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Abstract

We investigate the effects of a hot species on plasma stability in dipolar magnetic field.
The results can be applied to the dipole experiments employing the electron cyclotron heating.
We consider the interchange stability of a plasma of fluid background electrons and ions with a
small fraction of hot kinetic electrons. The species diamagnetic drift and magnetic drift
frequencies are assumed to be of the same order, and the wave frequency is assumed to be much
larger than the background, but much less than the hot drift frequencies. We derive and analyze
an arbitrary total pressure dispersion relation to obtain the general requirements for stability in
dipolar geometry. As an application of the theory, we consider a special separable form of a
point dipole equilibrium. Our analysis shows that a weak drift resonance with the slowly moving
hot electrons modifies the simple Magnetohydrodynamic (MHD) interchange stability condition.
Destabilization by this weak drift resonance can be avoided by carefully controlling the hot
electron density and temperature profiles. A strong hot electron destabilization due to magnetic

drift reversal is found not to occur in point dipole geometry.
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. INTRODUCTION

The Levitated Dipole Experiment (LDX)? has been built and operated in an MHD
interchange stable regime®®. The hot electron population is created by the electron cyclotron
heating that increases the electron temperature’ and can alter the interchange stability of plasma.
We examine the role the hot electrons play in modifying the usual ideal MHD interchange
stability condition including wave-particle resonance effects by considering a confined plasma
with an ideal fluid background consisting of electrons and ions plus a fully kinetic population of
hot electrons. Based on current LDX experimental observations, unstable modes with
frequencies ranging from two to five of kHz to hundreds of MHz are being observed®,
corresponding to typical magnetic drift frequencies of the background species and hot electrons,
respectively.

The format of this calculation is similar to that in our Z-pinch paper®, but is applied here

to general dipolar geometry for which the unperturbed magnetic field By is purely in the
poloidal direction, while the unperturbed diamagnetic current J is toroidal. To concentrate on

the role the hot electrons play in modifying the interchange stability, we only consider flute
modes with wave frequencies much higher than the background and lower than the hot species
drift frequencies, since they are the least stable modes in the absence of hot electrons®®. As a
result of our ordering, we do not consider the hot electron interchange, for which the mode
frequency is of the order of the typical hot electron frequency, such as magnetic and

diamagnetic. We treat the magnetic drift, consisting of comparable grad B, and curvature drifts,

on equal footing with the diamagnetic drift. We obtain the dispersion relation for arbitrary

plasma and hot electron pressures, but then examine three plasma pressure orderings relative to



the magnetic pressure: background electrostatic with f, << 3, ~1, electromagnetic with
1~ B, << B, and electromagnetic with 1~ 5, ~ f,. Throughout the paper we compare and

contrast the results from dipolar geometry to that of the Z-pinch.

In Sec. Il we derive two coupled equations for the ideal MHD background plasma that
involve the perturbed hot electron number density and the Vi component of the current. These
two quantities are then evaluated kinetically in Sec. 111. Section IV combines the results from the
two previous sections to obtain the full dispersion relation, and general stability conditions,
including a discussion of hot electron drift resonance de-stabilization effects. As an application
of the above theory, a separable form of a point dipole equilibrium is considered and the results

obtained are presented in Sec. V. We close with a brief discussion of the analysis in Sec. V1.

1. IDEAL MHD TREATMENT OF THE BACKGROUND PLASM A

Our derivation for the dipole geometry will follow the guidelines developed for the Z-
pinch’. In this section we will use an ideal MHD treatment to derive the Vi component of the
perturbed Ampere's law and a perturbed quasi-neutrality condition. The quantities pertaining to
the hot species, such as Vi component of the perturbed current and number density, will be
evaluated kinetically in the next section.

Using the standard approach for the closed field line axisymmetric or dipole
configuration we introduce poloidal magnetic flux w, toroidal angle ¢ and radial distance from
the axis of symmetry R so that the unperturbed poloidal magnetic field and toroidal current are

given by:



= = d
Bo=VyxV{ and JO=R2$V§ (1)
where the total pressure pg, is the sum of the hot pressure pg, and the background pressure

Pop = Ngele +Ngi Ti» With nge, Ng;, To, and T, the background electron and ion densities and

temperatures, respectively. The total current is the sum of the background and hot contributions
Jo=Jop+Jon Which separately satisfy the force balance relations to give
Jop = (dpgy, /dw)R?VE and I, = (dpgr /dw)R?V . Using the Ampere's law to derive the
Grad-Shafranov equation yields
V. [V'/’JWO do _ g,
R?
Defining &=(b-V)o as magnetic field curvature with b=B, /By, it also follows from the

preceding equation and equilibrium pressure balance that

2kVy _ fo dinpg Vy
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2
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We assume perturbations of the form Q,(y,6)e™ !¢ with @ the poloidal angle and
Ime >0 for instability. Then, we perturb around this equilibrium by introducing the

displacement vector E as vy =-i wE , with v, the background ion flow velocity, and writing it as

B
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3
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Using the usual ideal MHD equations, the perturbed electric field E;, magnetic field B,

and total current J; = Jy, + Jy;, are given by



E, =iakxBy, (4)

B, =Vx(ExB,), and (5)
ﬂoj]_:VXél, (6)
where it is convenient to write B, as
B, —QB +Q +Q (7
SraedTa
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Equations (3) and (5) give Qg = —Bg[ ve? VP

j Q, =Bo-V&, and Q =By - V&, .

In addition, background plasma momentum and energy conservation are written as
—mng; 0°€ = engnEy + Iy XBo + Iy X By~ VP, (8
and
P1b =—7p0bv'g—%)f§y/, 9)
where m; denotes the mass of the background ions, py, is perturbed background pressure, and

y=5/3. The El term in the momentum equation, which is absent in the usual ideal MHD
treatment, enters due to the effect of charge uncovering — the incomplete shielding of the
background electrons by the background ions since the equilibrium quasineutrality for singly
charged ions requires Ny, =Ny — Nge -
Using the preceding system of equations, it is convenient to define
W=—p]b—§y/%),b=7p0bv'g, (10)
and then obtain two coupled equations for W and &, , both of which only require knowledge of

the perturbed hot electron density and current, which are evaluated in the next section. To



simplify the procedure we use the parallel component of Faraday’s law and Eg. (3) to form V E

and to obtain two convenient expressions for §- and Qg

. V- V&
il _—”’+—B, (11)
e
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Next, we consider the Vi component of Ampere's law,
ﬂojl'Vl//:ﬂOj]b'Vl//"'ﬂOjlh'VW:_”QB_EO'V(RZQ{)- (13)

The background contribution is calculated from the toroidal component of the momentum

equation yielding
Jip -V =mngo®R%E, +engyR°E; - V{ +ilpy,
with & given by Eq. (11), py, given by Eq. (10), and El-V§=—ia)|V§|2§V, from the toroidal

component of Eq. (4). Defining the background plasma beta as

By = 24 Pob
BS

and using Eq. (11), the Vi component of Ampere’'s law can be rewritten as

iIB3 =% b T IPob 2y [Vyi2

[ ﬂMjQB
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(14)

The most unstable ideal MHD ballooning-interchange modes have |>>1 for an

axisymmetric torus with closed field lines’. Therefore, we can use the standard high mode



number formalism to neglect the 1/1? term from EO-V(RZQg) and the coupling to the

magnetosonic waves by assuming W R? 12 << Pop / MiNg; in Eq. (14). Then, using EqQ. (12) we

obtain the first of the desired equations, the Vi component of Ampere's law, in the form:

Ui+ )-8 ¥ 5+ {v (5] pltgem )}fy, Y (15

To obtain the second equation, we start with background charge conservation in the form

V-Jy, =iwe(n; —ny)=iweny,, where we also use perturbed quasi-neutrality. The expressions
for the parallel and perpendicular components of the perturbed background current are calculated

from the parallel component of Ampere's law and momentum equation, respectively. Using the

large | approximation gives
_. il il
ﬂoJl BO ﬂo(J]b‘l'th) B :éVWV(RZQg)ﬂ'%z &

Iy Vi =—i@engné, +ilpy, +mng o*R*E, = —iwengné, +ilpy,

and
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Notice that we retain the inertial term in Jy, - V¢, but continue to ignore it in Jy, -V to be
consistent with the large | expansion. Expressing py,, and Qg, interms of W and 5;//’ we insert

the preceding three equations into the background charge conservation to obtain

@eMh _ R BoVéy, j1h'|§”0j [ Vy j 1dInpoy , @engn
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Finally, using the parallel component of the momentum equation to eliminate &g yields

= & = Bg-VW
o 73— 0

where we assume ny; is a flux function. Substituting Eq. (17) into Egs. (15) and (16) we now

have the two coupled equations

oI VY | 5 BoVW | _  w 1 Vy | By (dInpop | @enon
gty bk v (a Al o

and
Mnte , | _ ITe mnOia’2+nOhTe Vy-Vinng, £ =— w_JITe dlnpot)_”)v, Vy ||, NonTe | ,
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(19)

where the terms with ng,, are due to the charge uncovering effect of the hot electrons on quasi-

neutrality.
Observe that without hot electrons we can easily recover the well known ballooning

equation for shear Alfven modes®. It can be obtained by substituting Eq. (18) and its poloidal

flux surface average into Eq. (19) to first eliminate I§O -VW and thenthe W terms, respectively:

- B0 & ﬁ-w/BgR2>
B2R2B, V| 20V | | £ (2% Vo, + ming @? )= 4ypg (- V & .
0 0 (ﬂoVWZ 5;//( Pop + M Ng; ) Pob W)W

In addition to using Eqg. (2) to get the right hand side of the preceding equation, we note that it

follows from Eqg. (18) that the variations of W along the unperturbed magnetic field are

proportional to w®. As aresult, W tends to flux function as the growth rate diminishes. In

particular, from the field line average of Eq. (18)



<§,,,r<-v wl B§R2>

W=-2 —(—)—,
where the flux surface average is defined by (...)=V%§(...)d8/B,- V@ with ¢ the poloidal

angleand V = §dg/B,- V6.
[11. KINETIC TREATMENT OF THE HOT ELECTRONS

In the previous section we have obtained two coupled equations for quasineutrality and
Ampere’s law that require knowledge of the perturbed hot electron density and current.
Generalizing the Z-pinch procedure developed in reference’ to dipole geometry, we will first
kinetically evaluate the perturbed hot electron responses in this section to obtain the dispersion
relation in the next section. We assume that the temperature of the hot electron population, T, is
much larger that the background temperatures, which requires that the magnetic drift and
diamagnetic frequencies of the hot electrons to be much larger than the corresponding
background fregquencies.

We assume that the hot electrons satisfy the Vlasov equation, and following the standard

10,11

procedure for solving the gyro-kinetic equation we linearize the hot electron distribution

function around the equilibrium by writing f,, = fg, + f;,, +.... Employing the orderings

Qe = W) >> O, ~ Oy >> O, (20)
with m the electron mass, Q. =e€B,/m the cyclotron frequency, «,~V,-V the bounce
frequency, and @y, and ., the magnetic and diamagnetic frequencies, the equilibrium

distribution function satisfies

10



V- Vigh —QeVxb -V, fon =V Vig, + Q72 =0, (21)

where ¢ is gyrophase. As in the case of all axisymmetric machines, the toroidal component of

canonical angular momentum is a constant of the motion and therefore it is useful to introduce
s =y —TR{.V. Then exact solutions to Eqg. (21) exist of the form fq, = fon(E,y+ ), with
E=v?/2.

To evaluate the first order correction to the hot electron distribution function we again

look for solutions of the form e '*~'¢" and solve the linearized Vlasov kinetic equation

ag_lth+\7.vflh _QeVXB-VV f1n +%(Vd)+%—\7xl§l)-vv fonh =0, (22)

where the scalar and vector potentials @ and A= A1|6+ AVyIRBy+ A-RV{, enter
E;=-V®—-0A/ot and B;=VxA, with V-A =0 for the Coulomb gauge. Observe that the

gauge condition coupled with the large mode number assumption causes the toroidal component

of the vector potential to be small compared with the other two components: A- ~ (A/, or A ).

The solution to Eg. (22) is found by removing the adiabatic piece by writing
— &2
fin =5 fon + 91, (23)
and then defining g; = g; + g; with the bar and tildes indicating the gyrophase independent and
dependent parts, respectively. Using v, magnetic moment ﬂ=vi/ 2By, and ¢ as the velocity

space variables, the resulting lowest order expressions for g; and g; are given by

_ th(aFw*T) fdrlo-viAy)  mu §dQg /By
glz_ 2 h (% fdr _ﬁ §CI132' j (24)
-5

and

11



g1 =-Q.'V, xb- [Vgl + 180 £ A —%MV ‘//} (25)

where the parallel and perpendicular subscripts refer to the components parallel and
perpendicular to the equilibrium magnetic field I§O. The details of the calculation are given in

the Appendix A. For simplicity we consider the unperturbed hot electron distribution function

fon, to be a Maxwellian to the lowest order and use a gyroradius expansion to write

Fon (B )= fuan + (W —w)0f g 10w +... With  fyn = ngn(m/ 22T, ¥ 2 expl-mv2 /2T, ). The

hot electron diamagnetic drift frequency is defined by

2
o = a)k{1+ ”h(%_%j } : (26)
with @, = Th d'g;"h and 7, =dInT,,/dInny, . The effective trajectory averaged magnetic drift
frequency is
o =§2';£§%Wh 05) )iz 1gdr = - 2T (54 - Vedz /§dr, 27)

with

_ VA& Vy By (1+s)

Va Vi=— 2 i h- s 4, (28)
where

_ Vy-VinBy
s=1- V£ ik (29)

2
measures the departure from the vacuum limit s=0, A=YLB = s 3 pitch angle variable

with B being the value of B, at the outboard equaorial plane, and dz = alf'g 5>0 is the

incremental time along the particles trajectory. We note that the tragjectory integrals are different

12



for passing and trapped particles, with the former running over one full poloidal pass, while the
latter runs over one complete bounce.

Ampere’s law, Eq. (18), and, quasi-neutrality Eqg. (19), require the hot electron density
and Vy component of perturbed hot electron current, which we form by integrating the
distribution function over velocity space to obtain ny, = f,dv and J,, =-€fv,, f,dv. Only
the gyrophase independent part of g, contributes to ny,, while only the gyrophase dependent
part survives the integration in J,, . The full details of the preceding calculations are presented
in Appendix B.

From the form of f, it is clear that both ny, and J;, involve dz integrals, which
involve poloidal trajectory averages of @, A, and Qg. In Z-pinch geometry® the interchange

assumption removed poloidal variations. As a result, the perturbed number density and radial
component of current were written as linear combinations of ® and Qg, while the parallel

component of the Ampere’s law resulted in a homogeneous equation for A, allowing us to set it

to zero. These simplifications permitted us to write quasineutrality and the radial component of
Ampere’s law as a set of two linearly coupled equations. In dipole geometry, the poloidal

variation of B, and k cause quasineutrality and the Vi component of Ampere’'s law to become

a set of two coupled integro-differential equations, which without approximations can only be
solved numerically.

To examine the possibility of a partially analytic solution we consider interchange modes,
with Q, =By-V&, =0, making £, a flux function. Next, we examine Vy and V¢

components of Ohm's law, Eqg. (4),

13



E; Vy=-V® Vi +ioh,RB, =iat,R°Bj
E; V¢ =il®/R® +iahs I R=-ic, | R%.

We recall that from Eq. (11) &, ~§V,IRZBOI , while from V-A =0 we have Ar~All. Asa

result, in the preceding expression for E;-V¢ we may neglect the Ay term as small by 1/12,
making

O =-ag,/l (30)
a flux function to the required order (and allowing us to take it outside the dz integrals). We

also note that
A, ~&, 1IR. (31)

For interchange modes @ is up-down symmetric, while A, is antisymmetric. As aresult,
for both the passing and trapped particles §v Adz =0 and J;, - By =< v gydv = 0. Consequently,
we may ignore Jj,-B, and A terms in Egs. (18), (19), and (24). In addition, upon
gyroaveraging, the Qg term in Eg. (25) does not survive to enter jlh-V;y and the A-

component that does enter is small by 1/1? as shown in Appendix B.

The last complication in Egs. (24) and (25) is the tragjectory averaged terms involving

Qg . If we combine Egs. (12), (17) and (18) to eliminate terms involving B, -V we get

Qs __JinVy (deb wenOh)g
ﬂ—o——T+W+W+ oy - (32

For ideal MHD interchange modes near marginality both &, and W are flux functions, so we

see from Eq. (32) that in the absence of hot electrons, Qg isalso aflux function. Therefore, near

marginality any variations of Qg along the equilibrium magnetic field are caused by Vy

14



component of the hot electron current. In general Jy, -V and, asaresult, Qg, W, and &, ae

not flux functions, causing the quasineutrality and Vi component of Ampere's law to be

coupled integro-differential equations. There are several options to deal with the increased
complexity. One is to solve the problem numerically, which is outside the scope of the present
work and probably not the most insightful approach at this point in the development of hot
electron models. The second option isto treat perturbed hot electron terms as small and introduce
them perturbatively. However, from the Z-pinch geometry, we know that hot electron effects can
enter on equal footing with the fluid background response and play an important role in stability

analysis. The third option, and the one we will pursue here, isto simply assumethat Qg, W, @,

and Jy, -V are flux functions to lowest order, which allows us to obtain a dispersion relation

essentially the same as the one found for a Z-pinch”. This procedure alows us to recover all the
results from the second option, but cannot otherwise be justified in any other rigorous fashion.

However, when we consider the point dipole model in Sec. V, we will find that the behavior of
|, H, F,and G asa function of poloidal angle is similar to that of 852 as required for this
assumption.

Replacing Qg, Jy,-Vw and @ by <QB>=<B"BO>, <jlh-Vw>, and (@), and taking
them outside of poloidal trajectory averagesin Eq. (24). To lowest significant order, we can then

write the expressions for ny;, and <jlh -sz> as

o _ 240G +(Qg) (B ?)H (33)
and
IV _
ﬂ0<”1;g V’>:_<182h>(e§|_(:>|:_<QB><BOZ>|j, (34

15



where ﬁh = 2,[10 Pon / Bg and

o), (567 fo-al ocle
G=1--L[dv fmnlo-a, H = [V 2 Annlo-al, fdz(B/Bg)/fdz
Noh mv2 ' NonB2 2Th 2 ,
) o Foen) (35)
<552>_1 ( T ) <562>_2 2 .2 ( T )§ _
F=i_jogm Avnio-en) jd\?(m"z) 2 fn [0l fe(B/ Bg)1gdz

The details of obtaining these expressions are provided in Appendix B. Notice, that in general,
the expressions for G, H, F, and | contain resonant particle effects due to the possible
vanishing of the denominator. Here we consider only the intermediate frequency ordering, with
the wave frequency much less than the magnetic frequency of the hot electrons, so that the «
dependence in the preceding equations only matters in determining the causal path of integration
about the singularity. The vanishing of the denominator corresponds to the wave — hot electron
drift resonance, which can occur when wp issmall. This resonance is weak when only very low

speed hot electrons interact with the wave (no drift reversal), and possible strong for s>1 when

drift reversal occurs so that many hot electrons with a specific pitch angle A :Wzﬁ_sj can

resonate.

V. DISPERSION RELATION

In this section we obtain the dispersion relation by substituting the expressions for <n1h>
and <j 1h -Vw>< Baz> given by Egs. (33) and (34) into quasineuitrality and the Vi component

of Ampere’s law. To annihilate terms involving |§0-V in Egs. (18) and (19) we flux surface

16



average and then assume ®=(®), W=(W), Qg =(Qg), and jlh'Vl//=<jlh'Vl//> in
undifferentiated terms, and continue to use §vyAdz=0=J;,-Bg. When we use Eqg. (12) to
eliminate <W> , the resulting two coupled equations are identical in form to those obtained for a
Z-pinch’:

QB<852>(1+%y<ﬂb>)=—%<eaz><3m~Vz//>+<’)’—;>[<i;f>(y—d>—m}—f (36)

and

w2

(o 0 R b 5 -0 -oufes? - -0 0
where we define

2
d = —4/nPop ( >=_Edlnv __I“Te mngiTe
dinv ' \*de e dy ' 2822 Pob

and employ <V- (Vz///|V 1//|2)> =dInV /dy . Combining the preceding two equations with Egs.

(33) and (34) to form the dispersion relation we obtain

{<b>+“°+0}[l—§<e>+<“’sf> o e - v <y-d>}(1+%r<ﬂb>+@<l>j+

+ V3L 088 ()t 1 () | ) (- )07 () | =0,

Pob

(39)

which is the same as the Z-pinch result” with the exception of flux surface and trajectory
averages due to geometrical effects.

Even though, the dispersion relation looks quadratic in «, in general, the coefficients of
the above dispersion relation are not necessarily real or independent of the wave frequency due
to the hot electron drift resonance with the wave. As we noted in the previous section, there are

two types of resonance. A weak resonance occurs when the wave interacts with a few slow

17



moving hot electrons. In this case, even though the imaginary parts of the coefficients in the
above dispersion relation depend on the wave frequency, they are much smaller than the real
parts. As a result, this type of resonance can be examined perturbatively, which is done later in
the section. Another type of resonance happens when s>1 and drift reversal is possible. In this
case the wave interacts the hot electrons of particular pitch angles, the real and imaginary parts
of the coefficients are comparable in size, and the interaction is strong and always unstable. In

the remainder of this section we discuss stability assuming drift reversal does not occur.
We will not consider the high frequency regime having (@y,) ~ @ >> (@ye) . We simply
remark that in this limit the wave frequency dependenciesof (G), (H), (F), and (I) termscan

no longer be ignored. Consequently, the dispersion relation given by Eq. (38) is no longer a
simple quadratic and its solution has to be found numerically. In this case, a new instability can
occur which is often referred to as the hot electron interchange™.

In what follows we first consider the lowest order interchange modes in the absence of

resonant hot electrons for w<< <a)dh> ~ a., and then retain the hot electron drift resonance

perturbatively.

A. Lowest order non-resonant modes.

To investigate the effects of hot electrons on stability for closed magnetic field lines, we
first ignore any resonant effects and consider the electrostatic case. To do so we drop all the

terms proportional to the background plasma, by assuming £, << 3, ~1. The dispersion relation

then reduces to

18



(1 B0) e b 0|0 @

<wde>

The overall multiplier in front is independent of the frequency, so stability requires

(nOhTe/pOb)z(l d;?:\(}h)z +4(b)(y—d)=0, as in a Z-pinch’. The hot electrons enter only

through charge uncovering effects (proportional to ng,) in this limit and these improve the well
known dipole interchange stability condition®® of d <y .

For the fully electromagnetic case, we continue to ignore the resonant effects of the hot
electrons so that (G), (H), (F), and (1) are real and independent of wave frequency and the

dispersion relation is quadratic. For the intermediate frequency ordering with

_ (@dn)

Te (o)

(@gh) >> @>>(wye) it follows that -b

a) .
{@de)
the hot electron beta will be much larger than the background beta so it is of interest to consider

~ (@) >>Je
0] Th

B >> B, ~1, which coupled with the frequency ordering allows us to take hze
In this regime, the dispersion relation is given by Eq. (38) with the (G) term ignored, and
stability is determined by the sign of the discriminant. This limit will be investigated in more
details for the point dipole equilibrium in Sec. V.

For completeness we also examine the case of equal hot and background pressures with

Bn ~ Bp ~1. Recalling the frequency ordering, this limit requires % Ie <<< @) . The

dispersion relation then reduces to

, (;/—d)(1+%d<,8 Py >]

@ =

2
(@) <b>(1+ Y{Bo)+ @W] |

(40)
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with stability determined by the signs of three terms on the right hand side. Section V will also
investigate this limit in more detail for a point dipole, for which y>d always, so only sign

changes in the numerator need to be considered.

B. Resonant hot electron drift effectson stability.

It is also of interest to examine how weak hot eectron drift resonance effects change

stability boundaries. We examine these effects by retaining the imaginary parts of (G), (H),
<F> , and <I > . Since the imaginary parts of the hot electron coefficients are much smaller than
the real ones, we may examine resonant effects perturbatively by writing o=@, + @, where
an >> || is the zero order solution to Eq. (38) with real coefficients, and @ is the small

complex correction due to the hot drift resonance. Due to its small size, @; cannot stabilize a
zero order instability or significantly affect the stability boundary, so we only look at rea
solutions to the dispersion relation by considering real @y, and ignoring the real part of .
Moreover, without drift reversal, a weak drift resonance for | >0 is possible only for positive
wave frequencies so we require an>0. We need only consider | >0 since reality requires
—a*, —| beasolutionif «, | isasolution.

The full details of obtaining the expressions for imaginary parts of hot electrons

coefficients are provided in Appendix C. Here we note that to the required order they can be

written as

20



<Gr5>=—A%A1, (Hies) = A2 2P0 A
Oh'e , (41)

<Fres> =A <Z’:e> EOF:%Z A3 and < | res> = A&ﬂ[\‘h

with A defined by

i\/;(W‘(l_%nh)nOhTe @ _(Te /2
A= (wge)  2Pob \| (@ge) (T_h)5 ’ (42)

and the positive geometrical coefficients defined by

o3 “\/1-1By /B
Ao = <a)dh>5/2 &E/J-Bodﬂﬂde(E/Bo)/‘de
° 28%(55%) \ B w2 [1-7BolB |
Ao = <wdh>5/2 B/J-BO 244
3 282(Bg%) | o B’\1-280/B "
A= (wan)"'? E}Bodﬂﬂzfdr(E/Bo)lfdr
Yast(e?f 0 obrmers

where <a)dh> = <a)de>Th /Te

The expression for the first order complex correction for the fully electromagnetic case is
quite cumbersome. To understand the procedure of obtaining @, , we schematically represent the

general zero order dispersion relation as

2
A +B- 2. +C=0,
(e (wge)

with A, B and C are the real coefficients of corresponding powers of w/{wye) in Eq. (38) and

given by
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=] 11+ 20+ 20 )+ - o)
B nggle [(1+ dc:?:\(;h (1+%y<ﬂb>+<ﬂ—2h><l >j—@(7—d)(2_<H>_<F>)} ’

C= —(y—d)(l+%d<ﬂb>+@<l >j

where the contribution from the term involving (G) is always small by at least T, << T,

The general zero order gability boundary is described by the real solution of the

preceding equation. The expression for the first order imaginary correction can be written as

%:ANK, (43)
where
_ 2l 2 (i BN — oo — (1) —
K—K[a @ (H))a-(F))-ef2—(H) <F>)+1}A4 "
+xlefA (1= (F)+ Agt—(H))]- (Ao + Ag)+ Ay,
and
N 2 drao3am)) (45)
A+<2i(;ce)>8
with
K= (B)(r—d) and o = —“@"onTe (46)

2+ 37(o)+L(Bn)(1) (@de) Pob(y—d)~

The sign of the Eq. (43) determines if plasma is weakly unstable. In our Z-pinch investigation,
we have extensively evaluated all possible cases and requirements for this weak resonant
instability. Here we will focus on three cases. electrogtatic background, electromagnetic with

Bn~ B, ~1, and the high p,, electromagnetic case /S, >> S, ~1 for the point dipole

equilibrium.
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For the electrostatic background case S, << A, ~1, x =0, and in the absence of drift
reversal K >0, with ay the solution of the simplified zero order dispersion relation given by

Eg. (39). Equation (39) is a quadratic with real coefficients, and for the resonant modes to be of

interest it must have two real stable roots. If d>y, then both roots are postive if
dinny, /dInV < -1, in which case the resonance is always unstable. Both roots are negative if
dinng, /dInV > -1, in which case there is no resonance and the plasma is stable. Therefore, if
d >y we also require dinng,/dInV >-1 to be completely stable due to charge uncovering
effects. If d <y, then there is always one positive root, which permits a resonance, and the

stability of the region depends only on the signs of A and the numerator of N . For d <y case

stability requires

e 3(mn I - 250, “

where the sign of <I > depends on sign of dIn pg, /dIny and the details of the dipole magnetic
field. For the point dipole considered in the next section, the sign of <I > depends only on sign of
dIn pg, /dIny and the plasma beta.

If we consider the electromagnetic case, with S, ~ S, ~1, then the a or charge
uncovering terms become negligible, N reduces to N :1/<b> >0, adl A; terms are positive

without the drift reversal, and the expression for K becomes

2 Ao+A Ap+Az)?
K=K A4_(A2+A3)"+A1=A4("—§T43)2+A1——( EIvant

In this limit, stability depends on the sign of AK . If

dinng, /diny <3dInTy, /dIny,
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then a sufficient condition for stability is Ay > (A, + Ag)*/4A,.

If we allow S, >>1~pf,, then o~1 and the general result of Eq. (43) must be
considered. A sufficient condition for dability can then be seen to be y>d,
L2 p(B)+2(Bu)1))>0, (F)<1, (H)<1, and dInng,/diny <3dInT,/Indy . However,
more detailed results require a specific dipole equilibrium. In the next section we consider this
high f,, case further, as well as the situations already discussed, for the point dipole

equilibrium™. Their point dipole model allows us to simplify the computational aspect of our

analysis, while retaining enough features of the general dipole geometry to be of interest to LDX.
V. POINT DIPOLE APPLICATION.

In the previous section we derived and discussed the dispersion relation for interchange
stability in general dipole geometry. Unlike the Z-Pinch, the dipole dispersion relation involves
flux surface averages of various geometrical quantities, making it difficult to usefully discuss
stability without numerical work and a specific dipole equilibrium. To obtain semi-analytical
results we adopt the point dipole equilibrium found by writing the poloidal magnetic flux in the

separable form given by
vt =yonu)ef “8)

where u=cosf# and R=rsing, with r and & spherical coordinates and & measured from the

axis of symmetry™. Here, y, and r, are normalization constants and a is a parameter between
zero and one to be determined. The spatial behavior of y is governed by Grad-Shafranov

equation, which for the choice of Eq. (48) and
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py)= polw /o2 (49)

can be rewritten as an ordinary differential equation for h(u) :

d?n _  ala+l 1+4/
Pr I h—a(a+2)n**'2, (50)

4
where [ = 2‘;%;‘;;0 , With p, being a normalization constant. Solving the preceding equation for

h(u) determines the eigenvalue a=a(f), with a—1 for #—0 and a— 0 for B — . For

this model the local beta, defined in Sec. I1, is only a function of poloidal angle and is given by

fo=pah®'2 ] (dh 1 2 |

1_u2

Using this separable form we can express the spatial dependence of all required quantities
in terms of y, h(u), and its derivatives, and evaluate all of the flux surface and trajectory
averages.

We begin by addressing the issue of drift reversal in point dipole geometry, which
requires the evaluation of @p . Figures 1 present graphs of — Vg -VQ(ZITh/mvz), which when
trajectory averaged becomes @y, given by Eq. (27). We plot this expression as a function of u
for different values of f and A. From the graphs we can see that the integrand can become
negative. However, even at large 3, the particles do not spend enough time in the regions with
reversed magnetic drift to make ap , the effective trgjectory averaged drift, negative. As aresult,
drift reversal is not possible in point dipole geometry.

We next proceed to the evaluation of the hot electron coefficients | , F, and H, aswell
as their trgectory averages entering in the dispersion relation. Figures 2 illustrate the

dependencies of |, F, and H on u for different values of £, where | is normalized to
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din pg, /dIny, while F and H are normalized to dInng, /dIny . As we can see from the
plots, al three normalized coefficients are positive at al possible u, so their flux surface

averages will also be positive, as confirmed in Fig. 3, where we plot (1), (F), and (H) asa
function of B. We take dinny,/dIny=1 and 7,=0, so that (I), (F), and (H) are
normalized to dIn pg,/dIny and dinng,/dIny, respectively. As we can see from the plot,
the normalized flux surface average of | is positive, and both normalized (F) and (H) are also

positive as well as less than unity. It is also obvious from Fig. 3that (H) =~ (F ), and therefore the

expression for K, which describes the resonant particle effects, can be approximately written as

(Ag+Azf

K = Agflo(l—(H))-1]+ (A, +A3)I2A,f +Aq - 4A,

Asaresult, only if A;—(A,+A3)?/4A, becomes negative, can K change sign, an observation
we will return to, when the resonant effects of hot electrons are addressed later in the section.
Next, we turn our attention to analyzing the lowest order stability condition, which
ignores the resonant particle effects and for the general case is described by the dispersion
relation of Eq. (38). It is convenient to illustrate this analysis with plots of d asa functionof £.
To do so, we use the expression that relates the total pressure gradient to the hot and the

background pressure gradients, namely

dinp _ £_<,Bh>dlnp0h {Bp) dInpop
amy =2+ 5= () iy (g iy (51

where for this point dipole model the total pressure is given by Eq. (49). Notice that if we assume

equal background and hot electron pressure profiles and use dInV /dIny = —(1+3/a), we find

that lowest order stability is always satisfied since d = (2a+4)/(a+3)< y =5/3.
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For the electrogtatic case with fy<<p,~1, Eq. (51) reduces to

2+4/a=dInpg,/dIny, which when substituted in the dispersion relation given by Eq. (39)

yields

(1430 e+ e -2t -0 o,

where we used dInV/dIny =—(1+3/a) and dinny,/dIny =(dIn py,/dInw)/(1+n,). The

2
1-2a+4 1
a+3 1+7p

stability boundary is described by d < +(
y y y 4 4(b)(Pob / NoTe)

> and can be graphically represented as
in Fig. 4, wherethe 7, =1 and d =y curves overlap. As we can see from the graph, the charge

uncovering effects due to hot electrons are stabilizing, and allow achieving stability with d
above y when 7, iskept negative.

Next, we consider fully electromagnetic case with f,, >> 5, ~1, s0 that the total plasma
pressure remains mostly contained in the hot electrons. It follows from Eg. (51) that

dinp/dInpg, =1, and as aresult the expression for <I > , which is dependent on dIn pg, /dIny
is positive. In addition the expressions for 1+ (/) +3(f5,)(1) and the coefficient A given
before Eq. (43), with (1—(H))1—(F))= (1—<H>)2are positive. The dispersion relation for this
case is given by Eq. (38) without the small (G) term. The stability boundary is illustrated in
Figs. 5 where d is plotted as a function of S for different valuesto 7, and where the d =y

curve overlaps with the top solid curve with the exception of the 7, =—-0.8 case. As can be seen

from the graphs, stability is improved in the vicinity of 7, =-1, but otherwise is rather

insensitive to changes in 7,. The b(pg,/NonTe)? parameter does not affect the stability
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boundary significantly. When increased (decreased), it slightly shifts the two curves together
(apart), thereby decreasing (increasing) the stability region. The graphs in Figs. 5 are only valid
for g = B, >> B, ~1, that isabove about S =5. For lower /3, the stability condition is given by
Fig. 4if B, << B ~1 or will be discussed shortly for S, ~ S, ~1.

It is also of some interest to take the hot and background pressure gradients as equal, so
that Eq. (51) reducesto 2+4/a=dlIn py,/dIny =dInpy,/dIny . For this special case d < y
and therefore A and C as given before Eq. (43), are positive and negative, respectively.
Consequently, the plasma is always stable in the absence of resonant particles effects.

For the case of S, ~ B, ~1 the dispersion relation is given by Eq. (40) and the total
plasma pressure is split between the background and hot particles. If, for example,
(Bp)={(Bn)={(Bo)!2, then Eq. (51) reduces to 4(1+2/a)=dInpy,/dIny+dinpgy,/diny,

and it follows that

T = 41+2)-(1+2)d.

From Eq. (40), the stability boundary is determined by the signs of three expressions. ¥ —d , the

numerator 1+%d<ﬁb>+@<l>, and the denominator 1+%y<ﬂb>+@<l>, that are shown in

Fig. 6. Unlike the previous two cases the stability boundaries are independent of 7,,. As we can
see from the graph, d <y is expected to be the only experimentally accessible stability region,
since the second stability region does not cover <1, depends sensitively on (f,)/(5,) and

does not exist in the absence of hot electrons.
Next we consider the resonant hot €ectron effects that determine what we refer to as the

first order stability boundary. We note that these effects are weak, and therefore cannot stabilize
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the lowest order instability, but can potentially destabilize the zero order stable regions. Recall
that resonant particle stability is determined by the sign of @, , which is given by Eq. (43), and
depends on the signs of ay, A, N, and K. Since the expression for ay, is quadratic with real
coefficients, in the stable regions it will have two real roots. Only positive roots can lead to a hot

electron resonance with the wave, since otherwise the denominator in the expressions (1), (F),

and <H ), as given in Eq. (35), will not vanish. Consequently, stable regions with two negative

real roots will remain stable due to the absence of resonance. Moreover, the lowest order sable
regions with two positive roots will always become weakly unstable, regardless of the signs of

A or K. This behavior occurs because of the denominator of N, which can be written as

A+

;’gg B= J_r%z\/ B? —4AC . As both signs are present there will always be one unstable root.

In the lowest order stable regions with one positive and one negative root, only the positive root
can lead to a resonant instability, and the condition for it will then be determined by the signs of
N, A, and K. Wewill first concentrate on the sign of the latter.

As we have discussed earlier in this section, the sign of K depends on the sign of
Ay —(A,+A3)?14A,. So we present the graph of A;— (A, +A3)?/4A, asafunction of £ in
Fig. 7. The graph shows that this expression and, as a consequence, the expression for K, are
always positive. So the condition for weak resonant stability in the regions of interest depends

only onthesignsof A and the numerator of N, which are considered next for the three different

cases of beta orderings.
For the electrostatic background case of S, << 3, ~1, first order or resonant particle

stability requires
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dinngy _ 2(2+a) _1

dinv. — (a+3)[1+7p)

if d>y, asdiscussed in the previous section. This is the condition for the lowest order stable
region to have two negative real roots and it is satisfied when n,<-1 or

n, >(a+1)/(a+3)>1/3. If d <y, then the lowest order stable region has only one real positive
root, and the first order stability is given by Eq. (47). For this beta ordering (1+%<,Bh><| >)> 0,0

the plasma will be sable to a hot electron resonant @ instability if

dinng,/diny<3dInT,/dIny.  This condition can aso be written as

(d1n pop /dIny)L— 27, )/(1+7,)< 0 and is satisfied when 7, <—1 or 7, >2/3. Thus, Fig. 4
suggests that to avoid hot electron resonance destabilization we need to avoid operation with
-1<n,<2/3.

For electromagnetic case of f, ~ 5, ~1, the zero order stability boundary is independent
of n,, and stable regions always have one positive and one negative root. Therefore, as
discussed in the previous section, the resonant particle stability depends only on the sign of A
and reguires dInnOh/dIn;ysgdlnTh/dlnw, which as before is satisfied when 7, <-1 or
1, > 2/3. So asin the electrogstatics case, the regions of operation with —1<17,, <2/3 should be

avoided.

For the electromagnetic case of S, >> f, ~1, we recall that the coefficient A, given

before Eq. (43) is always positive, and the plasma will be resonant stable in the regions with

C>0 and B>0, where it has two real negative roots. When C <0 there is only one positive
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root, and the sign of A determines the stability, so dInnOh/dIm//sgdlnTh/dln;y is required
for stability.

In this high S, case, unless 7, — —1, the lowest order stability boundary very closely
coincides with the C=0 curves. As a result, except for this special case, resonant electron
stability requires dInng, /d Inwsgd InT,/dIny .

For the special case of 7, — —1, the stability condition is presented in Fig. 8, where the

signsof B and C are plotted as a function of A3, and we also remind readers of the lowest order
stability boundaries, which are shown in faint grey. In this graph, the two solid lines bound the

region with C <0, where the plasma is resonantly stable if dInnOh/dIny/sgdlnTh/dlnw.

The region above the top solid line, but below the faint grey line has C>0 and B>0, and is
always stable since the two lowest order roots are negative. The region below the bottom solid
line and above the faint grey line has C >0 and B <0, and is always resonantly unstable since it
has two positive roots.

We conclude this section by stressing, that keeping d<y and
dInnOh/dIm//sgdlnTh/dln;y is the best means of keeping the plasma stable. In special cases,

these conditions can be relaxed, but more profile control is required.

VI. CONCLUSIONS

We have investigated the effects of hot electrons on the interchange stability of a plasma
confined by a dipole magnetic field and have obtained the general dispersion relation for

arbitrary beta. The analysis of the stability boundary is dependent on the particular details of
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magnetic field, as well as the background and hot electron pressure, temperature and number
density profiles. As a particular illustration of the preceding theoretical development, the
dispersion relation is analyzed in detail for a point dipole equilibrium.

Our analysis indicates that it is impossible to have magnetic drift reversal in the point
dipole, but it might become a concern in more general dipole geometry, in which case a strong
instability would occur.

If resonant hot electron effects are neglected, we find that the general, experimentally
achievable interchange stability condition normally remains closeto d < ¢ . In apoint dipole we

demonstrate that this condition can be improved and d can be allowed to exceed y either in the

case of an electrostatic background by keeping 7,, negative, or in the electromagnetic case with

B >> B, by keeping 7,, close to negative unity.
Hot electron drift resonant effects result in small corrections to the mode frequency that

can create weak instabilities in the stable regions. Usually this weak instability can be avoided by

satisfying the condition dInng, /dIny < %d InT,/dIny .
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APPENDIX A: EVALUATION OF PERTURBED HOT ELECTRON

DISTRIBUTION FUNCTION.

This appendix presents the detailed evaluation of the first order correction to the
perturbed hot electron distribution function. We assume that the hot electrons satisfy the Vlasov
equation and linearize the hot electron distribution function about its equilibrium by taking
fl, = fon + fip +... With o, = fo,(ws,E) satisfying Eq. (21) and fy, satisfying Eq. (22). We

follow the standard gyro-kinetic procedure'® by removing the adiabatic response by

introducing g; = fyp, + &2 20 o that

m oE
%_dgl__(ﬁath) e( Ao ~)
& = d "dt'm e )= " m\VPHG —VXBy)Vy fon, (A1)

where d/dt=0/dt+V-V-QxB,-V, isunperturbed Vlasov operator. Rewriting the above

kinetic equation for g, yields
dg; _ of oD A -oud
%=a—°g‘%(—)—£(VCD+a—A—val)-VV fon =

:%aa_(aa;? v aa/?) Jon RE - (ch+ _VxBy),

(A2)

0.

d (ath )
where E

We denote the gyrophase independent and dependent portions of g, =g; + g; with a bar

and tilde, respectively. Next, we obtain the two equations for both parts of g,. The equation for
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0, is obtained by gyroaveraging Eq. (A2) using E =v?/2, ﬂ=vi/280, and ¢ gyrophase on
the left side. Recalling that g, is gyrophase periodic yields

W, o v 4 /o s\ _ edonfod o 2A), Mon A _g B
B9y Ve + (7, V), = 82 00 vy A ) TR (V0 4 28 -7 xB,), (A9

with the gyrophase average defined by (...) o =5-§...d¢. The equation for the gyrophase
dependent part, g;, isobtained by subtracting the preceding equation from Eq. (A2) to find

a0 ~ —1 G - of of
agtl+v Vg, +V, -Vg, - <vl-Vgl> +Qg 89¢1 v, - (m S aa‘t\+R Oh leg) (A4)

Using the orderings given by Eq. (20) we can expand g; = gf + g} +... and solve these

two equations order by order. As aresult, gf is gyrophase independent, since to lowest order Eq.

(Ad) gives

_0.uxh Vg0 =0, % _0 A5
eV X va1 e 9¢ : ( )

In addition, Eqg. (A3) to lowest order requires \7”-ng =0, making gf also a flux function to

lowest order.

The solution of EQ. (A4) to next order gives us the equation for the first order gyrophase

dependent part i, which we write as

= s op (on dfon 9A _ By of B oo R
gll=_Qelvl><b(ng+% a%haaﬁ-\_%a;?vz//j Qe><vl-D. (A6)

With the help of the preceding equation we can calculate gf from the next order version of Eq.

(A3) by gyroaveraging and observing that
= ~1\ _ /o b =
<vl : V91>¢ = <vl -V(ﬂ—e)xv>

with the magnetic drift velocity given by

o

'5+<\7¢'V|5><Q%'\7¢>¢=\7d Q%-Vxli,
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- \Y Z _
Vg =—ﬁVw-[VTLVIn BO+V|%KJ.

Note that neither the curvature nor VB, havea V¢ component.
Multiplying Eq. (A3) by By/v and integrating over one complete poloidal circuit for the
passing and one full poloidal bounce for the trapped particles to annihilate \7”-Vg11 we then

obtain Eq. (24).

APPENDIX B: EVALUATION OF PERTURBED HOT ELECTRON

NUMBER DENSITY AND RADIAL COMPONENT OF CURRENT.

In this appendix we evaluate the perturbed hot electron number density ny, = [ f4,,dv and
Vy component of the current, J,, =—€fv,, f;,dv, where fy, is given by Egs. (23)-(25). It is
clear that only the gyrophase independent part of g, contributes to ny,, while only the
gyrophase dependent part survives the integration in J,,, . Thus, the perturbed number density is
given by

funlo-a, (w2 Hnnlo-al, iar(Q /BoB )/

2 2Th 2
mv mv
[ [

_ed ed [ 4y
Mn —ﬁnOh—T—hde

where §v Adz =0 since for an interchange mode A is up-down asymmetric.

The expression for J,,, =—efv, g;dv may be rewritten as

Ty =~ IVEVE (7082 A= 22192 (-2 v
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Before proceeding further we use the estimates g, ~ fy,,e® /T, and A ~ A, /I to compare the

size of thetermsin J,,, . Recalling Egs. (30) and (31), we see that

thAgew/Th aRA, 2
o/R % 1/1° << 1.

Hence, for high mode number | we can ignore the A- term compared with the g; contribution.

Therefore, the expression for J,,, reducesto

J __ed iml J.dvﬂvszh(a)—a;Th)_i_ im2l J.dv12v4th(w—@Th)§dr(QB/BBO)/§dT
Iy~ T, 2rRB 2 4T RB 2 :

o

If we also treat Qg as a flux function to lowest order, then it can be taken outside of the

dz integralsin the expressions for ny, and J,,, to obtain Egs. (33) and (34), respectively.

APPENDIX C: EVALUATION OF IMAGINARY PARTSOF G, H, F, AND |

TERMS.

This appendix presents the details of obtaining the weak hot electron drift resonance
terms for the intermediate frequency regime with (ay,)>> @>>(@ye) . Accounting for both

E/BOOOZZ' . —
signsof v, gives [a&v= [ [] dov2dvdA(By/B)/2y1— AB,/B . We can then rewrite the full
0 00

expressionsfor G, H, F,and | given by Eq. (35) a the end of Sec. Ill. By evaluating the ¢

integral and defining t=v,/m/2T,, we obtain
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B/Bo _ - [1+r7 (t2—§)]
_ di t2 t2 ht=h
=175 (I) Jl—lBOIEI e w—t2ap :

<BO > /f wjd»{ —-t? 4 w-wh[l+nh(t2_g)]
-~ JnBd 0 J1-7By/B . ,
<562> B/By ™ —t v w—@h[lmh(tz—%)]

= /zB2 g J1-By/B Idt ooy

<562>—2 EljBod’M §dz(B/Bg)/fdr % Tate 1 w_wh[1+,7h(tz_%)].

N Ji-1B/B o-t%ap

(C1)
F

To get the non-resonant, real parts of the expressions for G, H, F for
<< (@gn) ~ axp, , we simply neglect all & dependencein the t integrals. Then we only need to

evaluate the lowest order resonant contributions in the following expressions:

G=1- Bo@h (1-77h) /IBO di

—+G
2B 0 @y1-1Bg/B '

Bo<552>_ -, B/Bo 24d(B/Bo)/fdr

H= jd}t s tHie,

C2
<B52>_1”h BIB <

- —_5 —7+F )
4B? o @py1-1B/B '®

-2 _
3<B52> on(@+m) BB 2548 18y)idr
| = — [ di =t | e -
8B4 o wp+1-1By/ B

To calculate the small imaginary corrections due to the weak resonance, we consider the

speed integrals first and note from (Cl) that they are al of the form of

N 42
jf(t)eAtzdt = [dt Zf;i/)ZTA(\/ﬁ o ﬁﬂ), with f being only a function of t. The imaginary
0 “ 0 -

e At (Jal A

part of the preceding integral is given by — 7 Al A from the calculus of residues. For the

intermediate frequency ordering v/ A<<1, so that we can approximate the exponential by
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unity and only keep the largest contribution to f (\/a)/ A). As aresult, for << (wg,) ~ o, the
weak hot electron drift resonance terms to lowest order can be written as
V7 wwn -3 Bo E/j Bo "
2B o ®d2\1-18y/B

H iﬁw3’2@h(1—§nh)80 B/Bo i A§dz(B/By)/fdr

res = 28%(89?) (I, o2 1-38y/B

Gres =

. i\/;w?”za»h(l—gnh)BljBO » (C3)
res ~ 2§2<562> o 2\[1-7By/B
- i\/EwS’Za»h(l—g’nh)B’IBOdﬂ A2§d7(B /Byl §dr

Once the above expressions are flux surface averaged, they reduce to the ones given in Eq. (41)

upon using (@gh) = (@ge)Th / Te.
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FIGURE CAPTIONS

Figs. 1 (a)-(c). Expression —vg PZ(2Tw/mv?) as afunction of u for different values of B and A.
The bold solid line is A=0.1, the thin solid line is A=0.9, and the dotted is A=0.5.

Figs. 2 (a)-(c). Normalized hot electron coefficients I, F, and H as a function of u for different
values of 3. The bold solid curve is the coefficient |, normalized to dinpsn/diny;, while the dotted
curve is the coefficient F and the thin solid curve is the coefficient H, both normalized to

dinngr/diny.

Figs. 3. Flux surface averages of normalized hot electron coefficients I, F, and H as a function of
B with dinngy/diny=1 and =0 for normalization. The bold solid line is <I>, the dotted line is <F>,

and the thin solid line is <H>.

Figs. 4. Stability regions for different values of n, with b(pos/nonTe)?=1. The bold solid curve is
Nn =1, which coincides with the thin solid line d=y. The dash-dotted line isn, =-3 and the dotted

lineismp =3.
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Figs. 5 (a)-(d). Stability regions for different values of n, with B, =1 and b(poy/nonTe)?=1. The

thin solid line is d=y. Infigures (a), (b), and (d) it overlaps with the top solid curve.

Figs. 6. Stability regions for «Bp=<Br=<o>/2. The bold solid curve is d=y, the dash-dotted line is

1+d<Bp>/2+<><B»/2=0, the dotted line is 1+y<Pp>/2+<I ><Bp>/2=0.

Fig. 7 Graph of A1-(A2+As)?/(4A4) Vs. P.

Figs. 8. Stahility regions for n—>-1 with B, =1 and b(poy/NonTe)?=1. The dotted line is B=0, two

bold solid lines are C=0 and thin solid lines are the lowest order boundaries as shown in Figs. 2.
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