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Effects of hot electrons on the 

stability of a closed field line plasma* 

 

Natalia S. Krasheninnikova, Peter J. Catto 

 

Massachusetts Institute of Technology, Plasma Science and Fusion Center 

Cambridge, MA 02139 

 

Abstract 

 

Motivated by the electron cyclotron heating being employed on the dipole experiments, 

the effects of a hot species on stability in closed magnetic field line geometry are investigated by 

considering a Z-pinch plasma. The interchange stability of a plasma of background electrons and 

ions with a small fraction of hot electrons is considered. The species diamagnetic drift and 

magnetic drift frequencies are assumed to be of the same order, and the wave frequency is 

assumed to be much larger than the background, but much less than the hot drift frequencies. An 

arbitrary total pressure dispersion relation is obtained, with the background plasma treated as a 

single fluid, while a fully kinetic description is employed for the hot species. The analysis of the 

dispersion relation shows that two different kinds of resonant hot electron effects modify the 

simple MHD interchange stability condition. When the azimuthal magnetic field increases with 

radius, there is a critical pitch angle above which the magnetic drift of the hot electrons reverses. 

The interaction of the wave with the hot electrons with pitch angles near this critical value 

always results in instability. When the magnetic field decreases with radius, magnetic drift 
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reversal is not possible and only low speed hot electrons will interact with the wave. 

Destabilization by this weaker resonance effect can be avoided by carefully controlling the hot 

electron density and temperature profiles. 

 

* Research supported by US Dept. of Energy. 

 

PACS numbers: 52.58.Lq, 52.55.Tn, 52.55.Hc. 
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I. INTRODUCTION 
 

 The Levitated Dipole Experiment (LDX)1,2 is designed to operate in a 

magnetohydrodynamic (MHD) interchange stable regime3-6. Electron cyclotron heating is 

employed to increase the temperature7 and will introduce a hot electron population that can alter 

interchange stability. We examine the effects of a hot Maxwellian electron population on 

interchange stability by considering a confined plasma having an ideal MHD background 

consisting of electrons and ions plus a fully kinetic population of hot electrons. Of particular 

interest is the role the hot electrons play in modifying the usual ideal MHD interchange stability 

condition by wave-particle resonance effects. 

To simplify the analysis, we consider Z pinch geometry so that the unperturbed magnetic 

field 0B  is constant and closed on the cylindrical flux surfaces and the unperturbed diamagnetic 

current 0J  is along the axial direction. The Z pinch approximation to a dipole preserves the 

essential feature of the closed magnetic field lines, but misses the geometrical details associated 

with field line averages of quantities, so it is only intended to illustrate the key physics. A more 

realistic dipole equilibrium is required to make quantitative stability predictions. The Z-pinch 

model also allows us to consider plasmas in which the magnetic pressure is comparable to both 

the background kinetic pressure and the hot electron kinetic pressure, as well as to treat the 

diamagnetic and magnetic drifts as comparable as they are in a dipole. Moreover, it makes it 

possible to perform a kinetic treatment of the hot electron population in the limit in which the 

wave frequency resonates with the magnetic drift frequency to cause a destabilizing Landau-type 

resonance. In the low wave frequency limit of interest a particularly strong destabilizing hot 

electron interaction occurs when the hot electron magnetic drift exhibits reversal due to a change 



 4 

in the grad 0B  direction. In the absence of drift reversal a much weaker resonant particle 

interaction can occur which can destabilize an otherwise stable interchange, with the new 

stability boundary depending on the details of the hot electron density, temperature and their 

profiles. To make the analysis more tractable and highlight the role of the hot electrons, only 

flute modes are considered with wave frequencies intermediate between the background and hot 

species drift frequencies. Flute or interchange modes are the least stable modes in the absence of 

hot electrons3-6. 

We note that the stability analysis presented here is completely different from those 

employed for a bumpy torus where a hot electron ring is necessary to provide stability in the 

otherwise unstable mirror cells linked to from a torus8. In a Z pinch model of a dipole, stability in 

the absence of hot electron is assured by employing a pressure profile that decreases slowly 

enough to satisfy the usual MHD interchange condition which arises due to the stabilizing 

influence of plasma and magnetic compressibility in closed magnetic field lines. The hot 

electrons generated by electron cyclotron heating must then be investigated to determine if they 

can act in a destabilizing manner. In particular, the curvature and grad 0B  drift must be treated 

on equal footing to allow a strongly unstable hot electron drift resonance to occur when the grad 

0B  drift opposes the curvature drift (weaker destabilization occurs when the drifts are in the 

same direction). Here we remark that high mode number Z pinch interchange stability in the 

presence of hot electron population is in some details related to the low mode number alpha 

particle driven internal kink mode and fishbone instabilities in tokamaks. For these alpha particle 

driven modes the details of the resonance of the wave with the magnetic drift of the alphas can 

have a important impact, with drift reversal at some radius leading to instability9. In our Z pinch 

model we are able to investigate the resonant particle mechanism, in a simpler geometry that 
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allows us to give a physical interpretation of the effect of drift reversal, which occurs at some 

critical pitch angle (that is allowed to vary radially). These hot electron drift resonance effects 

are considered in detail in Sec. IV. In the electrostatic limit our results reduce to the standard hot 

electron interchange if hot electron temperature gradients are ignored and the hot electron 

density falls off radially10. 

In Sec. II we derive two coupled equations for the ideal MHD background plasma that 

depend on the perturbed hot electron number density and radial current. These two quantities are 

then evaluated kinetically in Sec. III assuming the unperturbed hot electron population is 

Maxwellian. Section IV combines the results from the two previous sections to obtain the full 

dispersion relation that is analyzed in detail, including the hot electron drift resonance de-

stabilization effects. A simple hard core Z pinch geometry and the case of a “rigid rotor” are 

discussed in Sec. V. We close with a brief discussion of the results in Sec. VI. 

 

II. IDEAL MHD TREATMENT OF THE BACKGROUND PLASMA 

 

 In this section we will develop an ideal MHD treatment for the background plasma that 

permits a hot electron population to be retained. This treatment allows us to derive a perturbed 

radial Ampere’s law and a perturbed quasi-neutrality condition that depend on the perturbed hot 

electron radial current and density, respectively, which are evaluated in the next section. 

 We consider the simplest closed field line configuration of cylindrical Z-pinch geometry 

in which we only allow radial variation. The unperturbed magnetic field is in the azimuthal 

direction and given by ( )θB ˆ
00 rB=

r

, while the unperturbed current is axial and given by 

( )zJ ˆ00 rJ=
r

. Ampere’s law requires 
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( )′= 000 rBrJµ ,     (1) 

where a prime is used to denote radial derivatives. 

 Denoting the total equilibrium pressure by 0p , force balance gives 

000 pBJ ′−= ,      (2) 

where the total pressure is the sum of the background pressure, bp0  and hot pressure hp0 , 

hb ppp 000 += . The background pressure ieb ppp 000 +=  is the sum of the background electron 

pressure eee Tnp 00 =  and the ion pressure iii Tnp 00 = , where en0 , in0 , eT , and iT  are the 

background electron and ion densities and temperatures. The total current is the sum of the 

background and hot contributions hb JJJ 000 +=  which satisfy the force balance relations 

bb pBJ 000 ′−=  and hh pBJ 000 ′−= .  

 To derive the perturbed equations we linearize the full equations and assume the time and 

axial dependence are of the form ( )ikzti −− ωexp , with 0Im >ω  for an unstable mode. The 

background ion flow velocity 1v
r

 is written in terms of the displacement ξ
r

 as ξv
r

r ωi−=1 . Making 

the usual ideal MHD assumption that the magnetic field moves with the flow, the perturbed 

electric field 1E
r

 is 

01 BξE
rrr

×= ωi ,      (3) 

so that Faraday’s law for the perturbed magnetic field 1B
r

 becomes 

( )01 BξB
rrr

××∇= .     (4) 

Knowing 1B
r

, the total perturbed current hb 111 JJJ
rrr

+=  is evaluated from Ampere’s law, 

110 BJ
rr

×∇=µ .     (5) 
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To determine the displacement we employ momentum conservation for the background plasma 

by accounting for the charge imbalance – or uncovering – due to the hot electrons: 

bbbhii pennm 1100110
2

0 ∇−×+×+=− BJBJEξ
rrrrrr

ω ,   (6) 

where quasi-neutrality for singly charged ions requires eih nnn 000 −=  and im  denotes the mass 

of the background ions. The perturbed pressure of the background plasma bp1  is assumed to 

satisfy an adiabatic equation of state 

rbbb ppp ξγ 001 ′−⋅∇−= ξ
r

,    )7(  

where 3/5=γ  and rξ  is the radial component of ξ
r

. 

 Using the preceding system of equations, it is convenient to obtain two coupled equations 

for the azimuthal component of 1B
r

 and the radial component of ξ
r

, that only require knowledge 

about the perturbed hot electron density and radial current which are evaluated in Sec. III. To 

carry out this simplification we first define the flux tube volume 00 /2/ BrBdlV π=∫≡  and 

then form the θ̂  component of Eq. (4) to obtain 

ξ
r

⋅∇−= ′
001 BBB rV

V ξθ ,     (8) 

with 00 //1/ BBrVV ′−=′ . Another useful expression is obtained from the radial component of 

Ampere’s law, ( )hrbr JJikB 1101 += µθ , by using the axial component of the momentum equation 

bbrzhzii ikpJBEennm 11010
2

0 ++=− ξω  

to determine brJ1 , then using Eq. (7) and the axial component of (3) to eliminate bp1  and 

rz BiE ξω 01 = , and finally using  

( ) zrrr
ikr ξξ −=⋅∇ ∂

∂1ξ
r

     (9) 
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to eliminate zξ . Defining the background plasma beta by  

2
0

002

B

p
b

bµβ ≡ ,      (10) 

the resulting equation can be written as 

( ) ( )[ ]






 −⋅∇−−+⋅∇+= ∂

∂′
rrrpk

nm
rkp

neB
p
pB

ik
J rB

b

ii

b

h

b

bbhr ξξγ ωωβµ
θ

1
21

0
2

0
2

0

00

0

0010 ξξ
rr

.  (11) 

 If we neglect the coupling to sound waves by assuming iib nmpk 00
22 // <<ω , use Eq. 

(8) to eliminate ξ
r

⋅∇ , write rξ  in terms of the axial electric field zE1 , and define the interchange 

parameter 

b

b
pV
pVd

0

0
′
′−=       (12) 

and Maxwellian averaged background electron curvature and total magnetic drift frequencies 

0erB
kT

e
e=

κ
ω  and 

V
Vr

ede
′=

κ
ωω  ,    (13) 

we obtain the first of the desired equations, the radial Ampere’s law, in the form: 

( ) ( ) ( )
e

z

b

ehdebhr
ikT
eE

p
Tn

ikB
J

B
B

b d 1

0

0

0

10

0

1
22

11




 −−+=+ ω

ωβµ γγβ θ .   (14) 

Notice that in the absence of the hot electrons the sign of θ1B  changes at the marginal 

interchange ideal MHD stability boundary γ=d . 

 To obtain the second equation we start with background charge conservation 

( )eib nnei 111 −=⋅∇ ωJ
r

 and use perturbed quasi-neutrality eih nnn 111 −=  to write 

bheni 11 J
r

⋅∇=ω .     (15) 
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The interchange assumption means that only the perpendicular component of b1J
r

 matters in Eq. 

(15). Solving the momentum equation for ⊥b1J
r

 by making sure to retain the inertial term in bzJ1  

but continuing to ignore it in brJ1 , and inserting the result into Eq. (15), gives 

( )[ ] 






 +−=⋅∇++′+ ′′
2
0

10

0

1

0

0
001 B

Bp
VB
Vp

hreB
mkn

hh
bbii iknnnei θξω ω

ξ
r

. 

Using Eqs. (7) and then (8) to eliminate bp1  and then ξ
r

⋅∇ , writing rξ  in terms of zE1 , using 

definitions (12) and (13), and defining ii meB /0=Ω  and  

b

ei

ii

e
p

Tn

m

Tkb
0

0
2

2

Ω
= ,      (16) 

the preceding gives the quasi-neutrality equation, to be 

( ) ( ) ( ) ( )[ ]ddb de

b

eh

e

zdehh

b

ehde

b

eh
p

Tn
B
B

ikT
eE

VVr
nnr

p
Tn

p
Tn −−=




 −−+++ ′
′ γγ ω

ω
ω
ω

ω
ω θ

0

0

0

11
2

2
00

0

0

0

1
/
/1 . (17) 

 Combining Eqs. (14) and (17) in the absence of hot particles we recover the usual 

arbitrary bβ  ideal MHD interchange condition5 in the form  

( ) ( ) ( ) ( )
( )b

b

e

d
b

d
V
Vr

γβ
βγ

ω
ω

+
+−′=

2
222

κ

.    (18) 

Notice that since our MHD treatment requires 1<<b  and we are interested in 1~d , the 

frequency range of interest is eκωω >>  as assumed. The same coupled system of equations (14) 

and (17) can also be obtained kinetically following a procedure which assumes the transit 

frequency is much greater than the collision frequency which is much greater than the wave, 

magnetic drift and diamagnetic frequencies11. To analyze the modifications due to a Maxwellian 

hot electron population, hn1  and hrJ1  are calculated kinetically in the next section.  

III. KINETIC TREATMENT OF THE HOT ELECTRONS 
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To complete our description we need to kinetically evaluate the perturbed hot electron 

density and radial current contribution to the Ampere’s law and quasi-neutrality equations (14) 

and (17). The hot electron response must be evaluated kinetically since the temperature of the hot 

electron population, hT , is assumed to be much larger that the background temperatures. As a 

result, the magnetic drift and diamagnetic frequencies of the hot electrons will be assumed to be 

much larger than the wave frequency.   

We assume that the hot electrons satisfy the Vlasov equation. We then linearize by 

assuming the unperturbed hot electron distribution function, hf0 , is a hot Maxwellian plus a 

diamagnetic correction: 

MheMhh fff ∇⋅×Ω−= −
θv ˆ1

0
r

,     (19) 

where ( ) ( )hhehMh TmTmnf 2/vexp2/ 22/3
0 −= π  and ee meB /0=Ω , with em  the electron mass. 

The gyro-kinetic equation for the linearized hot electron distribution function hf1  is most 

conveniently rewritten by introducing the scalar and vector potentials via t∂∂−Φ−∇= /1 AE
rr

 

and AB
rr

×∇=1 , extracting the adiabatic response by letting 

iL
MhT

e
h geff

h
+= Φ1

1 ,     (20) 

where θvk ˆ1 ×⋅Ω= − r

r

eL  and ( ) θrzv ˆvsinˆcosˆv ||++= ⊥ θθr

, and then seeking solutions of the form 

( )iSti −− ωexp  where ⊥=∇ k
r

S . The resulting gyro-kinetic equation for g  becomes12,13 

( ) ( ) ( ) ( ) ( )







−−Φ−=⋅−−

⊥

⊥
hh

T
hMh

h
dh aJ

k

B
aJAf

T

e
igi 1

1
0||*

v
v θ

θωωω vk
r

r

, (21) 

where eh ka Ω= ⊥⊥ /v . In Eq. (21) 
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( ) ( ) ( )[ ]ss
he T

m
hB

Br
r

k
dh −++=−=⋅ ′

⊥Ω 11vv 2
2

v
2

22
||

2

0

0 λω
κ

vk
r

r

  (22) 

is the grad 0B  plus curvature magnetic drift frequency with 0/ erBkThh =κ
ω  the curvature drift 

frequency, v/v||=λ  a pitch angle variable and  

0

01
B
Brs
′+≡ ,      (23) 

where 0=s  corresponds to the vacuum limit. In addition,  

( ) 






 −+=
2
3

2
v

**
2

1
hT

m
hh

T
h ηωω      (24) 

is the hot electron diamagnetic drift frequency with ( ) ( )hhhhh nnTT 00 /// ′′=η  and  

h

hh
neB
nkT

h 00

0
*

′−=ω .      (25) 

 The ( )dhvk
r

r

⋅−ω/v||  moment of the gyro-kinetic equation (21) shows that hJ θ1  is 

proportional to θA . Moreover, there is no perturbed parallel current carried by the background 

plasma. As a result, the parallel component of the Ampere’s law results in a homogeneous 

equation for θA . Therefore, we may safely assume 0=θA  and θB ˆ
11 θB=

r

. In addition, we 

assume that axial wavelengths are much shorter than azimuthal wavelengths and radial 

derivatives of unperturbed quantities. Consequently, kk ≈⊥ , θsinv 1−
⊥Ω≈ ekL  and 

eh ka Ω≈ ⊥ /v  may be employed. Finally, we allow hot to background temperature ratio to be as 

large as eieh mmTT /~/  so that 1~2 <<bah  and 1<<L . Then we may use 10 ≈J , 2/1 haJ ≈ , 

and ( ) iLiL +≈1exp  to reduce Eqs. (20) and (21) to  

( )




 +






 −






−≈ ⊥Φ
⋅−

−Φ iLff
BT
Bm

T
e

T
e

Mhh
hhdh

T
h

h
1

0

1
2

*
2
v

1
θ

ω
ωω

vk
r

r .   (26) 
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 To simplify our calculations, we note that our short axial wavelength assumption along 

with the Coulomb gauge 0=⋅∇ A
r

 implies that rz AA << . As a result, Φ≈ ikE z1  may be 

employed to make the replacement 

ee

z
T
e

ikT
eE Φ≈1 .       (27) 

in perturbed radial Ampere’s law, Eq. (14) and quasi-neutrality condition, Eq. (17). If the 

assumption of 1~bβ  is made, these equations also imply the ordering  

ω
ω

ω
ωθ

h

h

e

e
T

e
T

e
B
B

κκ
ΦΦ =~

0

1 .     (28)  

To simplify the results for the hot electrons while maintaining eh TT >>  we will assume 

eh κκ
ωωω >>>>  and thus  

1>>>>
ee

h

T
T

κ
ω
ω .     (29) 

Keeping the above simplifications in mind, we can integrate the distribution function, Eq. 

(26), over velocity space and obtain perturbed hot electron density, ∫= v
r

dfn hh 11 , and radial 

current, ∫−= v
r

dfeJ hhr 1r1 v . Fortunately, the full expressions for hn1  and hrJ1  will not be 

required. Only the approximations given in the Appendix are needed. For the moment we need 

only define the hot electron beta  

2
0

002

B

p
h

hµβ =  and 
h

hh
p
pr

hs
0

0
2

′−= β , 

and comment that the expressions in the Appendix lead to the forms:  

HG
B
B

T
e

n
n

hh

h

0

1

0

1 θ+= Φ  and IsH hB
B

T
e

ikB
J h

h

hr

0

11

0

10
2

θβµ −= Φ ,  (30) 
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where 1~~~ IsGH h , except in the vicinity of 1=s , where ωω /~~~ hh IsGH
κ

. We 

remark that even though ωω >>hκ , it is important to keep the ω  term in the denominator of the 

hf1  expression to resolve singularities during the evaluation of the integrals. 

 

IV. DISPERSION RELATION 

 

Combining the perturbed radial Ampere’s law, Eq. (14), and quasi-neutrality condition, 

Eq. (17), with the expressions for hn1  and hrJ1  from the previous section, we can form the 

dispersion relation, which can be written as 

( ) ( ) ( )

( ) ( )[ ] 01

11

2

2

2
1

/
/

0

0

00

0

0
2

2

=−+−+

+++












 +++−+ ′

′

Hd

IsGdb

b

ehdeb

hhde

h

e

b

ehde

p
Tn

hbVVr
nnr

T
T

p
Tn

γ

γβγ

ω
ωβ

ω
ω

ω
ω

 (31) 

If we consider comparable hot electron pressure and background pressure then in the absence of 

the finite Larmor radius term b , Eq. (31) is seen to permit only solutions with ihde nn 00 /~/ωω  

since we order VnnVHGIsd hhhhb ′′ 00 /~~~~~~ ββ  for the case of 1≠s . Therefore, the 

neglect of b  violates the ordering imposed by Eq. (29) when hb ββ ~ . Consequently we 

proceed for now by assuming ( )200
22 //~ ihe nnb >>ωω

κ
 and neglecting order heih TTnn /~/ 00  

terms compared to ωω /eκ  in the dispersion relation. For the case of 1≠s  this assumption 

corresponds to neglecting G  and H  as well as the equilibrium hot electron density gradient 

term. Thus, the only hot electron contribution that matters in Eq. (31) is Ish  and the dispersion 

relation then reduces to 
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( ) ( ) ( )
( )Is

Isd

b
d

V
Vr

hb

hb

e ++

++−′=
γβ
βγ

ω
ω

2
1
2
1

2

2

1

12

κ

.     (32) 

Had we retained finite hot electron gyro-radius terms they would have entered as small order 2
ha  

corrections to Ish  in Eq. (32). 

To evaluate I  we only need the lowest order expression for hrJ1 : 

( )[ ] ( ) Isttdte hB
B

tD

d
h

t

B

B
ikB

J

hh

hhhr

0

1
2

222

0

*1

0

10

0

1

1 /

1
2
324 1 θθ

ωω
λλ

ωπ
ωβµ η −=∫ ∫−+−≈

∞

− −
−−

κκ

,  (33) 

where hTmt 2/v22 =  and ( ) ( )ssD −++= 11 2λ . To perform the integral in I  we may neglect 

the ω  term by using hκωω <<  in the denominator except (i) in the vicinity of 1=s  and (ii) to 

insure the path of integration is on the causal side of the 0=D  singularity for 1>s . Leaving the 

details of this calculation to the Appendix, we find that we can write the expression for I  as 

( )
( )

( )
( )

( )
( )

( )
( )





















−<












 −+−−+−

−=

<<−






 −+−

=






 −−

>






 −




 −+++−

≈

−+

−
+

−+

+
+

−−+

11ln4

1

11arctan4

1

11ln4

2

1

3
s1

1

5
2

1
1

1

6
s1

1

1

12

4
5

1

32

1

3
s1

1

22

22

2
3

222

ssss

s

ss

si

ssss

I

s

s
s

s

s

i

s

h

hh
η
ηπ

ω
ω

π

κ

. (34) 

Expressions for I  in the vicinity of 1=s  are given in the Appendix for completeness. We 

remark that our analysis ignores drift resonances of the background species since they are 

exponentially small and of order ( )eκωω /exp 0− , where eκωω >>0 . 

 Notice that for 1>s  a large imaginary term enters because of the vanishing of the hot 

electron drift velocity for some pitch angle. This singularity in the drift introduces a Landau 
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resonance in pitch angle space between the wave and the drifting hot electrons. The effective 

dissipation associated with the vanishing of the hot electron drift resonance makes it such that 

stable solutions are no longer possible because one of the roots will always have 0Im >ω . 

Before examining the 1<s  case in detail we discuss the physical mechanism responsible for 

instability when 1~>s . 

The Landau resonance between the wave and the hot electron magnetic drift has two 

different forms. When 1<s  the hot electron magnetic drift does not reverse and the wave-

particle interaction is weak because the wave frequency is much smaller than the hot electron 

drift frequency except for a very low speed hot electrons. That is dhvk
r

r

⋅=ω  can only be 

satisfied if v  is very small since the surfaces of constant dhvk
r

r

⋅  are closed ellipses about 0v =  

in the ||v , ⊥v  plane. As s  approaches unity the ellipse opens and becomes hyperbolic because 

the drift frequency reverses. A stronger interaction occurs for 1≥s  because particles of all speed 

are resonant near the critical pitch angle. For 1>s  the hot electrons with smaller pitch angles 

drift along the negative z  axis while the larger pitch angle ones continue to drift in the positive 

z   direction. The energy exchange with the near stationary wave is strong since many more hot 

electrons are involved in the resonant interaction. 

For the special case 1=s  there is only curvature drift and all hot electrons are drifting in 

the same direction along the positive z  axis. Energy flows from these particles to the nearly 

stationary growing wave since all the particles are moving faster than the wave and are therefore 

being slowed by it. As s  increases above unity the drift direction of the lower pitch angle hot 

electrons reverse and these hot electron moving slower than the wave are able to extract energy 

from it so the growth rate decreases. The wave remains unstable, however, because of the 
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parabolic dependence of the magnetic drift on pitch angle, 2
0

2 λλ −∝⋅ dhvk
r

r

 with 

( ) ( )1/12
0 +−= ssλ . This dependence means that a typical hot electron with δλλ += 0  is moving 

faster than a typical one with δλλ −= 0 , that is, 

1
0

0

0

0
2
2 >= −

+
⋅

⋅

−=

+=
δλ
δλ

δλλ

δλλ

dh

dh

vk

vk
r

r

r

r

.      

As a result, the 1>s  case is always unstable since the hot electrons with pitch angles above the 

critical pitch angle for drift reversal, 0λ , are always able to give more energy to the wave than 

those below 0λ , which extract it from the wave. Because a Maxwellian is independent of pitch 

angle, there are equal numbers of slightly faster and slower hot electrons within δ  of 0λ . 

Because hκωω << , the wave is essentially stationary and simply a means of transferring energy 

between the counter drifting hot electrons so ω  may safely be neglected in the expressions for I  

(except near 1=s  where I  depends on ω  because there are few if any drift reversed particles). 

Only in the limit ∞→s , when the drifts of all hot electrons are reversed does the resonant drive 

vanish for 1≥s . 

 The special case 02/ →−=′ sVVr  corresponds to rB ∝0  (flux tube volume 

independent of r ), but since ∞→′∝ VrVd /  it is always unstable even in the absence of hot 

electrons as can be seen from Eq. (32). The growth rate ( ωIm ) for other 1>s  can be estimated 

from Eqs. (32) and  (34) to find 

12~/Im 22/3 / −−− sbsdbhe γββωω
κ

   (35) 

for 1~~ dbβ . Notice that the growth rate vanishes for γ=d  and/or ∞→s . 
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 For 1<s  the stable operating regime of most interest satisfies the usual interchange 

stability condition d>γ  along with the additional condition 02/1 >++ Isd hbβ . To better 

understand this regime it is convenient to write equilibrium force balance in terms of s  as 

( ) ( ) 02/ 00 =′++ pprs hb ββ . Then d  can be written in terms of s  and hs  as 

s
s

b
hd −

−=+
2
2

2
11 β .     (36) 

Using this result, d>γ  becomes 

( )ss bbh γβγβ
2
11++−> .    (37) 

Then, ignoring for the moment resonant particles effects for 1<s , the stability condition 

of Eq. (32) can be illustrated graphically by plotting hs  as a function of s  for a given value of 

background beta as shown in Figs. 1. 

Notice that when the hot electrons are ignored, i.e. 0=hs , we recover the usual Z-pinch 

stability condition14, ( )2/1/ bbs γβγβ +< . The plots also show that the bβ  term increases the size 

of the stable region, allowing more general hot pressure profiles (i.e. hs  can be negative as well 

as positive for 0=s ). However, as 1→s , I  becomes large, so the curves 02/1 =++ Isd hbβ  

and 02/1 =++ Ishbγβ , which cross at γ=d , require 0→hs  at 1=s . To prevent a sign 

change in Eq. (32) we need to be above all three curves to maintain stability. From plots like 

Figs. 1 we can see that a value of bγβ  between about 3 and 5 optimizes the stable operating 

region since a larger bβ  does not substantially increase the stable operating regime. 

So far we have assumed 1~/ 00 hh nnr ′  and thus, due to Eq. (29), were able to neglect 

terms that involve hot electron density gradient. However, it is possible to have a steeper hot 

electron density gradient – so steep that 1/ 00 >>′ hh nnr . If we assume that the hot electron 



 18 

temperature and density profiles are similar and consider a smooth profile for equilibrium 

background pressure, then ssnnr hhh ~~/ 00′  due to equilibrium force balance, 

hbbb spprs +′−= 00 2/β . However the hot electron density gradient only enters in the form 

( ) ( )snnr hh −′ 2// 00 , which for 1/ 00 >>′ hh nnr  is of order unity. Thus because of the direct 

relation between hh nnr 00 /′  and s  through the equilibrium force balance and the ordering 

imposed by Eq. (29), the hot electron density gradient terms will never become significant 

enough to appear in the dispersion relation. 

During the operation of LDX it is anticipated that the hot electron pressure will become 

much larger than background pressure. Therefore we also consider the case of bh ββ >> , by 

taking ( )200
22 /~/~ ihe nnb ωω

κ
. This ordering leads to neglecting only the G  term in the lowest 

order dispersion relation Eq. (31), due to the ordering imposed by Eq. (29).  

As before, the drift reversal case ( 1>s ) continues to be strongly destabilizing due to 

large imaginary terms in I  and H . If we ignore weak resonant hot electron effects, the stability 

condition for 1<s  case can be written as 

01 ≥+Y ,      (38) 

where to the lowest order we find ( )
( ) ( )∫−=

− −++
−′ 1

1 11

1
2 2

2

0

0

ss

d
n
nr

h

hH
λ
λλ  from Eq. (A7) , and we define 

( )
( ) ( )

( )
( )

( )( )
( ) 








−=

++

+−

++

++

+

− ′
′

′
′ Is

HH

Is

Isd

pTn

bd

hb

VVr
hnhnr

b

hb

hb

beh
VVr

hnhnr
Y

γβ
β

γβ
βγ

2
1

/
0/0

2
1
2
1

2
00

2

/
0/0 1

1

1

1

/
2

1

2 . 

If electrostatic fluctuations are considered (i.e. 0=bβ  and 0=s ) this condition reduces to 

( ) ( ) ( ) 041
2

/
/2

00

0

0 ≥−++ ′
′

db
VVr
nnr

p
Tn hh

b

eh γ , 
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from which we can see that electrostatically the hot electrons improve lowest order stability by 

allowing d  to be larger than γ  since 0>b . 

Examining the full expression for 1+Y  we see that when 0→bβ , 1>>Y  since 

( ) ( ) 1~2/2 sssd hb −−=β . As a result, the stability boundaries are the same as in Fig. 1(a) for 

this limit. For other values of bβ , the stability regions can be plotted as shown in Figs. 2 for 

various values of bγβ  and hh nnr 00 /′ . Comparing Figs. 2 (a),(b) with Fig. 1 (b) and Figs. 2 (c),(d) 

with Fig. 1 (c) we can see that the hot electrons somewhat improve the lowest order stability, as 

in the electrostatic limit. 

Comparing the plots of Figs. (1) and (2) we can conclude that stability remains robust 

even at bh ββ >>  as long as the region of operation is above the solid curves and the area of drift 

reversal ( 1>s ) is avoided, with higher hot electron fractions improving stability.  

As noted earlier, the resonant hot electron interaction enters as a weaker effect for 1<s  

than it does for 1>s , which is always strongly unstable. We next consider the effect of these 

resonant hot electrons on stability for 1<s  by evaluating their contributions to the perturbed hot 

electron density and radial current density for the real part of ω  greater than zero ( 0Re >ω ) as 

described in the Appendix: 

resT
e

resB
B

resn
n GH

hh

h Φ+=
0

1

0

1 θ  and ( )reshB
B

resT
e

resikB
J IsHh

h

hr

0

11

0

10
2

θβµ −= Φ , (39) 

where 

( )
( ) ( )

( )22

2
00

115

4
13

2

215

and
s

G
reshs

G
res

T
T

res

h

resh

h

res

e

h

h

b

IsH

iG

−− −=−=

∆−=

κ
κ ω

ωβ
ω
ω

β
β

,   (40) 

with ∆  defined by 
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( ) ( )
( ) ( )2
115

12
2/3

2
3

*
2/1

0

h

e

b

h

h

hh

T
T

s β
β

ω

ηωπω

−

−
=∆

κ

.     (41) 

Here and elsewhere 0ω  is the positive stable root of Eq. (31), which can be schematically 

represented as 

00
2

2
0 =++ CBA

dede
ω
ω

ω
ω

, 

where A , B  and C  are coefficients of corresponding powers of deωω /0 .  

 Retaining the resonant interaction perturbatively in Eq. (31) using 10 ωωω += , with 

10 ωω >>  gives 

KFi∆=
0

1
ω
ω ,       (42) 

where  

( )[ ] ( ) ( )
( )[ ] ( )

2
1522

1

1
5
6

4
25

2

1
2/5

1511

11 2

11

+−−−−=

=











−+







 −−−=

−− ++

ακακ

ακ
α
α

α
α

H

HK
HH    (43) 

and 

( )
BA

Is

de

hbF
02

2
11

ω
ω
γβ

+

++
= ,      (44) 

with 

( )( )
( )( )sIs

sd

hb

b

−++
−−=
11

2

2
1γβ
γβκ  and ( )dp

Tn

bde

eh
−= γω

ωα
0

00 .    (45) 

If we consider comparable background and hot electron pressures ( bh ββ ~ ), then the α  

terms become negligible because using Eq. (32) gives ( ) 1/~ 00 <<bpTn behα . After 
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substituting in the expressions for A  and B  in this limit, we find that 1=F  and Eq. (42) then 

reduces to 

( )




 +−= ∆

4
52

2
5

0

1 κω
ω

b
i ,     (46) 

As we can see the sign of 01 /ωω  depends only on the sign of ∆ . As a result, for bh ββ ~ , a 

weak instability of the drift resonant hot electrons ( 00 >ω ) occurs if ( ) 02/31* >− hh ηω  or 

h

h

h

h
n
nr

T
Tr

0

0
2
3 ′′ > .      (47) 

Notice that in the electrostatic limit 0=bβ , so that 0=κ  making K  positive as well as 1=F . 

As a result, instability is still determined by the sign of ∆  and therefore by Eq. (47). It is also 

clear that temperature profile of hot electrons plays an important role in stabilizing this weak 

drift instability, since if 0=hη  only increasing density profiles can be stable. To confirm that 

this drift resonance driven mode is indeed weak for 1<s  we note that ( ) be /1~/ 2
0 κ
ωω  giving 

( )( ) 1//~/ 2/5
001 <<hbh κ
ωωββωω  for bh ββ ~ . 

 The analysis of weak resonant hot electrons effects for the case of bh ββ >>  is more 

complicated since the stability is determined by the full Eq. (42). We first observe that we are 

only interested if the stable operating region above the solid curve in Figs. (2) can become 

destabilized by this weak interaction, since the stable region below the solid curve does not allow 

the hot electron pressure to fall off (positive hs ). In the region of interest, above the solid curve 

in Figs. (2), the numerator of F  is clearly positive, while the denominator is also positive, but 

for a more subtle reason. Since the negative real roots of the dispersion relation Eq. (31) are 

always stable in the absence of resonant hot electrons we are only interested in 00 >ω . Using 
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our schematic representation of zero order dispersion relation the denominator of F  can be 

rewritten as  

ACBBA dede 42
22 00

−±=+ ω
ω

ω
ω . 

In the region of interest 0<AC  and 0>A , thus the dispersion relation has two real roots – one 

positive and one negative. Only positive root can be unstable, and it makes the denominator of 

F  positive. Consequently, the sign of 01 /ωω  depends on the sign of the product of ∆  and K .  

In the region of interest γ<d , and therefore 0, >κα . If 1>α  then K  is positive. If 

10 <<α  and 0>H  (i.e. 0/ 00 <′ hh nnr ) then ( ) 11/1 >−+ ααH  and K  is again positive. So for 

these two cases the stability is determined only by the sign of ∆  and is identical to bh ββ ~  

case, Eq. (46). However, when 0/ 00 >′ hh nnr  and thus 0<H , the sign of K  can become 

negative so stability depends on the sign of its product with ∆ . For the general case, the stability 

boundary has to be obtained numerically. However, if ( )200 / beh pTnb <<  and 1<<Y  then a 

simple condition, that approximates the stability boundary can be found by substituting the 

expression for 0ω  in the form 

( )21
1

+
+≈+−
τ
ταα HH       (48) 

into Eq. (43). Solving 0=K  for hs  yields the approximation to the left side of the stability 

boundary given by 

( ) ( ) ( )[ ]
( )[ ]21

41221 2
1

−−
−−−−+

=
sxI

sxs
h

bs
γβ

     (49) 

with 

( )
( )

( )








−±= +

+
+

2

2

2 5

6

2

15 11
τ

τ
τ

ττ H

H
x  and 

s
nnr hh

−
′=
2

/ 00τ , 
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and where H  is proportional to hh nnr 00 /′  and given after Eq. (38). In this 0=b  limit Y  reduces 

to 

( ) ( )[ ]( )
( )s

sHHY −
−−−1−−≈

2
1112 ακα . 

From this form of Y  we can see that 1<<Y  requires either small κ  (or 1<<bβ ) or small 

Hαα +−1 , which from Eq. (48) requires large hh nnr 00 /′ . Assuming 1/ 00 >>′ hh nnr  and using 

Eq. (48) we expect that Eq. (49) is adequate when 

( )( )
( ) 1~

002 /2

12 <<−≈ ′−
−+

hh

b
nnrs

sHY
β

τ
τκ . 

For 0/ 00 >′ hh nnr  the plot of stability regions is given in Figs. 3 for 0=b  and 01.0=b  

for different values of bγβ  and hh nnr 00 /′ . The faint grey curves show the zero order stability 

boundaries of Fig. 2. In Fig. 3 (a) and (c) only the stability boundary for 01.0=b  is shown, since 

for the special case of ( )200 / beh pTnb <<  and 1<<Y  the 0>hs  region is stable. In Figs. 3 (b) 

and (d) the dash-dotted line is the 0=b  case, while the 01.0=b  case is the solid line. We also 

plot the analytical approximation of Eq. (49) to the boundary for the 0=b  case to show its good 

agreement with the numerical calculation. We do not plot the analytical solution in Fig. 3 (d) 

since the agreement is so good, it becomes impossible to tell two curves apart. 

 We find from plots like Figs. 3 that for ( )200 / beh pTnb <<  and 1<<Y  the analytical 

solution, Eq. (49) approximates the left side of the stability boundary very well. However, as the 

hot electron density gradient drops the approximation becomes invalid. It is also clear by 

examining plots like Fig. 3 (b) or (d) that high hot electron fractions satisfying ( )200 /~ beh pTnb  

make the unstable region the largest. Consequently, for our 1<<b  ordering, large hot electron 

fractions are desirable. Comparing Fig. 3 (a) and (d) we can conclude that while large hot 
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electron density gradient as well as high background beta are beneficial for the zero order 

stability, they are destabilizing when the first order correction is considered if hh nnr 00 /′  is 

positive and greater than 2-3 for 1~bβ . If the density gradient is small, then higher bγβ  

operation becomes possible, Moreover, if bγβ  is small (the electrostatic limit) then the zero order 

stability region is reduced and does not permit appreciable positive hot pressure gradients 

( 0>hs ). Thus to maximize the overall stable region 0/ 00 >′ hh nnr , it is best to keep 2~bγβ  and 

hhhh TTrnnr 2/3/2 00 ′>′>  along with d>γ . Recall the from Eq. (49) for 0/ 00 <′ hh nnr  we need 

to keep hhhh nnrTTr 00 /2/3 ′>′  along with d>γ  and 2~bγβ  to allow positive hot electron 

pressure gradients.  

 

V. APPLICATIONS 

 

 As a specific application of the results obtained in the previous section we consider a 

hard core Z pinch as a crude approximation to a dipole with a levitated current carrying 

superconducting coil as in LDX. Assuming power law profiles satisfying pressure balance gives 

( ) ( )β+= 1/1
0 r

a
aBB  and ( ) ( )β+= 1/2

0 r
a

app ,    (50) 

where a  is the radius of the current carrying hard core conductor, aB  and ap  are the magnetic 

field and total plasma pressure at its surface, respectively, and 2
0 /2 aa Bpµβ =  is the total beta. 

If we assume that the background and hot pressure profiles are the same, then ahaba ppp +=  

with ahab pp ~  and  

( ) ( )β+= 1/2
0 r

a
abb pp  and ( ) ( )β+= 1/2

0 r
a

ahh pp ,   (51) 
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where ( ) hbahab Bpp ββµβ +=+= 2
00 /2 . 

 For this special model  

( ) 0
12 0

0 >=−= +
′

β
ββ

p
prs  and ( ) 0

12 0

0 >=−= +
′

β
ββ h

h

hh
p
pr

hs .   (52)  

Note that since 1<s , drift reversal is not possible in this model. The stability condition for a 

hard core Z-pinch with the above profiles can be obtained by substituting these expressions for s  

and hs  into the lowest order dispersion relation, Eq. (32), to find 

( ) ( )






 ++







 ++−′

+

+=
I

Id

b
d

V
Vr

h
b

h
b

e β
β
β

β

γβ

βγ
ω
ω

12
1

12
1

2

2

1

12

κ

,    (53) 

where ( ) 02/2 >+= βd  and ( )[ ] ( )[ ] 01/2/1/1/2/1 >++++++ ββγββββ IId hbhb  since 0>I . 

Therefore, in the absence of resonant hot electron effects the stability boundary is described by 

βγ +=>
2

2d ,      (54) 

which is always satisfied.  

To determine the stability condition for the case of bh ββ >> , we assume power law 

temperature and density profiles 

( ) ( )β+= 1/hq

r
a

ahh TT  and ( )( ) ( )β+−= 1/2
0

h

ah

ah q

r
a

T
p

hn    (55) 

with 20 << hq . Substituting the expressions for s  and hs  along with the hot electron number 

density gradient into Eq. (38), we find the stability condition to be the same as in the bh ββ ~  

case. For 0→bβ  Eq. (38) is satisfied since 01 >+Y . For the case of 0≠bβ ,  Y  is smallest if 

0=b . Moreover, a plot of Y+1  as a function of ββ /b  in Fig. 4 for different values of hq  and 

3=bγβ  always finds 01 >+Y  (note that since hb βββ +=  we have 1/0 ≤≤ ββb ). For other 
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values of bγβ  the plots look very similar to Fig. 4 and thus, even for the worst case of 0=b , Eq. 

(38) is satisfied. 

To determine the effects of a resonant hot electron population on the stability, we note 

that due to Eq. (55), the hot number density is monotonically decreasing, 0/ 00 <′ hh nnr , and 

therefore 0>H . Since γ<d , K  is positive either due to 1>α  or 10 <<α  and thus 

( ) 11/1 >−+ ααH . Therefore, for bh ββ ~  or bh ββ >>  the stability is determined by the sign of 

∆  so this hard core Z-pinch will remain stable if 3/2>hη  or 5/4>hq . 

Finally, we remark that if the unperturbed hot electron distribution function is simply 

assumed to be a drifting Maxwellian, then from Eq. (19) we find the flow 

( )hehhh nmnT 00 /ˆ Ω′= zv
r

 along with the restriction that hhT η==∇ 0 . As a result, for this “rigid 

rotor” equilibrium case, even though 1<s , a weak resonant hot electron driven instability 

always occurs. 

 

VI. CONCLUSION 

 

The effects of hot electrons on the interchange stability of a Z-pinch plasma are 

investigated. The results yield two types of different resonant hot electron effects that modify the 

usual ideal MHD interchange stability condition.  

Our analysis indicates that when the magnetic field is an increasing function of radius, 

there is a critical pitch angle for which the magnetic drift of hot electrons reverses direction. The 

interaction of the wave and the particles with the pitch angles close to critical always causes 

instability. Thus, stable operation is not possible when the magnetic field increases with radius. 
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If drift reversal ( 1<s ) does not occur and resonant hot electron effects are neglected, we 

find that interchange stability remains robust and is enhanced by increasing the background 

plasma pressure as well as the gradient of the hot electron density for bh ββ >>  case. However, 

once bβ  becomes of order two or three, further increases in bβ  do not result in significant 

increases in stability. In the absence of drift reversal, hot electron effects are weak, but not 

negligible. When they are retained, an additional constraint must be satisfied to avoid a weak 

resonant hot electron instability. For bh ββ ~  and under certain conditions for bh ββ >> , the hot 

electron density and temperature profiles must satisfy hhhh TTrnnr 2/3/ 00 ′>′ . For the important 

case of bh ββ >> , no simple constraint can be found. However, numerical calculations suggest 

that keeping 2~bγβ , 1~/ 00 hh nnr ′ , and the hot electron fraction high yields the largest stable 

operating regime. Stability in the electrostatic limit ( 0=bβ ) is particularly awkward since it 

requires hhhh TTrnnr 2/3/ 00 ′>′  with no peak in the hot electron pressure profile. 

The effect of a hot electron population on Z pinch stability is motivated by a desire to 

determine what physical mechanism must be accounted for when the stability of a dipole 

confined plasma is investigated in the presence of electron cyclotron heating. Our study has 

demonstrated the key roles that hot electron magnetic drift reversal and the hot electron fraction 

and profiles will play in the Levitated Dipole Experiment.  
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APPENDIX: EVALUATION OF HOT ELECTRON RESPONSE 

EXPRESIONS. 

 

 This appendix presents details of hot electron response expressions G , H  and Ish . 

Recall that the perturbed hot electron density and radial current are given by  
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B
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T
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    (A1) 

and 
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with hf1  given by Eq. (26). Thus, the expressions for G , H  and Ish  can be written as 
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and 
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where hTmt 2/v22 =  and ( ) ( )ssD −++= 11 2λ .  

For 1<s  no drift reversal is possible and we can drop the 2/ thκωω  term in the 

denominator due to hκωω << , except for very small t , where slow electrons are resonant with 

the wave. Retaining this weak resonant effect the expressions for G , H  and Ish  become  
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,     (A6) 
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with 
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Observe that since D  does not vanish for 1<s , integrals over λ  are easily evaluated, 

confirming that the non-resonant parts of expressions for G , H  and Ish  are all of order unity. 
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As we noted at the beginning of Sec. IV, only the non-resonant part of Ish  matters in the 

dispersion relation for 1<s  to lowest order. Thus, ignoring the weak resonant effects, the hot 

electron response for 1<s  is described only by Ish , where I  is given by 
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(Notice for the special case of 1−=s , D  reduces to 2=D ).  

The weak resonant effect of hot electrons for 1<s  is calculated by evaluating the λ  

integrals in resG , resH  and ( )resh Is  to obtain the expressions given in Eqs. (40) – (41). 

For 1>s  there is always a critical pitch angle 10 <λ  for which D  vanishes and 

therefore we must keep the ω  term with 0Im >ω  to satisfy causality. Evaluating the λ  integral 

in the expression Ish , Eq. (A8), we find 
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where we have dropped 2/ ti hκωω  order terms since they are much smaller than the leading 

imaginary term. As a result, for 1>s  we find 
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 Finally, we have to evaluate the expression for I  at 1→s . The vicinity of 1=s  is the 

only region were the ω  and t  dependence of the integral 
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enters. The weak t  dependence makes it awkward to do the t  integrals exactly. However, to get 

the region about 1=s  approximately correct, we evaluate the integrals in Ish  at 1=s  getting 
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and then use the result to make an approximate fit that is independent of t . This procedure is 

equivalent to making the replacement 
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where 
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Notice that if we were to repeat the same procedure for G  and H  as given by Eqs. (A3) 

– (A4) for 1>s  and 1→s , we would find that they are of the same order as Ish  and therefore 

would not be significant in the dispersion relation. 
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FIGURE CAPTIONS 

 

Figs. 1 (a)-(c). Stability regions for different values of γβb with b=0.01 and n0hTe/p0b=5%. The 

solid line is γ=d, dashed is 1+dβb/2+shI=0, and dotted is 1+γβb/2+shI=0. St and Un indicate stable 

and unstable regions. 

 

 

Figs. 2 (a)-(d). Stability regions for different values of γβb and rn’0h/n0h with b=0.01 and    

n0hTe/p0b=10%. The dotted line is the 1+γβb/2+shI=0 curve and for small γβb the solid line 

approaches γ=d. The dashed line 1+dβb/2+shI=0 becomes as n0h  >0 

 

 

Figs. 3 (a)-(d). Stability regions for different values of γβb and rn’oh/noh with nohTe/p0b=10%. The 

solid curve is the unstable boundary for b=0.01, the dash-dotted line is the boundary for b=0, and 

the doted line in (b) is an analytical approximation to b=0 curve. If only the solid line is shown, 

the region sh>0 is stable for b=0 and our approximation Eq. (49) is not valid because Y~1. The 

faint gray curves are the lowest order boundaries as shown in Figs. 2. 

 

 

Fig. 4 Graph of 1+Y vs. βb/β for different values of qh. 
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Figure 1  
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