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Abstract

A multipactor discharge is a resonant condition for electrons in an alternating electric field.

This discharge can be disruptive to radio frequency (RF) circuits, cavities, and resonators. The

Coaxial Multipactor Experiment (CMX) investigates these discharges in parallel plate and coaxial

transmission line geometries at frequencies from 40 to 150 MHz with goals of measuring the electron

energy distributions. CMX has a unique experimental setup which allows the transmission line to

pass continuously through a short vacuum region. Retarding potential analyzers with secondary

electron suppression measure the electron current as a function of bias voltage. Both parallel plate

and coaxial multipactor experiments provide the first detailed measurements of the electron energy

distributions under a variety of RF frequencies and electrode materials.

PACS numbers: 52.80.Pi High-frequency and RF discharges

∗Electronic address: tgraves@mit.edu
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I. INTRODUCTION

A multipactor discharge is a low voltage phenomenon in which electrons impact one or

more material surfaces in resonance with an alternating electric field [1, 2, 3]. Two main

conditions must be met in order to develop a multipactor discharge between two surfaces.

First, electrons traversing the gap must impact the electrode near the time the field reverses

direction. Second, electrons must impact the surface with enough energy to create electron

multiplication by secondary emission; i.e. δ(E) ≥ 1. Because the discharge is sustained by

secondary electrons, multipactor discharges typically occur under vacuum conditions.

RF devices in fusion, accelerator, and space research often operate under vacuum condi-

tions with frequencies and geometries which are susceptible to multipactoring. Multipactor

discharges are generally unfavorable in these experiments because the multipactor creates

a reactive component in the rf circuit which detunes the cavity and limits the circulating

power. The multipactor can also dissipate rf power to the electrodes that can cause surface

heating, gas desorption, or physical damage [3]. In some situations, a multipactor can induce

a glow discharge at a pressure below that expected for Paschen breakdown [4].

In the frequency range of 30-300 MHz (Very High Frequency [VHF]), coaxial and stripline

transmission lines are often used in rf power systems. Multipactor discharges in the linear

electric field of stripline transmission lines have been studied extensively [2, 4, 5], yet little

research has been done on coaxial multipactor discharges. The electric field of a coaxial

transmission line is inversely proportional to the radius, and a multipactor discharge can

occur in the non-uniform field. The multipactor can occur on the outer conductor alone

or on both coaxial conductors, the latter being typical of VHF coaxial transmission lines

[6, 7]. For example, Alcator C-Mod utilizes 10 cm, 50Ω copper coaxial transmission lines in

vacuum for the Ion Cyclotron Radio Frequency heating (ICRF) systems [8]. ICRF systems

commonly have short coaxial or stripline vacuum regions in transition from the pressurized

line to the antenna located in vacuum. These short sections of vacuum transmission line

are susceptible to multipactor and consequently low pressure glow discharges at neutral

pressures below the Paschen breakdown value [4].

The Coaxial Multipactor Experiment (CMX) is designed to investigate multipactor dis-

charges in both parallel plate and coaxial geometries. In both cases, CMX provides the first

detailed electron distribution functions for various frequencies, geometries, and electrode ma-
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terials. Section II describes the rf circuit in detail, and section III describes the multipactor

current measurement and extraction of the distribution functions. Section IV describes the

experimental procedure and results from both coaxial and parallel plate geometries.

II. RF EXPERIMENTAL SETUP

CMX produces a multipactor discharge in a 25.4 cm, stainless steel (SS), six-way cross

called the Multipactor Vacuum Chamber (MVC) capable of a base pressure of 5×10−8 torr.

Fig. 1 depicts both the coaxial and the parallel plate multipactor configurations. In each

case, the vacuum region is given by the shaded area. The MVC uses a manual gas bleed

valve to introduce a variety of gases at different pressures. The transmission line vacuum

windows are Myat 401-050 gas barriers with Viton o-rings and Teflon barrier.

CMX investigates multipactor discharges in the frequency range of 40-150 MHz with

RF power up to 1 kW in the high Q resonator (typical 1500, coaxial; 500, parallel plate).

Because of the high Q of the cavity, voltages of order 1 kV can be achieved in the unmatched

loop with a relatively low input power. A tuning network, consisting of a stub tuner and

phase shifter pair, minimizes the reflected power to the source. RF power measurements

include three pairs of directional couplers: one on the matched side, and a pair on each side

of the vacuum chamber. In the parallel plate case, the last coupler pair is absent.

In the coaxial case, two vacuum windows allow the 50Ω, 10 cm outer diameter, copper

transmission line to pass continuously through a 15 cm long vacuum section. This short

length allows for minimum voltage variation along the vacuum section for the VHF fre-

quencies of interest. By varying the length of an adjustable shorted stub at the end of

the resonator, the maximum voltage of the standing wave pattern can be placed in the

MVC. The multipactor discharge occurs in this coaxial region of the MVC. Both inner and

outer conductors are cleaned for ultra high vacuum with no additional surface preparations;

therefore, the coaxial conductors are placed into vacuum with a copper oxide layer.

In the parallel plate case, the center conductor of the gas barrier is extended into the

center of the MVC. One multipactor electrode is attached to this center conductor, and

the other electrode is grounded to the MVC by an aluminum ground strap. Teflon spacers

prevent coaxial multipactoring in the short coaxial region of the gas break. The electrodes

are 10 cm in diameter with separation ranging from 1 cm to 10 cm. Stainless steel, copper
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(oxidized and etched), and titanium (oxidized and etched) have been investigated thus far

in parallel plate experiments. These metals were chosen because of their common use in

rf system and their varied secondary emission coefficients. With the exception of pure

titanium, all the electrode materials have a secondary emission coefficient δ(E) ≥ 1 at the

multipactor electron energy [9, 10, 12]. The electrodes are typically vacuum conditioned

by both multipactor and RF glow discharge. The oxide surfaces of both the copper and

titanium electrodes can be removed by means of argon RF discharge etching.

In both coaxial and parallel plate configurations, the rf circuit is modeled by CST Mi-

crowave Studio in order to determine the voltage pattern inside the MVC from the circulat-

ing power measurement. Simulation results are found to be consistent with the directional

couplers and the measured electron energy distributions. Examples of these distribution

functions are discussed in section IV.

All rf signals are converted to DC signals by rf diodes, and each signal is digitized by a

National Instruments 6071e digitizer. The signals are then recorded by the Matlab Data

Acquisition Toolbox package.

III. MULTIPACTOR CURRENT MEASUREMENT

The multipactor electron currents and energy distributions are measured with retarding

potential analyzers (RPAs). The same gridded analyzers are used in both coaxial and

parallel plate configurations. Fig. 2 illustrates the analyzer geometry. The RPAs consist

of a grounded entrance grid, a bias grid, and a collector plate. The three components are

separated and electrically isolated by a 0.25 mm thick mica washer. The grid is made

by spot-welding a 44% optical transmission, electroformed SS mesh to a 0.33 mm thick

stainless steel washer. The RPA components are stacked inside a ceramic cylinder which

is then mounted on the conductor of interest. A simple spring applies the necessary force

to keep each component aligned and the entrance grid in good electrical contact with the

conductor.

In the coaxial geometry, twelve RPAs are arranged azimuthally around the outer conduc-

tor, while in the parallel plate geometry, a single RPA is placed in the center of the grounded

electrode. In all cases, the multipactor current enters through a 3.2 mm entrance aperture.

The bias grid is swept (0 to -500 V max) by a Kepco BOP 500M in order to collect the
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current as a function of bias voltage. In order to fully suppress any secondary emission, a

minimum +20 V is maintained between the collector and bias grid by holding the collector

fixed at +20 V while the bias grid voltage is swept negatively with a triangle waveform. The

waveform is depicted in fig. 3.

A Keithley 6487 picoammeter measures the multipactor electron current from the collec-

tor. The picoammeter is held at the +20 V collector voltage relative to ground, and the ±2 V

analog output is then input to a simple differential amplifier to subtract the bias voltage, as

shown in fig. 2. Careful attention was placed on stray capacitance and displacement current

errors. A 15 pF capacitance between the collector and bias grid produces a displacement

current as the bias grid voltage is swept. Fig. 3 illustrates the displacement current, which

is proportional to ∆V and the capacitance. The 12 mV DC offset of the differential amplifier

can also be seen in the figure. By holding the collector at fixed voltage and only sweeping

the suppressor grid, the displacement current is minimized and can be averaged out using

a smoothing spline function. Also, the suppressor grid is biased at a 1 Hz frequency to

minimize the displacement currents. Examples of a CMX I-V characteristic and a electron

distribution are shown in fig. 4. The distribution function is determined from the smoothed

I-V characteristic by the method given by Hutchinson [11]. The details of the distribution

functions at different geometries, frequencies, and surface conditions will be discussed in a

future paper.

IV. EXPERIMENTAL OPERATION AND RESULTS

In order to initiate the multipactor discharge, the rf circuit is first tuned to the desired

frequency with a network analyzer. The rf power is then manually increased in a stepwise

manner, recording data at each power step as shown in the first panel of fig. 5. At mul-

tipactor onset, the reflection coefficient increases proportional to the multipactor current,

as shown in the second and third panels of fig. 5. As the MVC voltage increases, the

multipactor current increases until the multipactor pushes through the upper voltage limit,

indicated as a drop in electron current and a jump in MVC voltage. Fig. 5 also depicts the

electron distributions functions for each power step. The amount of power dissipated in the

multipactor is determined from the distribution function. This power is typically 10− 15%

of the input power, 8 to 10 W maximum.
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Fig. 7 depicts the voltage onset of the multipactor discharge, which is often referred to

as a susceptibility curve. The upper and lower voltage thresholds are calculated using the

case of zero-energy electron emission model of Kishek [2]. CMX susceptibility data is shown

for several electrode materials in the parallel plate configuration. Also shown is the parallel

plate experimental data of R. Woo [13]. In general, CMX multipactor discharges typically

occur between 100-400 V.

In all cases in both configurations, the distribution function has a sharp drop off at the

MVC voltage, i.e. the maximium bulk electron energy is equal to the MVC voltage, as

shown in fig. 6. This result indicates that the electron distribution data and MVC voltage

measurement are consistent. Results are also consistent with the parallel plate, 50 MHz

data of Hohn [4], and theoretical and experimental susceptibility data given in fig. 7.

Results from azimuthal measurements in the coaxial case show no azimuthal spatial

variation of the multipactor. For the parallel plate geometry, no multipactor can be detected

for pure titanium when the oxide layer is removed by argon etch.

V. SUMMARY

The Coaxial Multipactor Experiment provides a test-bed for studying multipactor dis-

charges under various conditions in a parallel plate configuration and also extends the study

of multipactoring to the coaxial geometry. The coaxial geometry is of interest in the fusion

community because of the use of vacuum coaxial transmission lines for RF power. CMX

produces multipactor discharges with a high Q resonant circuit and a high vacuum cham-

ber. CMX allows detailed measurements of coaxial multipactor discharges and the electron

distribution functions via retarding potential analyzers. With this information, a better

understanding of coaxial multipactoring will lead to improved avoidance techniques and

vacuum transmission line design.
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Caption Page

Fig. 1: CMX Experimental setup for both (a) coaxial and (b) parallel plate multipactor

discharges.

Fig. 2: Schematic drawing of retarding potential analyzers used to determine electron

current and distributions.

Fig. 3: CMX voltage and current signals for non-multipactor case.

Fig. 4: I-V characteristic for coaxial geometry, 60 MHz, 3.2 W multipactor, VMV C =

212V .

Fig. 5: RF and multipactor electron current data for 70 MHz, coaxial geometry, copper

outer conductor. The electron distributions at each MVC voltage are shown in the lower

panel.

Fig. 6: Expanded view of high energy portion of the electron distributions functions in

fig. 5 displayed as a contour plot.

Fig. 7: CMX Multipactor Susceptibility for parallel plates as compared to experimental

and theoretical values [2, 13].
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FIG. 1: CMX Experimental setup for both (a) coaxial and (b) parallel plate multipactor discharges.
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FIG. 3: CMX voltage and current signals for non-multipactor case.
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conductor. The electron distributions at each MVC voltage are shown in the lower panel.
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