, with standard
wall functions. The RNG mode is better suited for analysis of flows with substantial
swirl, as is the case with the plasmatron methane reformer. The model solved the steady
state conditions, using an implicit formulation and segregated solver. The convergence
criteria for momentum, swirl, axial and radial velocities, k, epsilon and species
concentrations was 10-4. The energy was monitored and controlled, with a convergence
criteria of 10-8.

Since no chemistry is included in the model, the model cannot be used to describe the
flows downstream from the plasma. The object of these calculations is to determine the
conditions at and immediately following the plasma zone. In particular, the presence of
recirculating flows that constitute exhaust gas recirculation, are likely to have substantial
effect on the performance of the plasmatron methane reformer.

Axial injection of methane

In this section, the results for the case when the methane is injected introduced through
the axial nozzle are presented.  Although this is not the best configuration for methane, it
is the preferred configuration for liquid fuels, which require air-assist atomization.  Axial
injection minimizes wall wetting.

The swirl air and wall air flows in the model are1.29 and 2.59 g/s respectively, while the
input of methane is 0.45 g/s, corresponding to an O/C ratio of about 1.8. The high O/C
corresponds to that shown experimentally to produce good conversion of the methane and
moderate hydrogen yield in a non-catalytic reactor. The wall air is injected without swirl,
but the plasma gas has a swirl ratio of 12/40 (radial to tangential speed).
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(a)

(b)

Figure 7.1.    Contours of constant (a) velocity magnitude; (b) swirl velocity

Figure 7.1 shows the velocity profiles in the plasmatron head and the entrance to the
reaction extension cylinder. The left region in Figure 7.1 corresponds to the top of the
plasmatron in Figure 2.5 (as the plasmatron is axially symmetric only half of the
plasmatron in Figure 2.5 is shown, rotated clockwise 90 degrees,). The flows are labeled
in Figure 7.1 (a). Only a small section of the reaction extensions cylinder is shown, as the
model is not applicable to this region. The methane is injected through the axial nozzle
and at the extreme left of the figure.

Reaction extension cylinder

Axis of symmetryAxial injection of methane

Wall air

  Swirl gas

Upstream electrode
Downstream electrode
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(a)

(b)

Figure 7.2. Contours of constant (a) k, turbulent kinetic energy; (b) ε, dissipation rate

The injection velocity of the methane is high (on the order of 120 m/s).  The velocity has
to be high in order to provide the narrow radial distribution of the methane that results in
stratification of the methane, with high concentration on axis. The methane velocity
decreases to the bulk velocity downstream, but upstream from the electrode gap region.
The swirl gas (in this case, air) has swirl velocities on the order of 20 m/s in the
plasmatron, with velocities decreasing to about 10 m/s downstream from the plasma
region. It should be noted that the swirl gas flows upstream from the injection point,
resulting in longer residence time in the plasmatron.  As the swirl flows modify the
plasma, it part of the plasma, and the upstream root of the plasma, should move upstream
from the electrode gap. This has been observed experimentally.

The turbulence parameters k (turbulent kinetic energy) and ε (turbulent kinetic energy
dissipation) are shown in the Figure 7.2. These parameters are important for the chemical
modeling because they drive the turbulent mixing. The mixing time, which is the time for
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mixing of the flows, is determined by the ratio of k to ε, τmixing ~ k/ε. k is in the range
from 1-5 m2/s2 in the plasma region, while ε varies from 2 104 – 6 104 m2/s3. The mixing
time, for these conditions, vary from 0.1 –  0.5 ms

Figure 7.3. Contours of constant methane molar concentration

The molar concentration of methane is shown in Figure 7.3.  The methane is stratified in
the plasmatron head region, with highest concentration on the axis, decaying radially. It is
thought that reforming in plasmatron fuel converters proceeds through a two-stage
process, as described in the experimental and chemical model papers [Bor05c, Bro05d].
Reforming is maximized when there are substantial regions with stoichiometric
methane/air mixture. The partial mixing is expected to result in ignition of some regions
with good flammability characteristics, with mixing controlled reaction proceeding
through the low flammability region. Both the Perfectly Stirred Reactor model [Bro05c]
and the Partially Stirred reactor PaSR model [Bro05d] are used in the accompanying
papers to investigate partial mixing

Only in the region of the reaction extension cylinder the methane and air are well mixed.
It should be noted that there is no methane present within the strong swirl next to the
plasma electrode. It is thought that the lack of fuel in this plasma region is responsible for
poor experimentally determined reforming performance in the case of axial methane
injection, and has suggested introduction of at least some of the fuel through the swirl
gas.  This condition will be discussed in the next section.
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Figure 7.4. Radial molar concentration of methane along a radius at planes coinciding
with the upstream and the downstream electrodes, shown in Figure 7.1(a).

The radial concentration of methane, measured along a radius upstream and downstream
from the electrode gap (shown in Figure 2(a)), is shown in Figure 7.4. As expected,
because the swirl flow does not contain any methane, the upstream and downstream
concentrations are very similar.

Stoichiometric combustion of methane occurs for a methane molar concentration of 9%
(at an O/C = 4). As the methane concentration gradient is large in the zone where the
methane concentration is 9%, the zone with approximately stoichiometric methane/air
mixtures is small.
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Methane premixed with swirl gas

In this section, results will be shown for the case when the methane is premixed with the
swirl air, and injected through the gap between the two electrodes, with strong vorticity.
In this case, there is no input through the axial nozzle, and wall air and swirl air flows at
the same levels as in the previous section.

(a)

(b)
Figure 7.5. Same as Figure 2 but for case of methane through swirl port.

Figure 7.5 shows contours of constant magnitude of the velocity magnitude and the swirl
velocity for the same air flows as Figure 7.1, but for methane through mixed with the
swirl air. The swirl velocities are larger, due to the increased flow of swirl gas (which
now contains also the methane, about 100 lpm STP in Figure 7.5, vs 60 lpm in Figure
7.1). The swirl motion also moves further upstream in Figure 7.5 than in Figure 7.1.
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(a)

(b)
Figure 7.6. Same as Figure 7.2 but for methane injected through the swirl port.

The turbulence parameters, k and ε, do not change substantially in the region of the
plasma when the location of the methane injection is varied, as can be seen by comparing
Figure 7.2 and 7.6.  Thus, the mixing time is not sensitive of the place of injection of the
methane.

However, the methane concentration profile changes substantially in the two cases.
Contours of constant methane concentration are shown in Figure 7.7 for methane through
the swirl port. The gradients are in the opposite direction from that of figure 7.3, with
highest concentration near the wall and smallest near the axis.
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Figure 7.7. Molar concentration of methane for the case of methane premixed with swirl
air.

Figure 7.8 shows the molar concentration of methane at the location of the upstream and
downstream electrodes. As opposed to the case shown in Figure 7.4, the gradients in the
methane concentration are small near the region with stoichiometric methane/air mixture
(at around a radius of 0.055 m), which results in a larger fraction of the methane near
combustion conditions, and should be better suited to two-stage reforming. The location
of the stoichiometric conditions is not that different from the case shown in Figure 7.4,
but it is substantially larger because the gradients are smaller.

Figure 7.8.  Radial concentration of methane at the location of the upstream and
downstream electrodes.
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In this case, there is a difference between the upstream and downstream planes, as the
methane is part of the swirl flow, and some of it moves upstream while the rest moves
downstream.

Thus, the conditions generated in the case of methane premixed with the swirl air are
more conducive to two-stage reforming than that for axial injection of methane. Results
not shown in this paper indicate that premixing the methane with the wall air has similar
methane concentration profiles than the case with axial injection, and thus should have
comparable reforming characteristics.  It has been experimentally shown [Bro05a,
Bro05b] that the case of methane through the swirl port results in improved reforming
(defined as methane conversion at a given overall O/C and at a given power).

Propane plasmatron CFD modeling

One of the disadvantages of using methane as a surrogate hydrocarbon for heavier fuels is
that the methane chemistry is substantially different from that of heavy hydrocarbons. In
order to address the issue of the different chemistry, a heavier gaseous hydrocarbon
needed to be tested.  In this paper, the performance of plasmatron propane reformers is
investigated. Propane-air mixture is the simplest hydrocarbon system that exhibits
chemical behavior, laminar flame speeds and thicknesses, and extinction limits that are
comparable to those of heavier fuels [Tur96]. It is probably the smallest system from
which quantitative information directly relevant to the partial oxidation of heavier liquid
gasoline and diesel fuels can be extracted, and is therefore an appropriate choice for this
study [Haw98]. Unfortunately, unlike the case of methane where chemical modeling of
the experiments were performed [Bro05c, Bro05d, Bro05e], propane mechanisms are not
as well developed, and we have not performed chemical modeling to compare with these
experiments,

The experimental results, and the accompanying calculations, were carried out with
propane introduced in 5 different ways: (a) through the axial nozzle, similarly to what is
done with liquid fuels (described in section 3); (b) premixed with the wall air; (c)
premixed with the swirl (plasma) air; (d) premixed with all the air, so that the air/propane
distribution in the plasmatron and the reactor are homogeneous; and finally, (e)
stoichiometric conditions in the swirl gas, with the rest of the propane introduced with the
wall air.

Downstream from the plasmatron head there is an insulated 12 cm (5 in) long reaction
extension cylinder which is also included in the model. The volume of this section is
approximately 1000 cm3.

Air/propane mixtures

The axisymmetric steady state solution of the flows in a plasmatron propane converter is
calculated using a commercially available CFD code, FLUENT.  Description of the
model and results for the case of methane are presented in reference [Bro05e]. The model
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was used to determine the effect of initial conditions on the mixing upstream of the
region where sufficient thermal energy has been released to modify the result, which
occurs downstream from the plasma region.

Because of the multitude of cases, only three cases will be presented: the case of axial
injection of propane, propane premixed with the wall air, and propane premixed with the
swirl air. The flow rates used in the simulation of the different injection modes are shown
in Table 7.1.  The flow rates for the different modes correspond to those that
experimentally optimize the reforming. The flow rate of propane is held constant in the
experiments and in the model (at 0.5 g/s), but the total amount of air and the distribution
of the air is varied to optimize the reforming.

Table 7.1.  Flow rates (in g/s) for the different modes of injection

The model indicates very different distribution of the air/propane mixture for the different
modes of injection. The propane concentrations for the three modes of injection are
shown in Figure 7.1. Also shown are the axial velocities of the gas for the three cases.
The figure shows a cross-section of the plasmatron.  The axis is the horizontals at the
bottom of the figure, with the radius in the vertical direction, the axial and wall gas
injection are at the left of the figure, the swirl gas is introduced in the upper boundary
towards the middle of the narrow section, and wide section at the right is the beginning of
the reactor.  Only a section of the reactor is shown in the figure, as the model is not
appropriate for this region because of the absence of chemistry. The figures therefore
show half of the plasmatron section shown in Figure 2.5, rotated counterclockwise by 90
degrees.

Fuel injection Axial 
Premixed 

wall
Premixed 
plasma

plasma air 1.29 1.51 1.51
plasma fuel 0 0 0.5

wall air 3.67 2.59 1.51
wall fuel 0 0.5 0

axial fuel 0.5 0 0
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(a) Axial injection of propane: molar concentration (left) and axial velocity (right)

(b) Premixed propane with wall air: molar concentration (left) and axial velocity (right)

(c) Premixed propane with plasma air: concentration (left) and axial velocity (right)

Figure 7.9.  Results from CFD calculations of propane molar concentration (left) and
axial velocity (right) for the three modes of injection shown in Table 7.1.

Upstream
Downstream
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The swirl gas flows upstream from the injection point, because of the strong vorticity.
How far upstream is determined by the swirl flow and the axial flows. The case where the
propane is premixed with the swirl air results in the largest upstream flow, followed, by
the propane premixed with the wall air and finally by the axial fuel injection. The case
with the propane premixed with the swirl flow has the lowest wall air flow, followed by
the propane premixed with the wall air and by the axial propane injection. This back flow
has a large impact on the air/propane distribution at the location of the plasma (around
the region of the electrode gas, where the swirl gas is introduced).

In the three cases considered there is a large amount of recirculation upstream the
electrodes.  In some alternative designs of the plasmatron there is a diaphragm in the
region between the axial nozzle and the electrode gap, but it is not needed for the design
shown in Figure 2.5, as the recirculation flow happens automatically.  This recirculation
has a large impact on the air fuel distribution.  For the case of axial injection of the
propane, the recirculation results in a very high level of mixing between the propane and
the wall air, well before the region of injection of the swirl gas. There is nonuniform
air/propane distribution only in the small region between the central zone of the wall air
plus propane and the periphery where the swirl air is located. Figure 7.10 shows the
radial molar concentration of propane for a plane that corresponds to the upper electrode
and for a plane corresponding to the lower electrode (downstream). The axial locations of
these planes are shown in Figure 7.9 (a, left). The propane concentration is uniform
upstream of the electrode gap, and downstream from the electrode gap there are two
clearly demarked zones, one with about 8% propane and the second with no propane. For
stoichiometric propane air combustion, the concentration of propane is about 4% molar.
Thus there is a very small region with easily ignitable fuel.

In contrast, for the case of propane premixed with the swirl air there is a larger zone of
stoichiometric air/fuel mixture, with gradients in the opposite direction. The propane
molar concentration in Figure 7.9 b shows larger regions of stoichiometric air/propane
mixtures, which should be favorable for two stage reforming, as discussed in the
accompanying methane papers  [Bro05a, Bro05b, Bro05c, Bro05d, Bro05e]. Figure 7.10
shows that indeed there are larger regions of stoichiometric air/propane zone in this case.

The case of propane premixed with the wall air falls between the case with propane axial
injection and propane premixed with the swirl air. It will be shown in the experimental
section of this paper that indeed, best reforming occurs with propane premixed with the
swirl air, followed by premixed with wall air and finally, axially injected propane.  The
case where propane and air are fully premixed (equal composition of the wall gas and the
swirl gas is also discussed in the experimental section.  This last case of course has no
nonuniform distribution, and the reforming results are comparable to that of the axial
propane injection.
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Figure 7.10. Propane concentration as a function of radius for locations upstream and
downstream from the electrode gas, for the three difference modes of injection of
propane.

Gasoline plasmatron CFD modeling

The performance of liquid fuels and gaseous fuels is very different due to the latent heat
of vaporization of the liquid fuel. There are three main differences between liquid and
gaseous fuels.  First, there is a finite rate of vaporization of the fuel, and thus either
combustion occurs as a diffusion flame (as is the case in a diesel engine).  The second has
to do with the heat of vaporization of the fuel, which cools the air/fuel mixture. Finally,
because of the need to prevent wall coating, the liquid fuel is exclusively injected through
the axial port, while the gaseous fuels could be injected through any set of ports, and
indeed had best performance when injected through the swirl gas.

Section a describes a simple CFD model that is useful to understand the air/fuel mixing,
as well as the vaporization of the gasoline droplets. Section b discusses the setup and the
characteristics of the plasmatron gasoline reformers, in particular the effect of the fuel
atomization and the cooling of the air/fuel mixture due to the latent heat of vaporization
of the gasoline.

The calculations were performed using FLUENT 6.0 CFD package. The solution is for a
steady state solution, axisymmetric, with air as the fluid. A Reynolds-Average Navier-
Stokes model has been chose, with a k-ε formulation for the turbulence.  The model
includes swirl and compressibility of the air.  The energy equation is solved. The solution
is shown on half of the cross section of the plasmatron.  A small section (1 in) long of the
reaction extension cylinder is also included in the model.
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No chemistry is assumed.  Wall temperatures are at the same temperature as the gas
(300K). The outlet condition is atmospheric pressure.  Inlet conditions in all three ports
(plasma air, wall air, atomization air) are as mass flow rate. Under-relaxation has been
used for the pressure (0.3) and momentum (0.7).  The scheme for solution is 2nd order
upwind.

Table 7.2 shows the parameters used in the calculations. The gasoline flow rate assumed
was 1 g/s, twice that of the experiments.  The fuel was injected using “surface” injection
at the port for the atomization air (uniformly distributed). Fuel droplets were injected
exclusively in the axial direction, with no radial or tangential component, that is, with a
zero spray angle.  It was assumed that the injection velocity of the droplets was 50 m/s.
The droplets composition was n-octane and uniform in diameter, with the droplet size in
the first set of calculations is assumed to be 50 µm.  This is a relatively large drop size.
Evaporation of the droplets was included, and the concentrations of the n-octane vapors
have been calculated. Smaller drop sizes will be considered later in this paper.   Finally,
the effects of spray distribution are discussed in the last section.

50 µm diameter droplets

In this section, the upper range of the particulate size is investigated.

Table 7.2

Plasmatron gen 3A
Plasma air 0.0018 g/s
Velocities: swirl 50./s
                   Radial -12 m/s
Wall air 0.0028 g/s
Atomization air 0.0013 g/s
Atomization air temp 300 K
Fuel injection
Droplet size 50 µm
Initial droplet speed -50 m/s
Composition of droplet n-octane liquid
Spray angle 0
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Figure 7.11. Axial velocity of the gas (a) with fuel injection (1 g/s) (b) no fuel injection

Figure 7.11 shows the axial velocity of the gas in the plasmatron for the conditions of
Table 7.2 with and without fuel. Note that the axial velocity of the atomization air is
lower in the case of the fuel injection than without, reflecting the fact that momentum is
being transferred from the gas to the droplets, which are injected with lower speed (50
m/s).

Figure 7.12.  Droplet average path (a) droplet axial velocity (b) droplet residence time
Figure 7.12 shows results of calculations of n-octane droplets.  The calculations are
performed using stochastic air and droplet flow fields, with multiple droplets launched at
the surface of the nozzle. Figure 7.12a shows the calculated droplet velocity on the
droplet path, while Figure 7.12b shows the residence time.  The droplets quickly achieve
the velocity of the gas (air), by the time that they reach the interlectrode spacing they are
well entrained in the atomization air flow.
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Figure 7.13. Mass fraction of Gaseous C8H18 (relative to nitrogen)

The mass concentration of gaseous n-octane is shown in Figure 7.13 for the case of 50
mm droplets.  Only a small fraction of the fuel has vaporized, and the conditions for
stoichiometric conditions (about 6% by mass for an air/fuel ratio of 15) are not reached
with the fuel vapor.
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10 µm diameter droplets

In order to examine the other extreme of the droplet size distribution, the calculations
were performed with 10 mm diameter droplets. The smaller droplets size results in
increased evaporation of the droplets, due to increased surface area, as well as in reduced
particulate inertia, with increased impact on the droplet paths due to the turbulence of the
gas.

Figure 7.14. Stochastic particle path vs (a) residence time (b) particle diameter

The random paths of some droplets, launched at different locations on the nozzle surface,
are shown in Figure 7.14. Different sets of droplets have been used in Figures 7.14 (a)
and (b), as noticed by the outermost droplets. Figure 7.14a shows the residence times of
the particulates, while Figure 7.14b shows the droplet diameter. Some evaporation of the
particle is seen, more than in the case with 50 mm particles.  However, even at the inter-
electrode location (where the plasma is expected), the droplet diameter has decreased by
only about 1%, corresponding to about 3% of the droplet. The corresponding
concentration of n-octane is shown in Figure 7.15.

Figure 7.15.  Concentration (by mass) of gaseous n-octane
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Figure 7.16.  Axial velocity (a) of droplets along their path (b) of continuous media

As expected, with the smaller particle size there is stronger interaction between the
continuous media and the droplets.  Thus, in the case with smaller droplet size the
atomization air slows down quicker and the droplets gain speed faster than in the case
with larger droplet size. Also, the path of the smaller droplets (stochastically calculated in
every plot) is influenced more by the local turbulence of the flow.

Finite spray angle

The surface injection has no capability of spray angle distribution, but it can have a non-
zero radial speed (with no spread, therefore resulting in a cone-shape). Since the effect is
more pronounced with the smaller droplets, the calculations of the effect of finite spray
angle  has been performed for 10 µm droplets.

The initial radial speed of the droplets was varied from 0 through 30 m/s.  The initial
axial speed of the droplets was kept constant at 50 m/s.  Therefore, relatively wide spray
angles were modeled.

Figure 7.17. Stochastic paths for initial radial velocities of (a) 0 m/s, and (b) 10 m/s
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Figure 7.18. Stochastic paths for initial radial velocities of (a) 20 m/s, and (b) 30 m/s

The radius of the droplet “cloud” increases slightly when the initial radial speed of the
droplets increases from 0 to 10 m/s.  However, the location of the paths in the inter-
electrode region do not change substantially when the initial radial velocity of the
droplets increases further from 10 through 30 m/s

The complex vaporization process made modeling of the system very difficult, and it has
been analyzed in a simplified CFD model. The simple models of the plasmatron, without
chemistry, show that indeed very small fraction of the gasoline is vaporized.

Cooling of the gas by evaporating fuel

The gasoline droplets need some heat in order to vaporize.  The vaporization rate of the
droplets follows the rule

dD2/dt = -Ke

Where Ke is the evaporation constant and is a function of temperature.  For stoichiometric
combustion, the change in the temperature of the air due to the vaporization of the
gasoline is about 24 K, assuming constant pressure process.  However, for partial
oxidation, where the air/fuel mass ratio is about 1/3 that of stoichiometric combustion,
the temperature of the air is reduced by as much as 70 K (assuming constant
thermodynamic properties of the air).  These large drop in temperature means that only a
small fraction of the gasoline will be vaporized prior to entering the reaction zone, where
exothermic reactions raise the temperature of the gas.
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b) Chemical modeling

Hydrogen generation from natural gas has been performed using mainly steam reforming.
Although steam reforming has substantial advantages from a system point of view, partial
oxidation can have advantages in certain circumstances, particularly where pure
hydrogen is not required, and where the hydrogen rich gas will not be compressed
downstream from the reformer. [see, for example, Hic92, Hic93, Hic93a, Hic93b, ,
Deu98, Gor00, Gra94, Ber99]

In the fuel reformation of natural gas the use of catalysts is widespread.  The catalyst
reduces the required temperatures, increases conversion and maximizes the hydrogen
yield. However, the catalyst is expensive and needs to be regularly exchanged, at
substantial cost.  It has been estimated that the capital cost of the catalytic reformer is on
the order of 1/3-1/2 of the cost of the plant.

The conversion of natural gas without the use of a catalyst is attractive.  Plasma-driven
catalysts have been explored for the conversion of methane and other fuels. Our group at
the Plasma Science and Fusion Center at MIT has been investigating the conversion of a
wide range of fuel into hydrogen rich gas.

PSR model

The purpose of this section is to describe a simple chemical model of the process with
methane, based upon a two stage, Perfectly Stirred Reactor.

Chemkin 4.0 [Kee04] was used to simulate a fuel converter based on a plasmatron. The
plasmatron fuel converter and experimental results have been described in accompanying
papers, for steady state [Bro05a] and start-up [Bro05b] conditions.

The simple model described in this paper assumes that a fraction of the fuel is consumed
in stoichiometric combustion and these combustion products mix perfectly with the rest
of the room temperature air/fuel mixture. The model is consistent with observations in the
plasmatron fuel converter [Bro05a, Bro05b], in which if the methane and the air are
premixed, there is no conversion, and the conversion is a strong function of the
methane/air stratification in the plasma region.

The process, as presently understood, is thus a two step process, with pure combustion in
the first step which releases enough heat to drive the partial oxidation reactions in the
second step.

The simple model uses an equilibrium reactor to combust the stoichiometric methane/air
mixture.  This mixture is then fed to a perfectly stirred reactor (PSR) that has a secondary
input consisting in additional fuel and air (with O/C = 1) at room temperature. The
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overall O/C ratio is then substantially higher than for stoichiometric partial oxidation
(since the first stage has substantially higher O/C).

The fuel is methane.  The GRI 3.0 mechanism was used in the calculations [Smi].  This
mechanism has been developed to model methane combustion over a very wide range of
conditions.  It has 53 species and about 350 equations. The temperature of the
combustion products in the first stage is about 2200 K. At this temperature, substantial
levels of NO and nitrogen-carbon compounds are made. Nitrogen chemistry is followed.

It is assumed that the reactor is adiabatic and has a volume of 1000 cm3.  Although the
volume of the reactor is easy to establish, the region with good mixing is not, and we
have performed calculations for various reactor sizes.  The residence time varies
depending on the temperature of the gases as well as the mass flow rate.  It has been
assumed that the mass flow in the PSR is ~ 5 g/s (corresponding to a few hundred l/min).

The stoichiometric flow rate to the equilibrium reactor is varied in order to investigate the
effect of additional enthalpy.  The secondary flow (with O/C = 1) is held constant. In the
experiments, the methane flow rate was constant [Bro05a, Bro05b].

The reactor network used in the simulation is schematically shown in Figure 7.19. There
is no preheating of any of the reagents. The object of the plasma is to ignite the
stoichiometric methane/air fuel mixture, but in terms of energy balance it provides only a
small fraction of the exothermic energy of the partial oxidation reaction and is actually
not included in the model.

Figure 7.19.  Schematic diagram of the process

Two Stage PSR results

The composition of the output from the PSR is shown in Figure 7.20 for the case of a
reactor with 1000 cm3. The secondary input flow rate (with O/C = 1) was 3 g/s, and the
stoichiometric flow rate was varied to vary the overall O/C. It is clear that the hydrogen
production and methane conversion processes experience a discontinuous jump around an
O/C ~ 1.4  (corresponding to 1.5 g/s of stoichiometrtic air/methane mixture).  There is
very little hydrogen in the output for O/C < 1.4, and relatively constant after the
transition.  The amount of hydrogen produced in this homogeneous system is about 7-

Equilibrium reactor with
stoichiomertic air/
methane (O/C = 4)

Secondary input to
reactor (O/C = 1)

Perfectly Stirred
Reactor (PSR)
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8%, relatively independent on the overall O/C ratio.  It should be noted that with
increased stoichiometric mass flow rate (more combustion), the residence time decreases,
both because of the increased mass flow rate as well as increased temperature.

Figure 7.20.  Composition of the exhaust as a function of the overall O/C ratio.

The PSR temperature and residence time are shown in Figure 7.21. The temperature
increases with increasing stoichiometric flow rate.  The temperature of the PSR reaches
values where substantial reactions can take place, at which point the fuel rich mixture in
the PSR ignites.  The steady state temperatures of the PSR are on the order of 1400-1500
K.  The residence time varied from about 80 ms at the conditions of the lowest O/C
values considered, to about 30 ms to the highest flow rates.

The corresponding stoichiometric flow rate is plotted in Figure 7.22 as a function of the
calculated O/C ratio.  Substantial precombustion of the methane is required in order to
drive the reforming reaction. A stoichiometric flow rate of 1.5 g/s is required for a
secondary flow rate of 3 g/s, corresponding to an overall O/C of about 1.4. These
conditions result in large enough temperatures to maintain the reaction.
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Figure 7.21.  Reactor temperature and residence time as a function of the O/C ratio)

It should be noted that once the PSR is ignited, the concentrations are relatively
insensitive to further increases in the overall O/C. (see figure 7.20).  In addition, it is not
expected that the size of the reactor, nor the flow (which affect the residence time), will
have a large impact.

Figure 7.22.  Stoichiometric flow rate as a function of overall O/C ratio (overall)
(secondary flow rate to the PSR is 3 g/s)

In Figure 7.23, the concentration of fixated nitrogen compounds are shown as a function
of the overall O/C ratio.  NO (generated in the stoichiometric combustion process) shows
a large discontinuity at the point where the PSR ignites, and there s a simultaneous
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increase of HCN and NH3, as would be expected from a system with a reducing
environment.

Figure 7.23.  Fixated nitrogen as a function overall O/C (secondary flow rate is 3 g/s)

It would be useful to determine whether the fixated is generated in the equilibrium reactor
or in the PSR.  The equilibrium reactor generates, at a flow rate of 1.5 g/s, an NO flow
rate of 10-4 moles/s.  The output from the PSR has about 0.9 10-4 moles/s.  Thus, most of
the NO from the equilibrium reactor flows to the output of the PSR when there is little
reforming in the PSR. Nor surprisingly, as it is in the equilibrium reactor where the
nitrogen is fixated.

Effect of residence time in the conversion

In order to determine the effect of residence time, the flow rates were scaled down, with
fixed reactor volume.  These flow rates do correspond to more realistic flow rates in the
experiment.

The total gas flow rate was varied from 2.5 g/s total to 20 g/s. The results are shown in
Figure 7.24.  Increasing the residence time only slightly increases the hydrogen yield and
the methane conversion. The model suggests fast initial chemistry, followed by slow
chemistry.

The composition of the fixated nitrogen compounds for different residence times is
shown in Figure 7.25. There are changes in the composition of the fixated nitrogen, with
NO decreasing and NH3 increasing. As with the composition of the major components,
slow chemistry follows relatively fast chemistry. For residence times larger than about 20
ms, the rates of conversion are very slow and the concentration rate of change is slow. It
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is interesting that the total fixated nitrogen does not change much over the range of
residence times.
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The concentration of fixated nitrogen compounds is about 1400 ppm. The fixated
nitrogen was not measured experimentally.  However, measurements by Khadya [Kha04]
and Stevens [Ste03] are in agreement with these measurements.
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It is likely that these compounds, when the reformate is used in a combustion process,
will turn to nitrogen oxides.

The effect of changing the residence time has little effect upon the conversion, as shown
in Figure 7.24.  However, it has a substantial effect on the critical flow required for
igniting the PSR.  Figure 7.26 shows the overall O/C required for ignition corresponding
to reactor sizes varying from 150 to 1000 cm3, for a total mass flow rate of 4.5 g/s. As the
reactor size decreases, the required temperature for ignition increases to compensate for
the decreased residence time, increasing the required stoichiometric flow rate and thus
the overall O/C.

Figure 7.26. Required overall O/C for ignition of a PSR of various sizes, for a constant
mass flow rate of 4.5 g/s

Discussion

In this section a comparison between the model and the experimental results is presented.

Results that illustrate the ignition-like behavior of the plasmatron methane reformer are
reproduced in Figure 7.27 (from reference [Bro05a]). As explained in reference [Bro05a],
there is a problem determining the O/C ratio, which has a ~10% spread. The results in
Figure 7.27 show a required overall O/C of about 1.6 for ignition.  Above it was
determined that the overall O/C for ignition was closer to 1.4 for a reactor size of 1000
cm3, but as discussed above, the physical reactor size may be substantially larger than the
PSR, as the downstream sections of the actual reactor may be closer to plug-flow, rather
than perfectly-stirred. Using results from Figure 7.26, a reactor needs to be about 250 cm3

in order to match the experimentally obtained O/C ~ 1.6. It is not unlikely that the actual
size of the PSR be this size, as recirculating flow (that generated the idea of the PSR
model instead of Plug-Flow model), occur over substantially smaller sections of the
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actual reactor, as shown in the paper on fluid simulation [Bro05e]. Although those
simulations [Bro05e] did not include chemistry, the existence and size of the recirculation
zone was suggested.

The model has been successful in predicting the experimental result that at relatively high
values of O/C (> 1.6) there is a sudden increase the methane conversion. The
experimental program was designed to test this hypothesis.

Figure 7.27. Experimental results (from reference [PSR9]),

Table 7.3. Comparison between experimental and model results

Table 7.3 shows typical results from the experiment, and compares with the results
obtained in this paper. The experimentally obtained dry gas composition of the reformate
is under the column labeled 5/2/2005-2. The PSR results have been those calculated of
the O/C ~ 1.65. Two columns are indicated, the first one for the actual composition, and
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the second one for dry gas composition (to compare with the experiments). Also shown
are the modeling results from the PsAR calculation [Bro05d].

The models underestimate the concentration of hydrogen (the PSR by about 40%, while
the PaSR by about 20%). The assumption in this paper of very fast combustion in the first
stage, followed by very fast mixing in the second stage, are crude approximation for the
system.  The PaSR model, which includes finite rate mixing, does a better job. A full
fledged model using CFD and chemistry is outside the scope of the work.

It is not clear how large is the well mixed reactor, as there are regions in the downstream
section of the physical reactor that resemble more a plug flow reactor than a well mixed
reactor.
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Partially Stirred Reactor Model

In the previous section, the use of two step reforming has been used to model a
plasmatron methane reformer [Bro05c]. The model assumes that a fraction of the air/fuel
mixture combusts stiochiometricly, and then the combustiong products mix with the
balance air/fuel in a Perfectly Stirred Reactor (PSR).  The model did provide quantitative
agreement with experiments with a plasmatron methane reformer, in particular on the
critical O/C ratio needed for homogeneous reaction, but failed to reproduce the observed
concentrations.  It was speculated in that paper that the reason was the use of
instantaneous combustion (equilibrium conditions) in the first step and instantaneous
mixing in the second step that is characteristic of the Perfectly Stirred Reactor, although
the model did include finite kinetics in the second step. In this section, we investigate the
possibility of improved agreement by including finite rate of mixing. [Bro05d]

The experimental results are described in accompanying papers that describe the steady
state experiments with the plasmatron methane reformer [Bro05a] and experiments with
transients, mainly cold startups [Bro05b].  All these experiments and the modeling in this
and in the accompanying papers were carried in a reactor without a catalyst to investigate
the gas phase chemistry of the plasmatron methane reformer.  In an additional
accompanying paper [Bro05e] a model of fluid dynamics of the plasmatron methane
reformer has been investigated. The model in that paper does not include chemistry, and
thus can be used to investigate the mixing prior to the region of substantial energy release
from the chemistry. However, it provides a framework as for the level of mixing and the
distribution of air/fuel mixture through the region of the plasma.

A previous paper attempted to simulate reformers, and in particular plasma reformers,
using the Partial Stirred Reactor (PaSR) [Bel05]. That work used the PaSR code [Che97]
available from CHEMKIN 3.7 [CHE37], which did not provide an adequate model
because of inadequate input flexibility.

To simulate the limited mixing rates, the PaSR model [Bel05] from CHEMKIN 4.0.2
[Kee04] has been used.  The code used was an updated, beta version of the PaSR routine,
provided to us by Chou [Cho05]. The code assumes a large number of elements, each
individual element being a perfectly stirred reactor.  For the present calculations 1000
elements were used.  Several initial conditions have been used. The code allows for
control of the mixing time and the residence time. The model allows for flexible input of
the elements; however, there is a single number of the mixing time, which is assumed
constant throughout the reaction volume.

The GRI 3.0 mechanism was used in the calculations [Smi].  This mechanism has been
developed to model methane combustion over a very wide range of conditions.  It has 53
species and about 350 equations. The temperature of the combustion products in the first
step is about 2200 K, at which temperature substantial levels of NO and nitrogen-carbon
compounds are made. Nitrogen chemistry is followed.
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Figure 7.28 shows schematically the reactor network.  Since it is in steady state, the input
flow rates are balanced by output flow rates, not show in Figure 7.28.  The parameter of
the inputs will be described below.  The PaSR reactor is described by identifying the
number of elements (1000), the residence and the mixing times, the pressure and the
initial conditions. The results are dependent on the initial conditions, but it has also been
experimentally determined that certain parameters are more conducive to ignition and
good conversion.

The experimental setup had two independent flows, the swirl flow and the axial flow.
The experimental results evaluated in this paper have swirl gas that is composed of all the
methane and some of the air. The methane flow in the experiment was 0.45 g/s,
corresponding to a heat of combustion of about 25 kW. The O/C ratio of the experimental
points investigated in this section is varied by changing the axial air.

The model used three independent input flows. The first flow represents the arc
discharge, which is modeled using a high temperature gas, with the composition of the
swirl gas.  The assumed temperature of the plasma gas is 2400 K.  There is some indirect
evidence that this is the temperature of the arc, through high temperature chemistry
(formation of nitrogen oxides in the absence of fuel, formation of acetylene in the
absence of air), and power balance from fast frame images of the discharge [Anz04].

Figure 7.28.  Schematic diagram of the PASR model showing the different flow inputs

The total flow rate of the swirl air is 1.2 g/s. The swirl air is premixed with the methane,
0.45 g/s, thus the flow of swirl air of 0.86 g/s, or 40 lpm (STP). The plasma gas is just a
fraction of the swirl gas that goes through the plasma region and gets heated to the
plasma temperature, 2400 K. The flow rate of this hot gas corresponds to the power
delivered by the power supply. In the experiments the plasma power during most of the

Plasma gas

Swirl gas composition

2400 K

0.108 g/s

Balance of swirl gas

Swirl gas composition

300 K

1.2 g/s

Axial gas

Balance of air

300 K

Various flow rates

Partially Stirred
Reactor (PASR)
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1 bar
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Various τmixing
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steady state experiments is ~ 375 W. For this power, this temperature and gas
composition, the flow rate of the high temperature gas is 0.108 g/s. The impact of the
turning off the plasma is investigated by changing the temperature of the plasma gas from
2400 K to 300 K. The balance of the swirl flow that is not plasma is at room temperature
(300 K).

Table 7.4
Flow rates of axial air for the overall O/C ratios considered

The third input flow is the wall air, adding up to the overall air flow rate. The temperature
of the third input flow is 300 K. The flow rate of this gas varies, to model the
experimental results and to change the O/C ratio. The axial air flow rate varies as shown
in Table 7.4.

The residence time in the reactor is variable, as the volume of the reactor is constant
(1000 cm3).  The residence time is determined by the volume of the reactor, the average
density of the gases in the reactor, and the mass flow rate.

The simulation is a statistical simulation using the MonteCarlo method. Each element of
the simulation is modeled as a Perfectly Stirred Reactor.  Every MonteCarlo time step
random cells are mixed (with both mass and heat transfer), some are removed and new
ones are introduced.  The overall response of the system is such to reproduce the mixing
time, the average residence time in the reactor and the characteristics of the input (mass
flow rates, input composition and temperatures of the gases [Che97]).

The MonteCarlo step is an input that has been varied through the calculations, but it is on
the order of 150 µs. The time has to be long enough to insure that some elements in the
reactor are changed, but small enough to make sure that the number of the introduced
elements do not significantly change the instantaneous composition or temperature in the
reactor.

Several mixing models have been used.  The IEM (Interchange by Exchange with Mean),
as well as the CURL methods were used.  There was no difference in the results using
both methods, and thus only the results from the CURL method will be presented.

Partial Stirred Reactor (PaSR)

It is necessary to provide adequate initial conditions for the system to evolve to a steady
state condition with good reforming. The results are dependent on initial conditions
(initial composition and temperature). If these initial conditions are not provided, such as

O/C Axial air
(g/s)

1.43 2.16
1.63 2.59
1.83 3.02
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if the reactor is filled with room temperature reagents, the solution reached a low average
temperature state, with little chemistry. Mathematically, there are two stable equilibrium
states for a given set of inputs, and the one that is reached is dependent on the initial
conditions.  In this paper we are interested in the high temperature, steady state solution.
It has been determined that if the initial temperature is > 1000 K, chemistry takes place
and reaches steady state condition with adequate reforming.

The model provided in this paper deals only with steady state conditions, not with the
startup conditions, which still need to be understood.

(a)

(b)

Figure 7.29.  Typical transient (a) average reactor temperature and (b) reactor
temperature variance for the case of O/C ~ 1.63 and τmix = 1 ms.
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Once the reactor is started in a mode that results in a good conditions for reforming (high
temperature), the inputs are modified and the run restarted to investigate the effect of the
new conditions.  The run is continued until steady state is obtained.

Figure 7.29 shows the results for the transient to steady state in the case of O/C ~ 1.63
and τmix = 1 ms. The average temperature is shown in Figure 7.29 (a), while the
temperature variance is shown in Figure 7.29 (b). There is a relatively short-lived
transient at the start of the simulation (from 0.3 s through about 0.35 s), as the conditions
of the simulation have changed.  The transients after this short initial period are from
fluctuations due to the statistical nature of the MonteCarlo simulation.

Figure 7.29 follows the transient for 0.1 s, starting from conditions obtained in the
previous 0.3 s.  The mixing time in Figure 7.29 is 1 ms, and thus there are plenty of
mixing times for reaching steady state.  The residence time, on the other hand is about
0.02 s, and thus there are only about 5 residence times in the transient analyzed.

The mixing time although initially estimated from the fluid dynamic calculations, is not
known once chemistry takes place. CFD calculations [Bro05e] indicate that inside the
plasmatron head mixing is strong, with mixing times on the order of 100 µs but with
short residence times (the plasmatron volume is small), with longer residence times in the
reaction extension cylinder (about 20 ms) and longer mixing times (about 1 ms). We have
used the mixing time as a parameter, calculating the results for mixing times from 0.5 ms
to 10 ms.

The results for O/C ~ 1.43 are shown in Figure 7.30. Figure 7.30a shows the
concentrations (molar) of the reformate at the end of the simulation period, for different
values of the mixing time, τmix. The balance is mostly nitrogen, with < 1% of other
species.

Figure 7.30 show that the conversion of methane decreases (and so does the hydrogen
concentration) as the mixing time is increased.  The composition is relatively sensitive
with mixing times for short mixing times, but then becomes relatively independent of
mixing time.  Similarly, the temperature decreases with increasing mixing time, and
because of constant reactor volume, the residence time increases. The temperature
variance also increases, as a direct result of reduced mixing.

To investigate the effect of statistics, two points were calculated for the residence time of
1 ms. Both points are plotted in Figure 7.30 for the case with plasma.  Although not
thorough measurement of the statistics, it indicates the amount of spread in the curves,
demonstrating that the error bars in Figure 7.30 are small.

Figure 7.30 shows also the case when the plasma is turned off. It is interesting to note
that the reaction continues, at reduced temperature (by about 150 K), decreased
temperature variance, and slightly reduced methane conversion (methane concentration
up by about 30%, with hydrogen concentration decreasing by about 20%).
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Figure 7.31 shows the results for the O/C ratio of 1.63. The trends are similar, with
slightly higher methane conversion. The hydrogen concentration has remained relatively
constant with respect to the previous case of O/C ~ 1.43, but the methane conversion is
higher by about 25%. The hydrogen yield is up because although the concentration
remained constant, the total flow rate has gone up. The test for spread was also performed
in this Figure, but for the case with no plasma and 1 ms mixing time.
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Figure 7.30. (a) Composition and (b) average temperature, temperature variance and residence time as a function of time for a mixing time
Figures on left are for plasma on while those on right are for plasma off.
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Methane O/C = 1.63
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Methane O/C = 1.83
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Again, for increased O/C, the hydrogen concentration decreases, while the methane
conversion increases.  In the case of O/C ~ 1.83, the conversion increases by about 40%
from than of O/C ~ 1.63. However, some of the conversion is to water, and the result of
this increased combustion is increased temperature.

Discussion

The comparison between the experimental results and the modeling results are shown in
Table 7.5.  Because the experimental results do not measure water content, the results are
shown for dry gas composition.

Table 7.5
Comparison of experiments and modeling results (τmix = 0.5 ms)

Experiments with plasma on

The modeling results agree quantitatively with the experimental ones.  One point of small
disagreement is in the hydrogen concentration and the methane conversion, which are
slightly underestimated in the modeling results for higher O/C ratios. The trend of the
calculations also indicates that the hydrogen concentration peaks at low O/C ratios, while
the experiments indicate that they peak at the higher O/C ratios, but the peaks, in any
case, are rather broad.

It should be noted that the experimental results shown in Table 7.5 correspond to a series
of experiments from [Bro05a] where there was good reforming at O/C ~ 1.43.  Additional
experiments in [Bro05a] show that there is a cliff in the methane conversion at O/C ~
1.63, and poor conversion at O/C ~ 1.43. As described in the paper, the issue has to do

5/2/2005-1 PaSR 5/2/2005-2 PaSR 5/2/2005-3 PaSR
Power in W 375 375 375 375 375 375

Axial air g/s 2.16 2.16 2.59 2.59 3.02 3.02

Swirl air g/s 0.86 0.86 0.86 0.86 0.86 0.86

Swirl methane g/s 0.45 0.45 0.45 0.45 0.45 0.45

O/C ratio 1.43 1.43 1.63 1.63 1.83 1.83

Composition
H2 vol.% 12.1 12.7 13.5 11.5 13.9 11.1
O2 vol.% 0.7 0.8 0.5 0.8 0.5 0.6

N2 vol.% 68.9 66.5 69.8 69.2 71.4 70.9

CH4 vol.% 4.2 5.8 1.9 4.3 1.7 3.1
CO vol.% 9.1 9.1 9.6 8.4 10 8.5
CO2 vol.% 3.8 3.3 4 4.0 4.1 4.4

C2H4 vol.% 0.9 0.0 0.8 0.0 0.7 0.0

C2H2 vol.% 0.2 1.8 0 1.7 0 1.5

ΣC in mole/min 1.69 1.69 1.69 1.69 1.69 1.69
ΣC out mole/min 1.44 1.70 1.42 1.64 1.57 1.75
ΔC/C 0.15 -0.01 0.16 0.03 0.07 -0.04
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with reproducibility of the measurement of the O/C ratio, which could be off by as much
as 25%.

The code does not reproduce the experimental results with the C2 compounds.  The
modeling indicates that the highest conversion is to acetylene, with small yields of C2H4
and C2H6.(about 0.1% molar each).  The experimental results indicate the opposite, with
substantial concentration of C2H4 and/or C2H4 (C2H4 and C2H6 are not separated by our
chromatographic column) and very small concentration of C2H2. The impact on the
methane conversion and hydrogen yields are, however, small.

Also shown in the table are the carbon balance, for both the modeling and the
experiments.  The last three rows of Table 7.5 show the sum of the carbon in the input
(i.e., the methane), and the carbon sum of the output, and their relative differences.  The
carbon balance in the experiments are about 10-15%, while in the computation the carbon
balance is within 1-4% (due to statistics).

It should be noted that in order for the chemistry to take place, mixing has to be at the
molecular level.  The effects of turbulence on mixing at this level are still not understood.
However, it seems that high Reynolds numbers, higher than laminar-to-turbulent
transition, are required (Re > 10,000) to achiever mixing at the molecular level [Dim02].
For reference, the Reynolds number in the plasmatron head region of the device is Re ~
6000 (prior to chemistry).

The cases analyzed in Figure 7.30-7.32 without plasma show different quantitative results
than the experiments.  Good performance is only obtained in the experiments by
operating at higher values of O/C than the numerical results. It is not clear why this is the
case.

Two possible alternative explanations have been conceived to explain the difference
observed between the experimental and numerical calculations without the plasma and at
low O/C.  The first one is that there are power losses not accounted by the code.  The
code models an adiabatic reactor.  At conditions of lower O/C the exothermicity of the
reaction is decreased, and reforming would be more sensitive to losses.  The absence of
the losses would thus explain both the good numerical reforming without the plasma as
well as at the lower O/C ratio

The second possible explanation is the implication of the PaSR code itself.  The code
allows for a single mixing time.  There is substantial recirculation in the reactor, but it is
not as assumed in the code.  When the exothermicity is high, decreased mixing may not
affect as much the results. This behavior is shown in Figures 7.30-7.32.  On those cases
in the presence of the plasma (on the left of the figures), as mixing time increases,
reforming degrades but asymptotes to good reforming (that is, the rate of change
decreases with increasing mixing time).  This is changing for the conditions without the
plasma, where as the mixing time increases there no asymptote but instead the rate of
change increases.  Thus the reforming without the plasma is more sensitive to poor
mixing than the case with plasma.
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8) Steady state experiments

a) Methane reforming

Tests were carried for a single flow rate of methane, which is injected in the swirl gas.
The methane flow rate was 0.45 g/s, about 25 kW heating power. A comprehensive set of
tests was carried out, from steady state variations of O/C, catalytic vs uncatalyzed
reactors, as well as the effects of shutting the plasma off after steady state conditions are
reached.  The next section will cover steady state conditions where the plasma was
maintained.

Reforming with plasma on

In this section the steady state plasma reforming characteristics are described. We have
carried out a series of experiments with a systematic variation of the air in the swirl gas
and the axial air.   The experiment is carried out at well-determined conditions (flows,
electrical power), and the composition is monitored with the mass spectrometer.  The
temperature is monitored by a thermocouple in the reactor.  Gas samples for analysis with
the GC are taken when the temperature and composition have stabilized.

Results of these experiments are shown in Figure 8.1.  Shown are contours of constant
hydrogen, carbon monoxide, carbon dioxide and methane concentrations in the dry gas,
as a function of the air flow rates in the axial gas and the swirl gas. The value of the
contour is shown in the bar to right of each graph.

The experimental protocol held the swirl air at a given flow rate, while changing the wall
air. This process was repeated for 3 different swirl airs. In this manner, the required
adjustment of the methane rotameters was minimized. We have followed this method as
it is experimentally easier, and more reproducible, to vary one air or the other, instead of
varying both in order to keep constant the overall O/C ratio.

The results indicate that the hydrogen concentration has a broad, saddle-like peak, with
the maximum along the diagonal. The variation of the hydrogen concentration does not
vary much, from about 10 to 14%.  The variations of the concentration of CO show the
same characteristics as hydrogen, following the maximum for hydrogen, across the
diagonal. In contrast, the concentration of CO2 and the methane conversion increase
monotonically towards conditions of higher O/C ratios.

Figure 8.2 shows some of the overall parameters of the conditions analyzed in Figure 8.1.
The O-to-C ratio is shown.  The constant O/C lines are aligned along the diagonal, just as
the H2 and CO concentrations in Figure 8.1. This indicates the importance of the



113

parameter O/C for hydrogen generation.   The CO2 concentration and the methane
conversion are also functions of the O/C ratio.

Figure 8.2 also shows the temperature in the reactor, which increases, in the general
direction of increased O/C (as more of the fuel in fully combusted, as indicated by the
increased CO2 concentration).

The efficiency shown in Figure 8.2 refers to the heating value of the reformate divided by
the heating value of the fuel.  A substantial fraction of the fuel, about 1/3- 1/2 is spent in
driving the gas phase partial oxidation. Thus, it seems that without heat recuperation, the
process is rather inefficient.

Finally, the hydrogen yield shows the same saddle-type behavior than the hydrogen
concentration, with a maximum along the diagonal (with an O/C of about 1.7).

The results indicate that the performance of the plasmatron fuel reformer is dependent on
the overall O/C ratio, and rather independent of the distribution of the air (in either swirl
air or wall air). The swirl air needs to be sufficiently high to result in the generation of a
plasma in the volume of the plasmatron.  For swirl air flow rates less than about 40 lpm,
the plasma remained in the electrode gap, not being pushed out into the volume of the
reactor.

The results in Figures 8.1 and 8.2 have been used in the Perfectly Stirred reactor (PSR)
[Bro05c] as well as the Partially Stirred Reactor (PaSR) [Bro05d] analysis discussed in
above in Section 7.b.

The experiments were repeated for lower O/C ratios, in order to determine the
dependence of the process parameters in this regime, even though it results in non-
optimal reforming.  As in the experiments described above, the methane flow is 0.45 g/s.
and the axial air flow was changed.  However, the swirl air flow was held constant.  The
methane was premixed with the swirl air, as in the previous experiments. The results are
shown in Figure 8.3, as a function of the O/C ratio.
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H2 CO

CO2 CH4

Figure 8.1.  Contours of constant H2, CO, CO2 and CH4 as a function of swirl air (plasma air) and axial air (wall air)
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O/C efficiency

H2 yield

Temperature

Figure 8.2. System parameters for the same conditions as Figure 8.1; (a) O/C (b) efficiency (c) H2 yield and (d) Reactor temperature
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Figure 8.3.  Molar concentration of hydrogen, methane and oxygen as a function of O/C
for air flows in the swirl gas of 40, 60 and 80 lpm.

Figure 8.3 shows a larger dependence on the hydrogen concentration on the O/C ratios,
for ratios lower than those from Figures 8.1 and 8.2.  The threshold for good reforming is
O/C ~ 1.6, which agrees with the results in an accompanying paper [Bro05c]. The
methane conversion also increases relatively fast (and the methane conversion drops) at
O/C ratios lower that 1.6. The oxygen concentration follows the methane concentration.

It can be seen that the results of Figure 8.3 do not quite agree with those shown in Figures
8.1 and 8.2.  The reforming “cliff” that is clearly seen in Figure 8.3 is not noticed in
Figures 8.1 and 8.2, although there is only one point in Figures 8.1 and 8.2 that operate at
O/C less than 1.6, and even then it operates at O/C ~ 1.43 for the swirl flow rate where
the hydrogen concentration is the least sensitive to O/C in Figure 8.3. This inconsistency
is thought to be due to the uncertainty in the measurement of the O/C, as mentioned in the
previous section.

Reforming without plasma

In order to determine the effects due to the plasma, we have investigated the reforming in
the absence of plasma.  Once the reactor achieves steady state with the plasma on, it is
shut off and then allowed to reach a new equilibrium.
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It has been found that the reforming in the absence of the plasma is very sensitive to the
flow rates. The results from the effect of the plasma were obtained in a different run than
those in the previous section, where the effect of the plasma was explicitly investigated as
a function of the flow rates of swirl air and wall air, for constant methane flow.  Because
the pressure varied during the experiments, it was necessary to adjust the rotameters.
Even then it is hard to control the methane flow to better than about 10-20%. Some of the
reproducibility issues in this paper may be due to this issue.  By contrast, we think that
the air mass flow controllers are relatively accurate.

We have tried to eliminate the problem by using the GC and MS gas analysis to
determine the gas composition prior to start up of the reformer, to determine the ratio of
O/C, and comparing it with the calculated O/C ratio from the known input flow rates.
Using this method shows a disagreement with the O/C calculated from the flow rates of
the reagents of about 25%.

Results of reforming without the plasma are shown in Figures 8.4 and 8.5. The hydrogen
and CO concentrations are slightly lower than in the case with the plasma on, by about
30%.  But the flow rate is about 20% higher, and thus the hydrogen yields are comparable
in both cases, about 35-40%.  Methane concentration is lower in the case of no plasma by
about a factor of 2, while the CO2 concentration is slightly higher.  Thus, more of the
methane is being converted but it is going into combustion products rather than hydrogen
or CO.

The efficiency is not shown in Figure 8.5, as it is misleading, with best efficiency when
there is no conversion.

The effect of plasma vs no plasma is dramatically shown in Figure 8.6.  After achieving
steady state conditions without plasma, the plasma was turned on. The transients are
measured with the mass spectrometer, and steady state concentrations of hydrogen, water,
oxygen and methane following the plasma turn-on were measured.  It should be noted
that the temperature, as indicated by the thermocouple in the middle of the reactor, did
not reached steady state conditions.

Figure 8.6 shows the concentration of hydrogen with and without plasma, as a function of
O/C, for several values of the swirl air flow.  This figure shows that at the high O/C (> 2)
the plasma plays a minor role.  However, it plays a major role for lower O/C.  The critical
O/C ratio for the case of no plasma is around 2, as compared in Figure 4 in the case of
plasma, of about 1.6.
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H2 CO

CH4 CO2

Figure 8.4.   Same as Figure 8.1 but in the absence of plasma.
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Figure ********SDFSDF

H2 yield O2

C2H4 O/C

Figure 8.5.  Hydrogen yield, oxygen and C2’s concentration in reformate, as well as O/C for the cases also shown in Figure 5
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Figure 8.6. Hydrogen concentration as a function of the O/C ratio for several values of
the swirl air flow rate, with and without the plasma.

Figure 8.7.  Dependence of H2 concentration as a function of power for various values of
O/C, for a swirl air of 60 lpm and 0.45 g/s methane flow.

Power effect

The effect of the plasma power on the methane reforming was also investigated. The
experiments were performed at various O/C ratios, with the reactor already warmed up.
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The gas composition with high power (~380 W) and no plasma power were measured
using the GC and the MS, while at other power levels they were measured only with the
MS. The swirl air is held constant at 60 lpm, and the O/C is varied by changes in the wall
air.

Figure 8.7 gives the results of these experiments. At high values of O/C, the effect of the
plasma power is relatively small, with a ~20% drop in hydrogen concentration.  It should
be noted that the maximum hydrogen concentration occurs with plasma, at an O/C ~ 2.
However, when the hydrogen concentration was optimized at this O/C ratio, there was
substantial sensitivity to the plasma power, with large drop in methane conversion at
powers less than about 300 W. The carbon balance is within 5%, but as with the previous
sections, there is a difference of 7-15% between the O/C calculated from the flows and
that measured from the GC. The O/C measured is higher than that calculated from the
flows.

b) Propane reforming

In a series of papers [Bro05a, Bro05b, Bro05c, Bro05d, Bro05e] the performance of a
plasmatron methane reformer has been discussed. There is interest on the reforming of
methane, primarily driven by methane gas upgrading and conversion to liquid fuels, in
order to allow economical utilization of stranded natural gas resources. In addition, that
work also provides increased understanding of the behavior of the plasmatron reformer
operating with heavier hydrocarbons.

Methane is a gaseous fuel, and its attractiveness in this work has been that we can explore
a wide range of parameters without having to be concerned with fuel atomization, wall
wetting, and other phenomena that occurs when using liquid fuels.  In addition, very
complete chemical mechanisms exist that allow adequate modeling of the chemistry.
Methane has then been used is the accompanying papers [Bro05a, Bro05b, Bro05c,
Bro05d, Bro05e].

One of the disadvantages of using methane as a surrogate hydrocarbon for heavier fuels is
that the chemistry is substantially different. In order to address the issue of the different
chemistry, a heavier gaseous hydrocarbon needed to be tested.  In this section, the
performance of plasmatron propane reformers is investigated. [Bro05f] Propane-air
mixture is the simplest hydrocarbon system that exhibits chemical behavior, laminar
flame speeds and thicknesses, and extinction limits that are comparable to those of
heavier fuels [Tur96]. It is probably the smallest system from which quantitative
information directly relevant to the partial oxidation of heavier liquid gasoline and diesel
fuels can be extracted, and is therefore an appropriate choice for this study [Haw98].
Unfortunately, unlike the case of methane where chemical modeling of the experiments
were performed [Bro05c, Bro05d, Bro05e], propane mechanisms are not as well
developed, and we have not performed chemical modeling to compare with these
experiments,



122

Propane injection through axial nozzle

In this section the results of experiments with propane injected through the axial nozzle
are presented. As described in the previous section, this configuration results in highly
homogeneous air/fuel mixtures, with constant propane in the central region and with
large concentration gradients in the region where the air/propane mixtures form
stoichiometric combustion mixtures.

The results of the reforming experiments are shown in Figures 8.8 and 8.9, as contours of
constant quantity as a function of the wall air and swirl (plasma) air, for a propane flow
rate of 0.5 g/s. Figure 8.8 shows the H2, CO, CO2 concentrations and overall O/C ratio,
while Figure 8.9 shows methane concentration, reactor temperature, efficiency and
carbon balance. The carbon balance is within 5%. Since water is not measured, it is not
possible to close the mass balance for oxygen or hydrogen.

The hydrogen concentration peaks in a band that corresponds to constant O/C ~ 2.
Stoichiometric combustion of propane occurs at O/C ~ 3.33, and thus O/C ~ 2 is still far
away from combustion. Hydrogen concentration is about 12%, with a power efficiency to
H2, CO, CH4 and C2’s of about 60%. At the higher values of O/C more and more of the
hydrogen gets combusted, while at the lower values of O/C the conversion of propane is
reduced, thus resulting in a maximum concentration as a function of O/C.

The concentration of CO2 increases with increasing O/C ratio, as expected, as more of the
fuel is combusted.  The temperature measured by the thermocouple, which is only an
indication of the actual gas temperature, increases with O/C.
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H2

CO2

O/C

CO

Figure 8.8.  Contours of constant (a) H2 (b) CO (c) O/C ratio (d) CO2 as a function of wall and swirl air flow rates, for axial propane injection
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CH4

Efficiency

Carbon balance

Temperature

Figure 8.9.  Contours of constant (a) CH4 (b) efficiency (c) carbon balance (d) temperature as a function of wall and swirl air
flow rates for the same conditions as Figure 8.8.
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Figure 8.10 Transient in axially-injected propane for several levels of power, for O/C ~
2.1

The startup transient characteristics with axially injected propane are shown in Figure
8.10, for a wall air of 170 lpm and a swirl (plasma) air of 60 lpm.  The air/propane flows
are established with the reactor at nearly room temperature, and then the plasma is turned
on.  Figure 8.10 shows the hydrogen concentration as well as the temperature for
different plasma powers. The hydrogen concentration reaches 8% in about 1 s, as was
discussed in the transient paper with methane [Bro05b].  At this high value of O/C ~ 2.1,
the startup is not sensitive to the power level.  This was also found to be the case for
methane [Bro05b]

Propane premixed with wall air

Experimental results for propane premixed with the wall air are shown in Figure 8.11 and
8.12. The results have similar trends than those for the case of axially injected propane.
Hydrogen concentration peaks at a given O/C ratio, production of CO2 increases with
O/C ratio.  The hydrogen concentration is similar to that of section above, but occurring
at lower O/C ratios, O/C ~ 1.7,vs O/C ~ 2 for axially injected propane. The efficiency to
light hydrocarbons is about 55%. As discussed above, the increased nonuniformity of the
air/propane distribution is likely to be reason for this result.

The transients are shown in Figure 8.13, showing 8% H2 concentration within 1 s, for 120
lpm wall air and 50 lpm swirl (plasma) air, corresponding to an O/C ~ 1.6. The transients
are short, about 1 s.  In this case the conversion is a stronger function of power than in the
case in section 3 that operated at higher O/C ratios. It is also interesting to note that the
reformation continued in the absence of plasma. As opposed to the case in Figure 8.10,
where the propane was shut down with the plasma on, in Figure 8.13 the plasma was shut
down with propane still on. This is a feature that has been investigated in the plasmatron
startup methane reformer paper [Bro05b]. For a power of 120 W, the reforming is poor
and the rate of temperature rise is low.
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H2

CO2

O/C

CO

Figure 8.11.  Contours of constant (a) H2 (b) CO (c) O/C ratio (d) CO2 as a function of wall and swirl air flow rates, for
propane premixed with wall air
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CH4

Efficiency

Carbon balance

Temperature

Figure 8.12.  Contours of constant (a) CH4 (b) efficiency (c) carbon balance (d) temperature as a function of wall and swirl
air flow rates for the same conditions as Figure 8.9.
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Figure 8.13.  Transient response of plasmatron propane converter operating at O/C ~ 1.6,
for propane premixed with the wall air, for several power levels.

5. Propane Premixed with plasma air

The fluid dynamic modeling indicated that the air/propane mixtures in the condition
when the propane is premixed with the swirl air results in the largest fraction of propane
under conditions of stoichiometric combustion. This method of injection was therefore
particularly interesting, as the large region with stoichiometric air/propane mixtures
should results in faster chemical reaction rates, with the highest release of chemical
energy. If the reforming is through the two-stage process, as described in [Bro05c,
Bro05d, Bro05e] (with a fraction of the fuel combusting and distributing the energy
through mixing with the rest of the air/fuel mixture), then this case should produce the
best reforming results.

The experimental results corresponding to this situation are shown in Figures 8.14 and
8.15. The hydrogen concentration in this case is about 14-15%, with 16% CO. The
optimal O/C ratio in this case is lower than in the previous 2 cases, O/C ~ 1.3. This mode
of operation results in substantially lower concentrations of CO2, decreased temperatures
and increased efficiency (~ 80%), all pointing towards improved reforming. As a matter
of fact these conditions are the best conditions obtained in the study, as will be discussed
in section 8. The hydrogen concentration is still substantially lower than that of ideal
partial oxidation reforming, in part due to the higher O/C ratio (O/C = 1 for ideal partial
oxidation). Not only is there additional oxygen, but also the oxygen preferentially
oxidizes the hydrogen over the CO. The hydrogen yield is about 45%.
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H2

CO2O/C

CO

Figure 8.14.  Contours of constant (a) H2 (b) CO (c) O/C ratio (d) CO2 as a function of wall and swirl air flow rates, for
propane premixed with swirl (plasma) air



130

CH4

Efficiency

Carbon balance
Temperature

Figure 8.15.  Contours of constant (a) CH4 (b) efficiency (c) carbon balance (d) temperature as a function of wall and swirl
air flow rates for the same conditions as Figure 8.12.
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Figure 8.16 Steady state hydrogen concentration as a function of plasma power (O/C ~
1.3)

The carbon balance, shown in Figure 8.15, is better than 10%. The carbon balance is
substantially better than this over most of the experimental regime, with the exception of
those regions where the reforming is least optimum, at lower swirl/wall air flow rates and
where it is likely that there be substantial unconverted propane.

The steady-state power sensitivity is shown in Figure 8.16, for an O/C of 1.3 (70 lpm for
both swirl and wall airs). Higher power does increase the hydrogen concentration.

Transients are shown in Figure 8.17, for several values of power. The transient hydrogen
concentration is a sensitive function of the power, as in the case of for premixed
propane/wall air. A hydrogen concentration of 10% can be reached in about 1 s at 400 W.
At 100 W, the hydrogen concentration is about 3-4%.  Not only is the concentration
higher at the higher power, but also the slope after the initial transient is higher.  This is
due to increased rate of increase of the temperature, not shown in Figure 8.17. Note that
as in the case for premixed propane/wall air, if the plasma is turned off, there is still
reforming, although with hydrogen concentrations ~ 2%.  The concentration of hydrogen
after the plasma has been turned off is not sensitive to the plasma power. Also shown in
Figure 8.17 is one case, one of the traces for 400 W plasma power, where the propane
was also shut off.

In Figure 8.17 there are two traces for a given power level with the exception of 100 W.
The purpose was to determine reproducibility of the startup, which indeed it is.

The turn off time is comparable to the turn on time, indicating very fast turn-on of the
plasmatron. It is likely that the rate limitations in the transients in this paper are
instrumental, as discussed in the methane start-up paper [Bro05b]. It is possible to utilize
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Figure 8.17 to evaluate the time constant for the turn-off. The e-folding time is about –0.5
s, thus the time for 90% change (2 e-foldings) is about 1 s

Figure 8.17.  Transient characteristics for premixed propane/swirl air for different values
of power, for O/C ~ 1.3.

Stoichiometric combustion propane/air mixture for swirl gas

The previous section discussed the case of premixed/swirl air.  Because the overall O/C is
below stoichiometric combustion, the O/C ratio of the propane/swirl air is very low,
much lower than 1.  The results of making the propane/swirl air prone to igniting because
of operation at stoichiometric combustion, with the rest of the propane premixed with the
wall air, is discussed in this section. In order to be able to premix the propane with both
the swirl air and the wall air, two independent propane controls are required.  Two similar
rotameters were used to accomplish this.

Results of the experiments are shown in Figure 8.18.  The maximum hydrogen
concentration is about 12% at an optimum O/C ~ 1.5.  The efficiency at the optimal
conditions is on the order of 50%.  Carbon balance is particularly bad at the lowest O/C
ratios in Figure 8.18, but moderately good (~10%) elsewhere.

The transient hydrogen concentration and temperature are shown in Figure 8.19 for
several power levels. Two traces are shown for each power level. The transient looks
similar to those other with low values of O/C, with the prompt hydrogen concentration
being a function of plasma power.  For the lowest value of power, 50 W, startup is not
reproducible, and one of the traces shows a failed startup, while the other shows unstable
operation with a frequency of about 0.3 Hz. In this case, as the plasma power is shut off,
the hydrogen concentration drops to about 6%. Even for 100 W, the hydrogen
concentration is not affected by shutting off the plasma.
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H2
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Figure 8.18.  Contours of constant (a) H2 (b) CO (c) O/C ratio (d) CO2 as a function of wall and swirl air flow rates, for
propane/swirl air at stoichiometric combustion composition, with the rest of propane premixed will wall air.
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Figure 8.19. Transients for the case of stoichiometric combustion composition of the
swirl gas, with the rest of propane premixed with the wall air, for several values of
plasma power.

Fully premixed propane and air.

In the last case investigated, the propane and the air are fully premixed.  In this case, the
plasmatron air/fuel mixture is homogeneous, as all the inputs have the same composition.

Results are presented in Figure 8.20. Hydrogen concentration is about 12%, at an O/C ~
1.7.  The higher value of the O/C ratio results in increased CO2 concentration (4.5%),
higher temperatures (850-880 C) and lower efficiency (55-60%).

Under these conditions the hydrogen concentration was a strong function of power, with
the reaction stopping at slightly decreased values of power (300W).

Figure 8.21 shows the transients for two levels of power.  At 150 W, the reaction sputters
but at 350 W the prompt hydrogen concentration is about 8%, with a relatively high rate
of rise of the temperature.
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Figure 8.20.  Contours of constant (a) H2 (b) CO (c) O/C ratio (d) CO2 as a function of wall and swirl air flow rates, for
propane premixed with air, thus resulting in a homogeneous air/propane mixture throughout the device
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Figure 8.21.  Transients for the case of propane/air premixed, resulting in a homogeneous
air/fuel mixture.

Discussion

This section has discussed 5 different means of introducing propane into a plasmatron
fuel converter.  Both the steady state characteristics, as well as some startup properties
have been discussed.

Table 8.1 Summary of tests presented in this paper

Table 8.1 shows a summary of the work presented in this paper. Conditions of optimal
reforming (highest hydrogen concentration) for each case are shown. It is clear that the
results are best when the propane is introduced through the swirl port (premixed plasma)
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with the highest values of hydrogen concentration with lowest values of CO2 and
temperature (a sign of combustion). Introducing a stoichiometric for combustion mixture
in the swirl gas is not better than when all the propane is introduced through the swirl
port, but it is better than the other configurations.  Some of the results from the fluid
dynamic simulation in section 2 suggest that premixing the propane with the swirl air
results in the highest fraction of propane in stoichiometric combustion conditions in the
plasma region.

It is interesting to note that the worst configuration is that with the fuel injected through
the axial port. Unfortunately, this is the configuration that is needed for injection of liquid
fuels.

The plasmatron configuration that was chosen for the experiments was designed for
conversion of diesel fuel. There is a long path between the axial injection point and the
electrode gap, where the plasma is.  It is in this region that the axially injected propane
premixes with the wall air.  For liquid fuels, which require air assist for atomization, the
velocity of the fuel droplets is very high, and it is possible to maintain stratification even
when axially injecting the fuel.

c) Biofuels
In this section, the reformation of bio-fuels are discussed. The work emphasized fuels of
present interest, such as bio-diesel and ethanol, which are being introduced into the
market.  [Bro05l] In addition, unconventional fuels such as unprocessed and lightly
processed bio-oils, were investigated. This work is also described in the section

Biodiesel

Biodiesel is one of a limited number of renewable fuels.  It can be obtained from a variety
of seeds. Its use in transportation is being investigated. Although there are discussions
about the overall energy benefit of the use of renewable biofuels [Pim05, Sha02], it is
generally accepted that they produce a net energy benefit.

Table 8.2
Typical Soybean Oil Methyl Esters Profile

Fatty
Acid

  Wt.
%

 Mol.
Weight

Formula

Palmitic 12.0 270.46 C15H31CO2CH3       (C17H34O2)
Stearic 5.0 298.52 C17H35CO2CH3      (C19H38O2)
Oleic 25.0 296.50 C17H33CO2CH3     (C19H36O2)
Linoleic 52.0 294.48 CH3(CH2)4CH=CHCH2CH=CH(CH2)7CO2CH3

(C19H34O2)
Linolenic 6.0 292.46 CH3(CH2CH=CH)3(CH2)7CO2CH3 (C19H32O2)
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The B-100 biodiesel was provided by Renewable Solutions, Oakland Park, Kansas.  The
average molecular weight of soybean oil methyl esters is 292.2, calculated using the
average fatty acid distribution for soybean oil methyl ester shown in Table 8.2 [Bio05].
Shown in Table 8.3 are the molecular weight and chemical formula for each of the
component esters [Bio05].

Table 8.3
Carbon Chain Length Distribution and Percent Oxygen

 Produced from Typical Soybean Oil.

Compound CAS# Bonding Weight % % O2
Methyl Palmitate 112-39-0 C-16 10.0 11.8
Methyl Stearate 112-61-8 C –18 4.0 10.7

% Saturated 14.0
Methyl Oleate 112-62-9 C-18=1 25.0 10.8
Methyl Linoleate 112-63-0 C-18=2 53.0 10.9
Methyl Linolenate 301-00-8 C-18=3 8.0 10.9

% Unsaturated 86.0
Total average O2 11.0

Biodiesel reformation (gen 3)

In this section, experiments of plasmatron biodiesel reformers are described.  The flow
rate of the biodiesel fuel is about 0.5 g/s, which match those of methane and propane
carried out previously [Bro05a, Bro05b, Bro05c, Bro05d, Bro05e, Bro05f] with the same
plasmatron setup.

In order to investigate performance with different stoichiometries, the O/C ratio of the
plasmatron was changed by adjusting the wall air (see Figure 8.22).  The plasma air and
the atomization air were kept constant at 50 lpm (1 g/s).  The plasma air has a narrow
operating region, as too little air does not push the discharge into the volume of the
plasmatron (the discharge remains in the inter-electrode region), and too high a flow
results in an unstable discharge.  Similarly, for atomization air flow rates less than about
50 lpm the fuel atomization decreases substantially, and much higher flow rates can not
be obtained because of choke-flow limitations.

The wall air was varied from no flow all the way to 80 lpm.

The steady state composition of the reformate was measured using a calibrated gas
chromatograph, described in [Bro05a].  It was assumed that steady state conditions were
obtained when the temperature, measured by a thermocouple downstream from the
plasmatron [Bro05a], reaches steady state conditions.
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The composition of the reformate, as a function of the O/C ratio, is shown in Figure 8.23.
The O/C ratio is defined as the ratio of the flows of all the oxygen atoms to the carbon
atoms, and thus includes the oxygen atoms in the fuel.

Two sets of experiments were carried out, with the second set going to larger values of
O/C, but also overlapping over the first set of experiments.  The compositions in Figure
8.23 do not include C2 compounds. Although the gas chromatograph indicates substantial
levels of C2 compounds, their calibration has been suspect.  The carbon balance matches
much better when in the analysis the concentrations of C2H6, C2H4 and C2H2 are ignored.

Figure 8.23. Composition of reformate from plasmatron biodiesel reformer as a function
of the O/C ratio.

The hydrogen concentration is relatively low at the lower values of O/C, although there is
still some present.  Increased O/C results in large increase in hydrogen concentration,
which approximately doubles when the O/C ratio increases from 1.3 to 1.7.  Good
conversion of the fuel is also indicated by the disappearance of oxygen, which drops
substantially at O/C ~ 1.5 and even further at O/C ~ 1.7.  The CO concentration follows
the hydrogen concentration. Higher O/C were not investigated because of the limitations
of the mass-flow controller, although the curves indicate that hydrogen concentration has
peaked at O/C ~ 1.7.

The corresponding temperature measured downstream from the plasmatron and opacity
are shown in Figure 8.24.

The energy efficiency of the process (defined as the heating value of the reformate
divided by the heating value of the fuel) is poor (~ 20%) at low O/C values. At O/C ~ 1.5,
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with good carbon balance, the energy efficiency is about 60%.  At O/C ~ 1.7, the energy
efficiency is higher, about 66%.

The effect to the plasma power was investigated by turning the power off after steady
state operation was achieved.  The reaction became unstable without the plasma, as both
the temperature decreased, the opacity increased and there was a low frequency (a few
tenths of Hz) rumble coming from the plasmatron.  The same phenomena was observed
throughout the range of O/C ratios investigated with biodiesel.  Thus it was concluded
that the use of the plasma, for the range of conditions explored, was needed for stable,
good reforming.

Figure 8.24.  Temperature and opacity corresponding to tests in Figure 8.23.

Ethanol

Similarly, ethanol can be obtained from either cellulosic materials, corn, or sugar.
Although there are discussions about the overall energy benefit of the use of renewable
biofuels [Bio2,Bio3], it is generally accepted that they produce a net energy benefit.

In this section, results for the reforming of neat ethanol are described.  The setup was
identical to that used for the B-100 experiments. Neat ethanol was introduced instead of
the biodiesel through the B37 nozzle.  The flow rate of ethanol in these experiments was
0.58 g/s. Only steady state characterization was investigated..

The composition of the reformate for various values of O/C are given in Figure 8.25.  As
in the previous section, the definition of O/C includes the oxygen in the fuel. Two sets of
values are presented, with and without plasma. It is interesting to note, as discussed in the
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gaseous fuels as with B-100, that at high values of O/C there is a relatively small impact
of the presence of the plasma. For the case of ethanol, at O/C > 2.1, the plasma plays a
minor role, and the compositions with and without the plasma are comparable. The
plasma has an impact at lower O/C, where the plasmatron is still operating, but with very
poor performance.

Figure 8.25.  Composition of reformate from plasmatron ethanol converter as a function
of O/C, with and without plasma on.

Figure 8.26 shows the temperature and the opacity for the same cases in Figure 8.25. The
temperature decreases monotonically with O/C, and is similar for both cases with and
without plasma.  The opacity, however, increases substantially.  The opacity is not
constant in the case on no plasma, and some averaging had to be made.  Opacity in very
transient, with a duration less than 1 s (can not be resolved with the present
instrumentation).
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Figure 8.26 Temperature and opacity for the same cases as Figure 8.25. NP stands for
No-Plasma.

The carbon balance for the experiments in Figures 8.25 and 8.26 is adequate, better than
10%, with the exception of the case with no plasma and lower O/C, where there is 50%
carbon deficit.  It is thought that this is due to the poor performance of the reformer, and
with raw fuel coming through the device.

The reformer efficiency (ratio of heating value power of the reformate over heating value
power of the fuel) in the presence of the plasma increases from about 50% at the highest
values of O/C to a very respectable 75-80% at the lowest values considered.  In
comparison, for the case of no plasma the efficiency maximizes at ~70% at O/C ~  2.1.

Discussion of biofuel reforming

The O/C ratio, as defined in this paper, includes the oxygen present in the fuel, rather
than the free oxygen.  The oxygen bound in the fuel does not contribute to the
exothermicity of the reaction, as the oxygen is already bound either to carbon or to
hydrogen.  B-100 has a relatively small fraction of the oxygen (about 10% of the carbon
atoms), while for ethanol, the fuel has 1 oxygen atom per 2 carbon atoms, a ratio of 50%.
If the oxygen in the fuel is not included, the Ofree/C ratio for the experiments in Figures
8.25 and 8.26 spans from ~ 1.24 to 2.2. The peak hydrogen concentration is at Ofree/C ~
1.5.

Similarly, for B-100 the optimal reforming occurs at about Ofree/C ~ 1.5. However,
ethanol performance remains high at lower values of Ofree/C than biodiesel.
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Hydrogen concentration in the reformate when using ethanol on the order of 12% can be
obtained with or without a plasma, and the plasma is needed O/C ratios lower than about
2.1.  For B-100, the comparable numbers are 11%, but a plasma is needed throughout the
range that was explored. It is interesting to note that the heat of vaporization of ethanol is
substantially higher than that of B-100. Under the assumption that the fuel needs to be
vaporized prior to reforming, ethanol should be more difficult to reform.  However, the
experimental evidence points to the contrary, with better performance of ethanol
reformers at lower O/C ratios and less sensitivity to the presence of the plasma..

The reformation at lower values of O/C degrades, with decreased conversion and
increased opacity. It is possible that the increased opacity is due to raw fuel. However, for
the fuel to be raw, the temperature must be lower (fuel would either pyrolyze or
evaporate at 700 C). Thus, raw fuel must be accompanied with lower temperatures, from
a reformer where the reformation has stopped. It has been determined that in the short
residence time in the system, there is not enough surface heat transfer from the walls to
the air/fuel mixture to increase the temperature of the air fuel mixture to more than 100
C.  Thus, when there is a transient and the reforming stops, the air/fuel mixture remains
relatively cold. This behavior may also be behind the “puffing” sounds that come from
the exhaust under these conditions, with the reforming turning on and shutting down with
a period of a few seconds..

Finally, it is not clear why the carbon balance is poor in the case of B-100.  Carbon
balance (including C2H4 and C2H6) is better than 10% for the case of ethanol, but about
30% for the case of B-100.

d) Reformation through plasma catalysis

This section reports further investigations of plasma enhanced partial oxidation reforming
of biofuels that include corn, canola and soybean oils, and ethanol. Results were obtained
for both homogeneous (non-catalytic) and catalytic reforming.

Other work on methane catalytic reforming has been reported in previous papers
[Bro99d. Bro99e, Bro00a]. In addition, biofuel reforming has been reported by Hadidi
[Had04, Bro05j].

Bio-fuel reformation

Figure 8.26 shows results for hydrogen yields from the reformation of canola, corn, and
soybean oils as a function of O/C ratio for catalytic and homogeneous (non-catalytic)
reforming. The hydrogen yield is defined as the ratio of the mass flow rate of hydrogen in
the reformat gases to the mass flow rate of hydrogen in the fuel. The bio-oil flow rate was
0.4 g/s, which corresponds to about 17 kW of chemical power.
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Figure 8.26.  Hydrogen concentration for catalytic reformation of corn, canola and soy
bean oils

The hydrogen yield for the reformation of corn and soybean oils are very similar in the
presence of a catalyst. The difference between the two falls within the error bar due to
sampling and GC analysis uncertainties.

Figure 8.27.  Hydrogen yield as a function of O/C ration for partial oxidation reforming
of soybean oil

On the other hand, the hydrogen yield for canola oil in the presence of a catalyst appears
to be lower than for corn and soybean oils, especially at the higher values of O/C. This
may be due to the use of less catalyst in the case of canola, or to issues with the air-fuel
injection (for example, misalignments of the injector where the oil spray hit the walls). In
the case of corn and soybean oils, the hydrogen yield peaks at an O/C ratio close to 1.5;
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this is due to the fact that some of the fuel needs to be combusted in order to provide the
heat necessary to drive the partial oxidation reaction.

Figure 8.28.  Hydrogen concentration for catalytic reformation of corn oil, soybean oil
and canola oil.

Comparison between homogeneous (non-catalytic) and catalytic reforming was carried
out for the case of corn, canola and soybean oil.  Figure 8.27 shows the effect of catalyst
on the hydrogen yield, for a fixed soybean oil flow rate of 0.37 g/s. The hydrogen yield is
the ratio of hydrogen in the form of H2 to the hydrogen in the biofuel. For homogeneous
reformation of soybean oil, the hydrogen yields are about 30%, while the yield increases
to about 80% in the presence of a catalyst.  The peak yield occurs at O/C ~ 1.5. The
difference between the yield of 80% and the ideal yield of 100% is due primarily to
losses of hydrogen resulting from full oxidation into water. For homogeneous
reformation, the ratio of the heating value of the hydrogen, CO and light hydrocarbons
byproducts to the heating value of the fuel was typically between 60 and 70%.

Hydrogen concentration in the reformate as a function of O/C ratio for the processing of
canola, corn, and soybean oils is given by Figure 8.28.  Here again, the hydrogen
concentration during the reformation of corn and soybean oils are identical and larger
than the results with canola oil. It is likely that the difference between the canola and the
soybean/corn results are due to the difference in catalyst volume.

The hydrogen concentration for the three oils is higher at lower O/C ratios and decreases
when O/C ratio increases. This is because as O/C ratio increases, some of the oxygen
reacts with the hydrogen to form water and the reaction tends to move toward
combustion. Even though the hydrogen yield increases at the higher O/C ratios, the
addition of combustion products decreases the actual hydrogen concentration.
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The composition of the gas reformation upstream and downstream the catalyst for
soybean oil for an O/C ratio of 1.08 is shown in Table 8.4 bellow. The plasmatron
converts homogeneously the high hydrocarbons into hydrogen, carbon monoxide and
light hydrocarbons, with minimal soot production and eliminating all free oxygen.  The
catalyst then takes the oxygen-free plasmatron gas and basically doubles the hydrogen
yield performing CO2 and possibly steam reforming (notice that the CO2 concentration is
decreased downstream the catalyst; water, on the other hand, is not monitored).  

It should be stressed that the performance of the system was not optimized, and higher
hydrogen yields could be possible by converting the substantial amounts of C2’s present
in the gas downstream from the catalyst.

Figure 8.29.  Hydrogen yield for catalytic reformation of ethanol as a function of O/C
ratio.

For all the experiments performed with veggie oils, the opacity was 0.1, which is the
sensitivity limit of the instrument and which indicates that at most very small amounts
of soot were produced.

Table 8.4. Composition of the reformate gas
Homogeneous Catalytic
% vol % vol

H2 9 16
CO 12 17
CO2 7.4 5.2
N2 63 56
CH4 1.4 1
C2H4 5.7 3
C2H2 0.1 0.05
O2 0.7 0.7
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Ethanol

The same experiments as for the veggie oils have been carried out for ethanol, but at
lower power levels. Figure 8.29 gives the hydrogen yield for catalytic reformation of neat
ethanol at 200 W as a function of the oxygen to carbon (O/C) ratio. Homogeneous
reformation of ethanol is difficult to achieve because of the presence of oxygen in the
molecule, leading to a very mildly exothermic reaction. It appears however that the
results of the plasma catalytic reformation of ethanol are comparable to those obtained
for veggie oils and at the same O/C ratios.

The hydrogen yield peaks at around O/C ~ 1.5 – 1.7, slightly higher than that for the bio
oils.  As mentioned previously, the O/C ratio includes the oxygen that is carried out by
the fuel, which in the case of ethanol is very substantial.

The opacity measured during ethanol reforming was < 0.1, which indicates that no soot
was produced.

Figure 8.30.  Hydrogen concentration in dry gas for ethanol reforming, as a function of
flow rates, for O/C ~ 1.2

The results in Figure 8.30 were carried out with a plasmatron reformer that incorporated a
nickel catalyst on a crushed alumina substrate.  In the absence of a catalyst (for a
homogeneous reaction), the hydrogen yields are about 40%, coupled with high
concentration of light hydrocarbons (~4-5% C2H4).
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The presence of soot was determined using an opacity meter.  Virtually no soot was
observed in these experiments.

Similar experiments for ethanol are shown in Figure 8.30, for different powers and
varying flow rates.  Ethanol conversion is difficult to perform homogeneously because of
the low exothermicity of the partial oxidation reaction. Figure 8.30 shows the hydrogen
concentration of the partial oxidation of ethanol, for O/C ~ 1.2.

Energy consumption

In order to make plasma reformation of fuels into syngas attractive, the energy
consumption of the process has to be as minimal as possible.

Figure 6 gives the electrical energy consumption for corn, soybean oils, and ethanol
versus O/C ratio at a power level of 700 W. For a maximum hydrogen yield at an O/C of
1.5, the electric energy consumption is 10 MJ per kg of hydrogen produced for corn and
soybean oils. This is approximately 8 % of the energy in the hydrogen. The flow rate of
fuel was limited by the size of the exhaust system being used, and it has not been
established that the fuel flow rates at the 700 W level has been maximized.  Instead of
increasing the flow rate, a few experiments at lower power levels have been performed.
As shown on Figure 6, the power consumption for canola and corn oils at respectively an
O/C of 1.2 and 1.5 is about 2.5 MJ per kg of hydrogen. This is an important result since it
shows that high fuel conversion factors can be achieved with low electrical energy
consumption.

Energy consumption for the reformation of ethanol appears to be comparable to the
energy consumption with veggie oils.

e) Catalytic vs homogeneous reforming of diesel with gen 2
plasmatron

Table 8.5 shows reforming results for several cases, using the second generation
plasmatron fuel converters, at steady state conditions (after about 1 to 2 minutes).
Several types of reaction extension cylinders were used with either no catalyst or a
catalyst in the reaction extension cylinder.  The effect of the presence of water was also
studied.  The purpose of the water addition is to convert, via a water-shift reaction, a
large fraction of the CO generated in the plasmatron fuel converter into additional
hydrogen, for those applications were hydrogen is much more preferred than CO. High
hydrogen yields higher than 100% (hydrogen in product gas divided by hydrogen in fuel)
can be achieved with the use of a catalyst and water shifting.  Power conversion
efficiencies of close to 90% have also been obtained under certain conditions. However,
it is difficult to obtain water onboard vehicles, and this will be a major deterrent to the
use of the water shift reaction for onboard applications for internal combustion engines.



149

Typical second generation low current plasmatron fuel converter parameters are a power
level of 300W to 600W, and oxygen/carbon  ratio (O/C) of 1.2-1.5, and fuel rate of 0.3-
0.5 g/s (corresponding to about 10-20 kW of fuel power).

The composition of the hydrogen rich gas for the cases in Table 8.5 are shown in Table
8.6. High concentrations of hydrogen and CO are obtained. It appears to be possible to
operate the low current plasmatron fuel converter in modes with minimal production of
soot.

Table 8.5.
Performance of second generation low current plasmatron fuel converter using diesel fuel

Cases for different catalyst, O/C ratio and presence/absence of additional water.

Table 8.6.
Gas composition for cases in Table 8.5

Previously, diesel fuel has been successfully reformed at O/C ~ 1  using a compact
plasmatron reformer that employs a DC arc plasmas [Bro99c, Bro99f].  However, arc
plasmatron reforming utilizes substantially higher electrical powers and currents.

Even when operating at stoichiometric partial oxidation (O/C ~ 1), the reaction is
exothermic.  For the case of liquid fuels, with a composition nearly of CnH1.9n , the
reaction releases about 15% of the heating value of the fuel.  The temperature of the
reformate, assuming near adiabatic conditions, is on the order of 1000K. As in the case of
the nonthermal plasmatron, with O/C > 1, the adiabatic temperature is even higher.

H2 CO CO2 N2 CH4 C2H4
vol.% vol.% vol.% vol.% vol.% vol.%

Empty reactor
   no water 14 16 4.7 64 0.7 0.1
Ceramic catalyst
   no water 14 17 4.7 64 0.2 0
Honeycomb catalyst
   no water 19 21 3.3 57 0.3 0
Honeycomb catalyst
   with water 23 17 6.2 52 1.2 0.4

Power
Electrical O/C H2O/C Fuel Fuel Hydrogen Energy Conversion

Power input ratio Flow rate Power yield ConsumptionEfficiency
kW g/s kW MJ/kg %

Empty reactor
   no water 0.27 1.32 0 0.26 11 0.64 13 56
Ceramic catalyst
   no water 0.19 1.51 0 0.48 20 0.75 4 64
Honeycomb catalyst
   no water 0.23 1.21 0 0.34 14 0.91 6 74
Honeycomb catalyst
   with water 0.15 1.24 1.78 0.31 13 1.22 3 87
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f) Thermal plasmatron (gen 1) reformation

Initial in the program, work was carried out reforming multiple fuels with the thermal
plasmatron fuel converter (gen 1). Below are summarized the most pointing aspects of
the process for several fuels.

Using a DC arc thermal plasmatron fuel converter, conventional fuels were very
efficiently converted to hydrogen rich gas, with an electrical power input of ~10% of the
heating value of the fuel. However, with heat regeneration and with improved reactor
design, it is estimated that the required electrical energy input to the microplasmatron fuel
converter will be on the order of 5% of the heating value of the fuel.  Furthermore, the
reactor showed no evidence of soot, even after extended operation.  Innovations to further
decrease the energy consumption and to further simplify the microplasma reformer are
described at the end of this discussion.
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Figure 8.31.  Energy consumption for plasma diesel reforming as a function of the
oxygen to carbon ratio

Figure 8.31 shows the specific energy consumption of the hydrogen rich gas produced by
the DC Arc micrplasmatron fuel converter, in units of MJ/kg H2 for diesel fuel. The
hydrogen and light hydrocarbon yield as a function of oxygen to carbon ratio is shown in
Figure 8.32. At the higher oxygen to carbon ratios, the process becomes more
exothermic.  For a given specific electrical power input, the increase temperature
increases the yield (as shown in Figure 8.32) and decreases the specific energy
consumption.
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Figure 8.32.  Hydrogen and light hydrocarbon yield as a function of the oxygen to carbon
ratio

The experiments described above were conducted at constant power. The power
requirements and the reformate composition were relatively insensitive to the flow rates
as long as the specific power input (power/unit mass) and air/fuel ratios are kept constant.
Under these circumstances, although the residence time decreases (because of the higher
throughputs) increased efficiency of the system makes up for the decreased residence
time.  Figure 8.33 shows the composition of the reformate for diesel as the fuel, as a
function of the oxygen to carbon ratio. The hydrogen concentration is relatively constant.

Figure 8.33. Composition of the reformate as a function of oxygen to carbon ratio for
diesel fuel.
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Microplasmatron fuel converters have substantial dynamic range.  The lower power is
determined by the maximum voltage capability of the power supply (the voltage
increases with decreasing current), while the highest power is determined by erosion of
the electrodes.  It is expected that a dynamic range of a factor of 10 is possible without
substantial modification to the plasmatron device.  This is sufficient to provide the
required change in throughput for conventional engines.  For hybrid vehicles, with
engines operating at constant or near constant conditions, the plasmatron fuel converter
would operate at near constant conditions, with air/fuel/power management requirements
that are much simpler than for conventional drive.
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9) Plasmatron transients

In this section, the plasmatron transient performance is described.  Limited results are
shown for methane and gasoline.  More extensive results are presented elsewhere.  The
results for transients for propane were described in the section of steady state propane in
Section 8.b, as they were integral part of the results.

In addition, pulsed performance of diesel plasmatron is described in this section.
Operation of plasmatron diesel reformers for NOx aftertreatment applications, as
described in Section 4, requires periodic operation of the plasmatron with small duty
cycle.  Plasmatron performance under these conditions is described in Section 9.c.

a) Methane

In this section, the startup performance of homogeneous plasmatron methane reformers is
described. Two start ups have been considered.  One where the plasmatron is turned on
and kept on, while the other one, pulse ignition, the plasmatron was turned on only for
very short period of time.

Start-up experiments – pulse ignition

The experiments were carried out by establishing the flows, and the turning on the
plasma. Two sets of experiments were carried out.  In this section, experiments with short
operation of the plasmatron will be described.

The power supply was turned on and then off, such that the on time was less than 1 s. The
process was done manually, and thus the on-time differs from experiment to experiment,
but the resulting performance of the plasmatron does not seem to be sensitive to the
length of the on-time of the plasmatron.

The value of the instantaneous power in the plasma was varied in these experiments.  The
process involved adjusting the power without the presence of the methane. Then the
power was turned off, the methane turned on, and the plasma pulsed in the manner
described above.

The mass spectrometer was calibrated for hydrogen, oxygen and methane.  Hydrogen was
calibrated using measurements of the reformate with the GC, while oxygen was
calibrated using air as the sample gas and methane by measuring the composition of the
air/methane mixture and calculating the methane concentration from the known flow
rates.
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The experiments were carried out at various ratios of O/C.  As in [Bro05a], the O/C ratio
was varied by changing the wall air, with constant swirl air (60 lpm) and methane (40
lpm). The O/C ratio was varied from 1.63 to 2.24.

Figure 9.1.  Time response of H2, O2 and CH4 for O/C = 2.24 and 160 W.

Results of the hydrogen, oxygen and methane concentrations  are show in Figure 9.1 as a
function of time for conditions of O/C = 2.24 and 160 W of plasma power. Because of
the ~ 3 s time delay, it is not clear where the start up occurs in the mass spectrometer.
The second measured point by the MS shows increase of H2 and decrease of both
methane and oxygen.  The transient lasts about 0.8 s, where the transient is defined as the
time it takes for the 10%-90% change. It is not possible to determine whether the width
of the transient is due to instrumental limitations of the MS system or time response
implications of the plasmatron methane reformer.  However, it can be said that the
response of the plasmatron methane reformer cannot be longer than about 0.8 s, and
could in fact be smaller.

The hydrogen concentration reaches more than about 4% in less than 1 s, and then slowly
increases.  The methane conversion is about 30% at times of about 2 s, increasing to
about 50% at 10 s.  The oxygen concentration follows the methane concentration.

The temperature, as measured by the thermocouple, is also shown in Figure 9.1.  The
temperature is increasing at a rate of more than 2 K/s. The temperature measured by the
thermocouple is not a measurement of the gas temperature and it may be more an
indication of the temperature of the walls.
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Figure 9.2.  H2 concentration as a function of time for (a) O/C = 2.04, (b) O/C = 1.83 and
(c) O/C = 1.63 for several value of electrical plasmatron power

O/C 2.04

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 2 4 6 8 10

time (s)

H
2
 c

o
n
ce

n
tr

at
io

n
 (

%
 m

o
la

r)

370 W

160 W

80 W

O/C = 1.83

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10
time (s)

H
2
 c

o
n
ce

n
tr

at
io

n
 (

m
o
la

r 
%

)

80 W

160 W

370 W

O/C = 1.63

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6 8 10

time (s)

H
2
 c

o
n
ce

n
tr

at
io

n
 (

m
o
la

r 
%

)

370 W

160 W

80 W



156

The transients in the hydrogen concentration for O/C = 2.04, 1.83 and 1.63 for several
values of plasmatron electrical power are shown in Figure 9.2. It is clear from the figures
that increased hydrogen yield occurs for those conditions with higher power right during
turn-on and immediately after shut down of the plasma. However, for all these cases,
following the turning of the plasma, the hydrogen concentration reaches the same value.
The oxygen and methane plots, not shown, follow the same behavior, with concentrations
after the transients that are independent of the instantaneous plasma power during the
pulsed turn-on.

It is clear from Figure 9.2 that the hydrogen concentration increases with O/C ratio,
especially at the higher values of O/C. Figure 9.3 shows the H2 concentration 10 s after
startup, for the cases in Figures 9.1-9.2, as a function of the O/C ratio.

Figure 9.3.  H2 concentration at 10 s for different values of O/C.

H2 concentrations as high as 5% can be obtained with methane using the plasma device as
a short time igniter.  It may be possible to obtain even higher concentrations at higher
O/C ratios. There should be an optimum value beyond which the hydrogen in the fuel is
consumed and turned into water. We have yet to explore these conditions of higher O/C
ratio.

It is not clear how the device operates with 2% hydrogen conversion.  The modeling that
we have performed, and presented in accompanying papers, fails to reproduce the
conversion.   We also have yet to model the start-up phase.

Start-up – continuous ignition.

In this section, results of varying the power at a constant value of O/C are presented.
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The experiments were nominally carried out at 60 lpm swirl air, 120 lpm wall air and 40
lpm methane, premixed with the swirl air. This flow rates would correspond to an O/C of
about 1.83.  Comparing the results in this section with those of the previous section
indicate a discrepancy, and the O/C could be as high as 2.2 (see the discussion on the
monitoring of the O/C ratio in Section 8.a and in reference[Bro05a]).

Figure 9.4 shows the results for the conditions described above.  The power was varied
for several startups, and then the power was shut down, allowing the reaction to continue.
After a few seconds, the methane was shut off.

Figure 9.4.  H2 concentration for O/C ~ 2.2 for several values of power.

As in the previous experiments, the hydrogen concentration rises in about 1second after
the plasma is started, and similarly decays in about 1 s after the plasma is shut down.  The
hydrogen concentration is a strong function of power when the plasma is on.  Once the
plasma is shut down, the reformer continues to operate, as described in the previous
section.  The transient, again, takes on the order of 1 s. As in the previous section with
plasma ignition, the hydrogen concentration after the plasma is shut down is insensitive
to the value of the power during the time when the plasma is on.  The hydrogen
concentration is on the order of 6%, which indicates that the O/C ratio may have been
larger than 2.2.

Figure 9.5 shows the hydrogen concentration as a function of power at 2 s after start-up.
The concentration at 0 power is that corresponding to the concentration after the plasma
has been shut off, and does not correspond to 2 s after start-up. At the highest power,
above 400 W, the hydrogen concentration rises to above 10%, indicating the advantages
of the plasma at conditions of fixed O/C ratio.
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The experiments need to be extended to other values of O/C, and to compare the
maximum hydrogen concentration and methane conversion for the cases of pulsed
ignition and continuous ignition.

Figure 9.5.  H2 concentration at 2 s as a function of plasma power at fixed O/C.

b) Gasoline transient

The plasmatron setup described in section 2.e was used to determine the startup
characteristics of the plasmatron. [Bro05i] Only one set of experiments was carried out,
at an O/C ratio of the experiments is 1.06, near ideal partial oxidation, and at a power of
300 W.

The transient gas analysis was determined using an electrostatic quadrupole mass
spectrometer, from Pfeiffer. The mass spectrometer setup was described in section 2.e.
The soot/raw fuel droplets were measured using a Wagner 2000 opacity meter.
Conventional 87 octane gasoline was used in the experiments.

The measured hydrogen concentration is shown in Figure 9.6. The experiments were
carried out by turning on the air flow, the plasma, and then the fuel.
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Figure 9.6.  Measured concentration of H2 as a function of time, for 3 startups.

After the early startup, the hydrogen concentration drops to ~ 4 %.  It is likely that his
process occurs because of changes in the air/fuel mixture characteristics.  After a few
seconds, the hydrogen concentration starts to increase rapidly.

The soot concentration, as measured with the opacity meter, was below measurable
values.

c) Periodically pulsed diesel plasmatron performance

The plasmatron was operated under conditions typical for regeneration cycles. After a
brief warm up time, the plasmatron is turned on and off for the periodic regeneration.
Results were carefully monitored for a diesel flow rate of 0.35 g/s.   The temperature is
shown in Figure 9.7.  The temperature, after the initial transient, is measured every 30
seconds.  The regeneration time is 5 s, and the time between regenerations is 60 s.   The
corresponding concentration of hydrogen, CO and CO2 are shown in Figure 9.8.

The O/C ratio was increased to 1.5 at approximately 15 minutes, and decreased to 1.25 at
approximately at 23 minutes, in order to determine the sensitivity of the hydrogen
production as well as the temperature of the reactor for several values of the O/C ratio.

More than adequate hydrogen yield was obtained for the conditions tested.  The device
was then taken for Cummins Technology Center in Columbus, IN for testing with an
engine.
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Figure 9.7.  Temperature upstream and downstream as a function of time, for pulsed
plasmatron operation typical of that required for NOx trap regeneration (5 s on, 55 s off).

Figure 9.8.  Corresponding concentration of H2, CO and CO2 for pulsed plasmatron
operation typical of that required for NOx trap regeneration.
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10) Summary

Engine tests

Onboard generation of hydrogen-rich gas using a plasma boosted microreformer could
provide important new opportunities for significantly reduced emissions. A compact
plasma boosted reformer was successfully integrated with a gasoline engine on an engine
test stand. SI engine experiments were carried out to determine the effect of reformate
addition on emission and efficiency. A NOx emissions reduction of approximately two
orders of magnitude was obtained under certain conditions. The plasma boosted
microreformer operated reliably for the relatively long duration of the experiments (>6
hours per day), operating on gasoline. Additional effort is required to decrease the
electromagnetic noise, as well as to better integrate the microplasmatron fuel converter
with the engine. The rapid response, as well as the robustness to fuel characteristics and
ambient temperature, make the plasma boosted microreformer suitable as a fuel converter
for a variety of onboard applications.

NOx trap regeneration

The testing with plasmatron diesel reformer for NOx trap regeneration has indicated that

• Plasmatron fuel converters have been shown to be good sources of hydrogen rich
gas for regeneration of NOx traps

• Bio-oils (even unrefined oils) and ethanol can be efficiently and cleanly reformed
into hydrogen rich gas.

• Increased hydrogen conversion and hydrogen using plasma catalysis has been
demonstrated for diesel, bio-oils and ethanol.

• Plasmatron fuel converters offer advantages for regeneration of DPF.
• Plasmatron fuel converters have also been used to remove sulfur from the NOx

trap at substantially lower temperatures than otherwise with an oxidative
environment.

DPF regeneration

Reformate requirements for achieving DPF regeneration have been calculated on the
basis of simple models.  It has been determined that the flow rates requirements for a 6 l
turbocharged engine, are within the range of today’s plasmatron capabilities. Larger
engines can be regenerated using multiple plasmatrons, or by using thermal
management/non-uniform regeneration techniques.

It has been determined that the hydrogen rich gas will not spontaneously combust prior to
reaching the soot trap under normal operating conditions of the engine. Thus, slow,
uniform regeneration of the DPF could be achieved using both the thermal effect from the
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reformate as well as reducing capabilities and localized thermal effect of the hydrogen
rich gas.

Experimental setup for determining the advantages of the hydrogen rich gas have been
determined.  Trap soot loading and regeneration tests will be carried out in the near
future.

CFD modeling

Computational fluid dynamics tools have been used to investigate the effects of
alternative injection points for the fuel, in this case, methane. The purpose was to
determine the characteristics of the air/fuel mixture at the location of the plasma, as well
as to determine the mixing rates. It was determined that changes in injection point
changes significantly the distribution of the methane in the region of the plasma, but does
not significantly change the mixing parameters at this location.

This information will be used in accompanying papers to investigate the characteristics of
methane reforming in plasmatron fuel converters.

Experiments and modeling of the vaporization with the time response of a plasmatron
gasoline reformer were carried out.

We have determined that the response time of the mass spectrometer is on the order of 1
s. Thus, it is likely that the hydrogen concentration reaches about 4% 1 s after turn-on. By
comparison, the response time with gaseous fuels was on the order of 2 s, at substantially
higher O-to-C ratios.

PSR Modeling of methane

A 2-stage model has been developed for the homogeneous reforming of methane.  The
model was investigated using a simple Perfectly Stirred Reactor (PSR) with multiple
inputs.  It was determined that the reforming process ignited the overall O/C ratio is
between 1.4 and 1.6. About 10-15% of the methane needs to be stoichiometrically
combusted.

The actual composition of the reformate in the calculations underestimate the hydrogen
concentration and the methane conversion. The PaSR model does better in predicting the
composition of the reformate.

The results show a lack of sensitivity of the conversion to residence time.  Increased
conversion is difficult through the use of larger reactors.  Instead, increased temperature
is a more effective way to achieving high conversion of methane. The same results are
obtained by increasing the reactor size by a factor of 8 or increasing the O/C ratio from
1.6 to 2. However, there is a minimum PSR size (defined as the section of the actual
reactor with good mixing) for good reforming, and increased O/C ratio is needed to
compensate for smaller well-mixed reactors.
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PASR modeling of methane

A model of a plasmatron methane reformer where limited mixing is included has
produced quantitative agreement with experimental results.  The process uses only gas
phase chemistry, without the use of a catalyst.  The model reproduces the hydrogen and
other main components of the reformate, as well as the methane conversion.

The model also has been used to determine the effect of the plasma at steady state
conditions.  It has been shown that the plasma increases the hydrogen concentration by
about 20%, but the reaction continues at lower temperatures even in the absence of the
plasma.  As the cold reagents are introduced into the hot reactor gas, they are heated and
release sufficient energy to maintain the reaction, although at decreased temperature.

The composition of the reformate is accurately described by the model. However, there
are regimes (low O/C, absence of plasma) where there is only qualitative agreement with
the observations.  Additional modeling is needed that includes losses or improved
description of the fluid dynamics, mainly for the case without plasma.

Methane reforming

The effect of the stratification of the methane/air mixture of the air has been investigated,
at fixed methane flow rate. It was determined that the hydrogen concentration and yields
depended on the overall O/C ratio, and that the distribution of the air between swirl and
wall had only a small effect.

The plasma power required depends on the O/C ratio.  At high O/C ratios (O/C ~ 2.2) the
dependence on plasma power is small, with a ~20% decrease in hydrogen concentration
without the plasma.  However, at O/C ~ 2, the plasma is needed, and higher power is
better.  At even lower O/C ratios (O/C < 1.6), the reforming even in the presence of
plasma, is poor.

The start-up of plasmatron methane reformers has been studied.  The experiments
indicate that when the plasmatron is used as an igniter, the hydrogen concentration is a
function of O/C.  Furthermore, the tests indicate that it is possible to increase the
hydrogen concentration and the methane conversion by increasing the O/C to about 2.2.
As the O/C for stoichiometric combustion of methane is O/C ~ 4, the reformer is still
operating at very fuel rich conditions.

When the plasmatron is used in continuous ignition mode, the use of the plasma at a
given O/C ratio increases the hydrogen concentration and the methane conversion.
Increasing the power increases the hydrogen concentration. High hydrogen concentration,
as high as 10-12%, can be obtained in ~ 1 s with O/C on the order of 2.2 with 300-400
W.
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Propane reforming

In general, the following conclusions can be derived from this work:

• O/C controls the performance of the plasmatron propane reformer, more than where
the air is introduced (swirl air, wall air),

• The performance of the plasmatron propane reformer is sensitive to the place of
introduction of the propane, with best results premixing the propane with the swirl
air and the worst results with the propane injected through the axial nozzle.

• Reforming is sensitive to plasma power at lower values of O/C. At higher values of
O/C, the plasma is mainly needed for startup.

• Startup is sensitive to power at lower values of O/C.

Biofuels reforming

Conditions of good non-catalytic bio-oil reforming were investigated, with hydrogen
concentration in the dry reformate > 10% and energy efficiency > 70%. Operation at
relatively high O-to-C ratio was required.   The ratio of free-oxygen to carbon ratio,
however, is Ofree/C ~ 1.5 at the conditions of good performance.

The plasma is required for the start up for both ethanol and bio-oils, until conditions near
steady state are achieved.  However, once steady state is achieved in ethanol, hydrogen
concentration in the absence of plasma is maintained for all but the lowest value of O/C
ratio, although with higher opacity that in the case with the plasma. For B-100, the
plasma is needed throughout the O/C range explored.

Biofuel plasma catalytic reforming

Low-current plasmatron fuel reformer technology has been used to convert both bio-oils
and ethanol into a hydrogen-rich gas with high hydrogen yields (70 to 80%) where a
catalyst is positioned after the homogeneous reforming zone. For homogeneous
reforming alone hydrogen yields are typically about half those obtained with catalytic
reforming. However, the conversion rate into H2, CO and light hydrocarbons is still
relatively high (close to 70%) for homogeneous reforming. More work is needed to
further lower the energy consumption and increase the hydrogen yield by operating the
plasmatron fuel reformer closer to an O/C ratio of 1.
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