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Effects of hot dectronson the

stability of a closed field line plasma*

Natalia S. Krasheninnikova, Peter J. Catto

Massachusetts Institute of Technology, Plasma Science and Fusion Center

Cambridge, MA 02139

Abstract

Motivated by the electron cyclotron heating being employed on the dipole experiments,
the effects of a hot species on stability in closed magnetic field line geometry are investigated by
considering a Z-pinch plasma. The interchange stability of a plasma of background electrons and
ions with a small fraction of hot electrons is considered. The species diamagnetic drift and
magnetic drift frequencies are assumed to be of the same order, and the wave frequency is
assumed to be much larger than the background, but much less than the hot drift frequencies. An
arbitrary total pressure dispersion relation is obtained, with the background plasma treated as a
single fluid, while a fully kinetic description is employed for the hot species. The analysis of the
dispersion relation shows that two different kinds of resonant hot electron effects modify the
simple MHD interchange stability condition. When the azimuthal magnetic field increases with
radius, there is a critical pitch angle above which the magnetic drift of the hot electrons reverses.
The interaction of the wave with the hot electrons with pitch angles near this critical value

always results in instability. When the magnetic field decreases with radius, magnetic drift



reversal is not possible and only low speed hot electrons will interact with the wave.

Destabilization by this weaker resonance effect can be avoided by carefully controlling the hot

electron density and temperature profiles.

* Research supported by US Dept. of Energy.

PACS numbers: 52.58.Lq, 52.55.Tn, 52.55.Hc.



. INTRODUCTION

The Levitated Dipole Experiment (LDX)'? is designed to operate in a
magnetohydrodynamic (MHD) interchange stable regime®°. Electron cyclotron heating is
employed to increase the temperature’ and will introduce a hot electron population that can alter
interchange stability. We examine the effects of a hot Maxwellian electron population on
interchange stability by considering a confined plasma having an ideal MHD background
consisting of electrons and ions plus a fully kinetic population of hot electrons. Of particular
interest is the role the hot electrons play in modifying the usual ideal MHD interchange stability
condition by wave-particle resonance effects.

To simplify the analysis, we consider Z pinch geometry so that the unperturbed magnetic

field By is constant and closed on the cylindrical flux surfaces and the unperturbed diamagnetic
current Jg, is along the axial direction. The Z pinch approximation to a dipole preserves the

essential feature of the closed magnetic field lines, but misses the geometrical details associated
with field line averages of quantities, so it is only intended to illustrate the key physics. A more
realistic dipole equilibrium is required to make quantitative stability predictions. The Z-pinch
model also allows us to consider plasmas in which the magnetic pressure is comparable to both
the background kinetic pressure and the hot electron kinetic pressure, as well as to treat the
diamagnetic and magnetic drifts as comparable as they are in a dipole. Moreover, it makes it
possible to perform a kinetic treatment of the hot electron population in the limit in which the
wave frequency resonates with the magnetic drift frequency to cause a destabilizing Landau-type
resonance. In the low wave frequency limit of interest a particularly strong destabilizing hot

electron interaction occurs when the hot electron magnetic drift exhibits reversal due to a change



in the grad B, direction. In the absence of drift reversal a much weaker resonant particle

interaction can occur which can destabilize an otherwise stable interchange, with the new
stability boundary depending on the details of the hot electron density, temperature and their
profiles. To make the analysis more tractable and highlight the role of the hot electrons, only
flute modes are considered with wave frequencies intermediate between the background and hot
species drift frequencies. Flute or interchange modes are the least stable modes in the absence of
hot electrons™®.

We note that the stability analysis presented here is completely different from those
employed for a bumpy torus where a hot electron ring is necessary to provide stability in the
otherwise unstable mirror cells linked to from atorus®. In a Z pinch model of adipole, stability in
the absence of hot electron is assured by employing a pressure profile that decreases slowly
enough to satisfy the usual MHD interchange condition which arises due to the stabilizing
influence of plasma and magnetic compressibility in closed magnetic field lines. The hot
electrons generated by electron cyclotron heating must then be investigated to determine if they

can act in a destabilizing manner. In particular, the curvature and grad B drift must be treated

on equal footing to allow a strongly unstable hot eectron drift resonance to occur when the grad

By drift opposes the curvature drift (weaker destabilization occurs when the drifts are in the

same direction). Here we remark that high mode number Z pinch interchange stability in the
presence of hot electron population is in some details related to the low mode number alpha
particle driven internal kink mode and fishbone instabilities in tokamaks. For these alpha particle
driven modes the details of the resonance of the wave with the magnetic drift of the alphas can
have a important impact, with drift reversal at some radius leading to instability®. In our Z pinch

model we are able to investigate the resonant particle mechanism, in a simpler geometry that



allows us to give a physical interpretation of the effect of drift reversal, which occurs at some
critical pitch angle (that is allowed to vary radially). These hot electron drift resonance effects
are considered in detail in Sec. IV. In the electrostatic limit our results reduce to the standard hot
electron interchange if hot electron temperature gradients are ignored and the hot electron
density falls off radially™.

In Sec. Il we derive two coupled equations for the ideal MHD background plasma that
depend on the perturbed hot electron number density and radial current. These two quantities are
then evaluated kinetically in Sec. Il assuming the unperturbed hot electron population is
Maxwellian. Section IV combines the results from the two previous sections to obtain the full
dispersion relation that is analyzed in detail, including the hot electron drift resonance de-
stabilization effects. A simple hard core Z pinch geometry and the case of a “rigid rotor” are

discussed in Sec. V. We close with a brief discussion of the resultsin Sec. VI.

1. IDEAL MHD TREATMENT OF THE BACKGROUND PLASM A

In this section we will develop an ideal MHD treatment for the background plasma that
permits a hot electron population to be retained. This treatment allows us to derive a perturbed
radial Ampere’'s law and a perturbed quasi-neutrality condition that depend on the perturbed hot
electron radial current and density, respectively, which are evaluated in the next section.

We consider the simplest closed field line configuration of cylindrical Z-pinch geometry

in which we only allow radial variation. The unperturbed magnetic field is in the azimuthal

direction and given by B, =By (r)d, while the unperturbed current is axial and given by

Jo=Jo(r)2. Ampere's law requires



’

#oJo=(rBo) , (1)
where aprime is used to denote radial derivatives.

Denoting the total equilibrium pressure by p,, force balance gives
JoBo =—Po, (2
where the total pressure is the sum of the background pressure, pg, and hot pressure pg,,
Po = Pop + Pon - The background pressure pg, = Poe + Poi 1S the sum of the background electron
pressure pge =Ngele and the ion pressure pgy =ng T, where nye, Ny, T, and T; are the
background electron and ion densities and temperatures. The total current is the sum of the
background and hot contributions Jgy=Jg, +Jg, Which satisfy the force balance relations
JobBo =—Pop and JonBy =—Pop-
To derive the perturbed equations we linearize the full equations and assume the time and

axial dependence are of the form exp(—iat—ikz), with Ime >0 for an unstable mode. The
background ion flow velocity ¥, iswritten in terms of the displacement & as V, = —i«£ . Making
the usual ideal MHD assumption that the magnetic field moves with the flow, the perturbed
electric field E; is

E, =iagxB,, 3
so that Faraday’ s law for the perturbed magnetic field I§1 becomes

I§1:V><(E><I§O). (4)
Knowing B, , the total perturbed current J; = Jy + Jy;, is evaluated from Ampere's law,

fod1 =V xB;. )



To determine the displacement we employ momentum conservation for the background plasma

by accounting for the charge imbalance — or uncovering — due to the hot electrons:

— Mg & = engnEyq +J 1y X Bg + Jgp XB1 — Vi, (6)
where quasi-neutrality for singly charged ions requires ng, =ng —Nge and m; denotes the mass
of the background ions. The perturbed pressure of the background plasma py, is assumed to
satisfy an adiabatic equation of state

P = —PobV - &~ Pondr (7)
where ¥ =5/3 and &, isthe radial component of & .

Using the preceding system of equations, it is convenient to obtain two coupled equations
for the azimuthal component of I§1 and the radial component of E that only require knowledge
about the perturbed hot electron density and radial current which are evaluated in Sec. I11. To
carry out this simplification we first define the flux tube volume V = ¢dl / By = 2ar / B, and
then form the & component of Eq. (4) to obtain

By =V Bodi —BoV &, ®
with V’/V =1/r — B/ By . Another useful expression is obtained from the radial component of
Ampere'slaw, ikByy = t(Jqp + 1 ), by USiNG the axial component of the momentum equation

—Mng &, = engnEy, + ByJyyr +ikpyp
to determine Jq,, , then using Eq. (7) and the axial component of (3) to eliminate py, and

B, =iaByé, , and finally using

VE:%%(I’fr)—ikfz 9)



to eliminate £, . Defining the background plasma beta by

2
Po = ﬂSTEOb, (10)
the resulting equation can be written as
ﬂothr /BbBO £ . (Pon _ @€Bgnon | @’ mng F_19
By =202 1 B 9.5 (B o)yl 19 (s )] ay

If we neglect the coupling to sound waves by assuming @?/k? << pg,/Mng; , Use Eq.

(8) to diminate V- &, write & in terms of the axial electric field E,,, and define the interchange

parameter

_ _ Vpop
d= Vob (12)

and Maxwellian averaged background electron curvature and total magnetic drift frequencies

KT,

Wye = erE?o and wyge = wxerTV, , (13)

we obtain the first of the desired equations, the radial Ampere' s law, in the form:
L+ 598,20 = foe 4 22 [(7 d)%e - J}(’E—T) (14)
Notice that in the absence of the hot electrons the sign of By, changes at the marginal
interchange ideal MHD stability boundary d =y .
To obtain the second equation we start with background charge conservation
V-Jy, =iae(ng —ny,) and use perturbed quasi-neutrality ny, = ny; — Ny, to write

i(lﬁnlh:V'j]b. (15)



The interchange assumption means that only the perpendicular component of J 1, Mettersin Eq.

(15). Solving the momentum equation for J;,, by making sureto retain the inertial termin Jy,

but continuing to ignore it in Jyy, , and inserting the result into Eq. (15), gives

. , akng; z . v’ ‘
|cue[n1h + (nOh + eé)om )§r + NV - g]= —|k(—%§v +—p°;05’19 j .
Using Egs. (7) and then (8) to eliminate py, and then V-E, writing & intermsof Ej,, using

definitions (12) and (13), and defining Q; =eB,/m and

— sze nOiTe
b_inz Pob (16)

the preceding gives the quasi-neutrality equation, to be

MinTe @ge NonTe Mon /N wge €E1; | _ B |NonTe e
ity S0 |G- 2 hi-ve-ol @

Combining Egs. (14) and (17) in the absence of hot particles we recover the usual

arbitrary /3, ideal MHD interchange condition® in the form

(o) -y g s

Notice that since our MHD treatment requires b<<1 and we are interested in d ~1, the
frequency range of interest is w>> @, as assumed. The same coupled system of equations (14)
and (17) can also be obtained kinetically following a procedure which assumes the transit
frequency is much greater than the collision frequency which is much greater than the wave,
magnetic drift and diamagnetic frequencies'’. To analyze the modifications due to a Maxwellian

hot electron population, ny, and Jy;,, are calculated kinetically in the next section.

1. KINETIC TREATMENT OF THE HOT ELECTRONS



To complete our description we need to kinetically evaluate the perturbed hot electron
density and radial current contribution to the Ampere’'s law and quasi-neutrality equations (14)
and (17). The hot electron response must be evaluated kinetically since the temperature of the hot

electron population, T,,, is assumed to be much larger that the background temperatures. As a

result, the magnetic drift and diamagnetic frequencies of the hot electrons will be assumed to be
much larger than the wave frequency.
We assume that the hot electrons satisfy the Vlasov equation. We then linearize by

assuming the unperturbed hot electron distribution function, fg,, is a hot Maxwellian plus a
diamagnetic correction:
fon = fn — QaV x0- Vg, (19)
where fyp, = non(Me/ 27Ty, )22 exp(— mv? /2Th) and Q. = eB,/m,, with m, the electron mass.
The gyro-kinetic equation for the linearized hot electron distribution function fy;, is most
conveniently rewritten by introducing the scalar and vector potentials via E; = -V® —0A /ot
and I§1 =V x A, extracting the adiabatic response by letting

fan =e;ihl fnn + geiL , (20)

where L=Qg'k-Vx8 and V=v (2cos@ +7sind)+ v, and then seeking solutions of the form

exp(—iat —iS) where VS=Kk | . The resulting gyro-kinetic equation for g becomes'**3

~ilo-K-Vgy)o =i % fvn (CU— o, {(‘I’—Vu%)Jo(ah)— fow Ji(an) |, (21)

where a,, =k, v, /Q..InEq. (21)

10



— / 2
Vg = ok v2-v2 %): . @+ 922 +1-9) 22)

isthe grad B, plus curvature magnetic drift frequency with @, = KT,/ erB, the curvature drift

frequency, 4 =v/v apitch angle variable and

= ﬂ
s=1+5°, (23)

where s=0 corresponds to the vacuum limit. In addition,
I _ mv? _ 3
@y —0*{1+77h(2?h—5)} (24)
is the hot electron diamagnetic drift frequency with 7, = (T¢ /T, )/(ng, / N, ) and

KThng
Oy =~ g (25)

The v”/(a)—IZ-\?dh) moment of the gyro-kinetic equation (21) shows that Jq4, iS
proportional to A, . Moreover, there is no perturbed parallel current carried by the background
plasma. As a result, the parallel component of the Ampere's law results in a homogeneous
equation for A, . Therefore, we may safely assume A, =0 and B, = Bwﬁ. In addition, we
assume that axial wavelengths are much shorter than azimuthal wavelengths and radial
derivatives of unperturbed quantities. Consequently, k, =k, L=kv nglsine and
a, = kv, /Q, may be employed. Finally, we allow hot to background temperature ratio to be as
large as T, /T, ~m /m, so that af ~b<<1 and L <<1. Then we may use Jo =1, Jy=a,/2,

and exp(iL) = 1+iL to reduce Egs. (20) and (21) to

T 2
fin = th{%_(ﬁﬁzhj(%_ W;Ttgloej(lﬂl')} ' (0

11



To simplify our calculations, we note that our short axial wavelength assumption along
with the Coulomb gauge V-A =0 implies that A, << A.. As a result, E;, ~ikd may be

employed to make the replacement

ek, _ ed
ilee TT (27)

in perturbed radial Ampere's law, Eq. (14) and quasi-neutrality condition, Eq. (17). If the
assumption of S, ~1 is made, these equations also imply the ordering

By _ ePoye _ ePOh
B T T (28)

To simplify the results for the hot electrons while maintaining T,, >> T, we will assume

Wy >> 0 >> O and thus

Th
T, >> w.cie >> 1. (29

Keeping the above simplifications in mind, we can integrate the distribution function, Eq.
(26), over velocity space and obtain perturbed hot electron density, ny, = | f;,dv, and radial
current, Jq, =—¢€fv, f;,dv. Fortunately, the full expressions for ny, and Jq, will not be

reguired. Only the approximations given in the Appendix are needed. For the moment we need

only define the hot electron beta

2o Pon Bn TPon
=ZHhoboh  gnd g, =20 Pon
Pn B? h 2 Pon

and comment that the expressions in the Appendix lead to the forms:

Mn _ ed By Hodun _ &1 it
th_0GrdeH  and A -DLAH s, (30)

12



where H ~G~s,l ~1, except in the vicinity of s=1, where H ~G~s,| ~\/o/@. We
remark that even though @, >> ), it isimportant to keep the « term in the denominator of the

fi, expression to resolve singularities during the evaluation of the integrals,

V. DISPERSION RELATION

Combining the perturbed radial Ampere's law, Eq. (14), and quasi-neutrality condition,
Eq. (17), with the expressions for ny, and Jq,, from the previous section, we can form the

dispersion relation, which can be written as

Pob

2 1T -~
{b+w_de(d — }/)_'__Oe _eG+_He'| +rr— 2/,/\/0) }(1+—1E;/ﬂ| =+ Sﬂl )+

2
el (a- ) aon)] <o

If we consider comparable hot electron pressure and background pressure then in the absence of

the finite Larmor radius term b, Eq. (31) is seen to permit only solutions with @y / @ ~ ngy, / Ng;
since we order d ~ B, ~ B, ~ Syl ~G~H ~Vng, /Ing,V’" for the case of s=1. Therefore, the
neglect of b violates the ordering imposed by Eq. (29) when A, ~ f,,. Consequently we
proceed for now by assuming b~ w2,/ @ >> (ng, /g )* and neglecting order ngy, /ng ~ T/ T,
terms compared to @,/ @ in the dispersion relation. For the case of s#1 this assumption

corresponds to neglecting G and H as well as the equilibrium hot electron density gradient

term. Thus, the only hot electron contribution that matters in Eq. (31) is s,| and the dispersion

relation then reduces to

13



0 _ (rv' R (y=d) (1+1dB,+sy!)
PSR vt e (32

Had we retained finite hot electron gyro-radius terms they would have entered as small order aﬁ
correctionsto sl in Eq. (32).

To evaluate | we only need the lowest order expression for Jyy, :

ol BuBon T ap-2f _ By
Ko~ \rBocn § fote't [1+77( )]f D-olon? B n! (33)

where t? =nw?/2T,, and D = (1+5)4% +(1—s). To perform the integral in | we may neglect
the « term by using w<< @, in the denominator except (i) in the vicinity of s=1 and (ii) to
insure the path of integration is on the causal side of the D =0 singularity for s>1. Leaving the

details of this calculation to the Appendix, we find that we can write the expression for | as

[(s+4) hln[s+ s? 1) hj s>1

[ th Vor ]'+277h =1
1+T7h S=

|—|A

(s+4)-

1+sj ~1<s<1. (34)

(—s+ sz—lD s<-1

Expressions for | in the vicinity of s=1 are given in the Appendix for completeness. We

(
(o3

remark that our analysis ignores drift resonances of the background species since they are

exponentially small and of order exp(— @y / @), Where ap >> @y -

Notice that for s>1 a large imaginary term enters because of the vanishing of the hot

electron drift velocity for some pitch angle. This singularity in the drift introduces a Landau

14



resonance in pitch angle space between the wave and the drifting hot electrons. The effective
dissipation associated with the vanishing of the hot electron drift resonance makes it such that
stable solutions are no longer possible because one of the roots will always have Ime >0.
Before examining the s<1 case in detail we discuss the physical mechanism responsible for
instability when s>1.

The Landau resonance between the wave and the hot electron magnetic drift has two
different forms. When s<1 the hot electron magnetic drift does not reverse and the wave-

particle interaction is weak because the wave frequency is much smaller than the hot electron

drift frequency except for a very low speed hot electrons. That is w=k -V, can only be

satisfied if v is very small since the surfaces of constant k -V, are closed ellipses about v =0
in the v,v, plane. As s approaches unity the ellipse opens and becomes hyperbolic because

the drift frequency reverses. A stronger interaction occurs for s>1 because particles of all speed
are resonant near the critical pitch angle. For s>1 the hot electrons with smaller pitch angles
drift along the negative z axis while the larger pitch angle ones continue to drift in the positive
z direction. The energy exchange with the near stationary wave is strong since many more hot
electrons are involved in the resonant interaction.

For the special case s=1 thereisonly curvature drift and all hot electrons are drifting in
the same direction along the positive z axis. Energy flows from these particles to the nearly
stationary growing wave since all the particles are moving faster than the wave and are therefore
being slowed by it. As s increases above unity the drift direction of the lower pitch angle hot
electrons reverse and these hot electron moving slower than the wave are able to extract energy

from it so the growth rate decreases. The wave remains unstable, however, because of the

15



parabolic dependence of the magnetic drift on pitch angle, K-Vg, o A>—43 with

23 = (s—1)/(s+1). This dependence means that atypical hot eectron with A= 4, +& ismoving

faster than atypical onewith A =4,-6, that is,

<l

h _2/?0+5>1

‘—220-5 :

i X
<i

vd
vd

‘4:40+5
"

A=29-5
As aresult, the s>1 case is aways unstable since the hot electrons with pitch angles above the

critical pitch angle for drift reversal, 4,, are always able to give more energy to the wave than
those below A, which extract it from the wave. Because a Maxwellian is independent of pitch
angle, there are equal numbers of slightly faster and slower hot electrons within ¢ of /.
Because w<< o, , the wave is essentially stationary and simply a means of transferring energy

between the counter drifting hot electrons so @ may safely be neglected in the expressions for |
(except near s=1 where | depends on « because there are few if any drift reversed particles).
Only in the limit s— oo, when the drifts of all hot electrons are reversed does the resonant drive
vanish for s>1.

The specia case rV'/V=2-s—0 corresponds to Bper (flux tube volume
independent of r), but since d =<V /rV’— it is aways unstable even in the absence of hot
electrons as can be seen from Eq. (32). The growth rate (Ime ) for other s>1 can be estimated

from Egs. (32) and (34) to find

Il o = Bufoly—d| ?j2-3 ] Jbls* -1 (35)

for B, ~d ~1. Notice that the growth rate vanishes for d =y and/or s — <.

16



For s<1 the stable operating regime of most interest satisfies the usual interchange
stability condition y>d along with the additional condition 1+ f,d/2+s,l1 >0. To better
understand this regime it is convenient to write equilibrium force balance in terms of < as

s+ (B, + B )rpo/(2py)=0. Then d can be writtenintermsof s and s, as

2
1+1pd=2% (36)

Using thisresult,  >d becomes
Sh> =10 + (1+%7,3b )s. (37)

Then, ignoring for the moment resonant particles effects for s< 1, the stability condition
of Eq. (32) can be illustrated graphically by plotting s;, as a function of s for a given value of

background beta as shown in Figs. 1.

Notice that when the hot electrons are ignored, i.e. s, =0, we recover the usual Z-pinch
stability condition™, s< j8, /(1+ 3B, /2). The plots aso show that the A, term increases the size
of the stable region, allowing more general hot pressure profiles (i.e. s, can be negative as well
as positive for s=0). However, as s—1, | becomes large, so the curves 1+df,/2+s,1 =0
and 1+y8,/2+s,l =0, which cross a d =y, require s, >0 a s=1. To prevent a sign

change in Eqg. (32) we need to be above all three curves to maintain stability. From plots like

Figs. 1 we can see that a value of 5, between about 3 and 5 optimizes the stable operating
region since alarger /3, does not substantially increase the stable operating regime.
So far we have assumed |rngy, /ngn| ~1 and thus, due to Eq. (29), were able to neglect

terms that involve hot electron density gradient. However, it is possible to have a steeper hot

electron density gradient — so steep that |rng, /ng,|>>1. If we assume that the hot electron

17



temperature and density profiles are similar and consider a smooth profile for equilibrium

background pressure, then |rng, /ngp|~|sy|~|g due to equilibrium force balance,
S=—LprPop ! 2Pgp + S, - However the hot electron density gradient only enters in the form
(rngn /Non )/(2—s), which for |rng, /ng,|>>1 is of order unity. Thus because of the direct

relation between |rngy, /ng,| and | through the equilibrium force balance and the ordering

imposed by Eg. (29), the hot electron density gradient terms will never become significant
enough to appear in the dispersion relation.
During the operation of LDX it is anticipated that the hot electron pressure will become

much larger than background pressure. Therefore we also consider the case of S, >> f3,, by

taking b~ w2/ @” ~ (ng, /ng; )? . This ordering leads to neglecting only the G term in the lowest

order dispersion relation Eqg. (31), due to the ordering imposed by Eq. (29).

As before, the drift reversal case (s>1) continues to be strongly destabilizing due to
large imaginary termsin | and H . If we ignore weak resonant hot electron effects, the stability
condition for s<1 case can be written as

1+Y >0, (38)

Al )
(1+5)A?+(1-s)

where to the lowest order wefind H = ;’:]g: j

from Eq. (A7) , and we define

y = 2r=d) 2b (1+%d/”b+5h')_ﬁb(l—H)(%m).
[ minon P | (nonTe! poo)? Bgorsnt) g )

If electrostatic fluctuations are considered (i.e. S, =0 and s=0) this condition reduces to

(e Pl it -+ gy -a) 20,

18



from which we can see that electrogtatically the hot electrons improve lowest order stability by
allowing d to belarger than ¥ since b>0.

Examining the full expression for Y+1 we see that when B, —>0, Y >>1 since
Bod =2(s—s,)/(2-s)~1. As aresult, the stability boundaries are the same as in Fig. 1(a) for
this limit. For other values of 3, , the stability regions can be plotted as shown in Figs. 2 for
various values of 3, and rng, / ng, . Comparing Figs. 2 (a),(b) with Fig. 1 (b) and Figs. 2 (c),(d)
with Fig. 1 (c) we can see that the hot electrons somewhat improve the lowest order stability, as
in the electrogtatic limit.

Comparing the plots of Figs. (1) and (2) we can conclude that stability remains robust
evenat [, >> f3, aslong asthe region of operation is above the solid curves and the area of drift
reversal (s>1) isavoided, with higher hot electron fractions improving stability.

As noted earlier, the resonant hot electron interaction enters as a weaker effect for s<1
than it does for s>1, which is always strongly unstable. We next consider the effect of these
resonant hot electrons on stability for s<1 by evaluating their contributions to the perturbed hot

electron density and radial current density for the real part of « greater than zero (Re« >0) as

described in the Appendix:

M| _ By ed Hodine
MNoh|res  Bo Hres + Th Gres and ikBy

_phy B
o= 2 ey e (39

where

.. 15 T,
Gres = _lAIB_Ifb(T_Z)Z (40)
_ 2a0Gyes _ 45 ngr% ’
Hres =~ 3t4¢h (1-5) ad (Sn | )res T 15a:fh (1-s)?

with A defined by
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o0 -2m) 4, (1.
A= 1503%(1-s) /B_b(T_h)Z (41)
Here and elsewhere « is the positive stable root of Eq. (31), which can be schematically

represented as

2

[ [

A% B2 C=0,
WOge Dde

where A, B and C are coefficients of corresponding powers of ay/ @ye.

Retaining the resonant interaction perturbatively in Eqg. (31) using @w=ay + @, with

wn >> || gives
o
2= IAKF, (42)
where
2
K ={xf1- ol H)]--5/2 }+§ A b
{[ 1-H)] He ][ 4|5 (e (43)
= °[1- a1~ H)P -5x(1- ) + L2
and
1
E- (1+2;¢i,;:shl)’ (44)
A+%B
with
__Boly=d)(2-s) and o =—“%nle (45)
il+%7ﬂb+sh| (1-s) @gePop(7—d) °

If we consider comparable background and hot electron pressures ( 3, ~ ), thenthe «

terms become negligible because using EQ. (32) gives a~n0hTe/(pOb\/B)<<1. After

20



substituting in the expressions for A and B in this limit, we find that F =1 and Eq. (42) then

reduces to
; 2
%=%[(K_g) +g}, (46)
As we can see the sign of @,/ ay, depends only on the sign of A. Asaresult, for £, ~ f,, a

weak instability of the drift resonant hot electrons (@, >0) occursif axy,(1-37,/2)>0 or

31Th  Mon

Notice that in the electrostatic limit 3, =0, sothat x =0 making K positive aswell as F =1.
As aresult, instability is still determined by the sign of A and therefore by Eq. (47). It is also
clear that temperature profile of hot electrons plays an important role in stabilizing this weak

drift instability, since if 77, =0 only increasing density profiles can be stable. To confirm that

this drift resonance driven mode is indeed weak for s<1 we note that (ay/@e)? ~1/b giving

oyl @ ~ (Bl Bo)ey ! gy ) * <<1for By ~ By

The analysis of weak resonant hot electrons effects for the case of S, >> £, is more
complicated since the stability is determined by the full Eq. (42). We first observe that we are
only interested if the stable operating region above the solid curve in Figs. (2) can become
destabilized by this weak interaction, since the stable region below the solid curve does not allow
the hot electron pressure to fall off (positive s,). In the region of interest, above the solid curve
in Figs. (2), the numerator of F is clearly positive, while the denominator is also positive, but
for a more subtle reason. Since the negative real roots of the dispersion relation Eq. (31) are

always stable in the absence of resonant hot electrons we are only interested in @, >0. Using
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our schematic representation of zero order dispersion relation the denominator of F can be

rewritten as
A+%B=i%§x/ B2 _4AC .

In the region of interest AC<0 and A> 0, thus the dispersion relation has two real roots — one
positive and one negative. Only positive root can be unstable, and it makes the denominator of

F positive. Consequently, the sign of @, / ax, depends on the sign of the product of A and K.
In the region of interest d <y, and therefore a,x >0. If a>1 then K is positive. If
O<a<1and H>0 (i.e. rng, /ng, <0)then 1+ Ha/(1- &) >1 and K is again positive. So for
these two cases the stability is determined only by the sign of A and is identical to S, ~ 5,
case, Eq. (46). However, when rng,/ng, >0 and thus H <0, the sign of K can become
negative so stability depends on the sign of its product with A . For the general case, the stability
boundary has to be obtained numerically. However, if b<< (g To/ pop)* and Y <<1 then a
simple condition, that approximates the stability boundary can be found by substituting the

expression for ay, inthe form

1- o+ oH zﬁ (48)

into Eq. (43). Solving K =0 for s, yields the approximation to the left side of the stability

boundary given by
(1+ 1780 J2(2-5)-x(1-s)}-4
=— X (1-s)-2] (49)
with
_ 57(1+7) _ 6(r+H ) _ Ion /nn
X Aern {11 1= } ad 7=

22



and where H is proportional to rng, /ng, and given after Eq. (38). Inthis b=0 limit Y reduces

to

1-H )[1-a(1-H)](1-s) .

Y = 2o -9

From this form of Y we can see that Y <<1 requires either small x (or S, <<1) or small
1- o+ oH , which from Eq. (48) requires large rngy, /Ny, - Assuming rng, /ng, >>1 and using
Eq. (48) we expect that Eq. (49) is adequate when

Y o~ 2c(r+H)(1-s) _ By .

72(2-3) Mo / Mon

For rng, /g, >0 the plot of stability regions is given in Figs. 3 for b=0 and b=0.01
for different values of yf4, and rng, /ny,. The faint grey curves show the zero order stability
boundaries of Fig. 2. InFig. 3 (a) and (c) only the stability boundary for b=0.01 is shown, since
for the special case of b<< (Ng,Te/ Pgy)° and Y <<1 the s, >0 region is stable. In Figs. 3 (b)

and (d) the dash-dotted line isthe b=0 case, while the b=0.01 case is the solid line. We also
plot the analytical approximation of EQ. (49) to the boundary for the b=0 case to show its good
agreement with the numerical calculation. We do not plot the analytical solution in Fig. 3 (d)

since the agreement is so good, it becomes impossible to tell two curves apart.
We find from plots like Figs. 3 that for b<< (ng,Te/ poy,)> and Y <<1 the analytical

solution, EQ. (49) approximates the left side of the stability boundary very well. However, as the

hot electron density gradient drops the approximation becomes invalid. It is aso clear by
examining plots like Fig. 3 (b) or (d) that high hot electron fractions satisfying b~ (N Te/ Poy)?

make the unstable region the largest. Consequently, for our b<<1 ordering, large hot electron

fractions are desirable. Comparing Fig. 3 (a) and (d) we can conclude that while large hot
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electron density gradient as well as high background beta are beneficial for the zero order
stability, they are destabilizing when the first order correction is considered if rng, /ng, is
positive and greater than 2-3 for S, ~1. If the density gradient is small, then higher 34,
operation becomes possible, Moreover, if 34, issmall (the electrostatic limit) then the zero order
stability region is reduced and does not permit appreciable positive hot pressure gradients
(s >0). Thus to maximize the overall stable region rng, /ng, >0, it is best to keep 3, ~2 and
2>rng, /ng, > 3rT} /2T, along with ¥ > d . Recall the from Eq. (49) for rng, /ng, <0 we need
to keep 3rT, /2T, >rng,/ng, aong with ¥>d and 4, ~2 to alow positive hot electron

pressure gradients.

V. APPLICATIONS

As a specific application of the results obtained in the previous section we consider a
hard core Z pinch as a crude approximation to a dipole with a levitated current carrying
superconducting coil asin LDX. Assuming power law profiles satisfying pressure balance gives

g)1/(1+,8)

B = By and po = pa(a ™7, (50)

:
where a is the radius of the current carrying hard core conductor, B, and p, are the magnetic
field and total plasma pressure at its surface, respectively, and £ =2u, pa/Bg is the total beta.
If we assume that the background and hot pressure profiles are the same, then p, = Py, + Pan
with pgy, ~ Pan and

(%)2/(1+/3) )2/(1+/3) | (51)

Pob = Pab and pon = Pan (%
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where 8=2u4(Pap + Pan)! BS = Bo + B -

For this special model

__Pm;_ B __BPoh _ B

Note that since s<1, drift reversal is not possible in this model. The stability condition for a
hard core Z-pinch with the above profiles can be obtained by substituting these expressions for s
and s, into the lowest order dispersion relation, Eqg. (32), to find

145450
(P lrd) (g0 L2y |
wl%e b (1+%yﬂb+£—%lj

Y (53)

where d =2/(2+ )>0 and [1+dB, 2+ B, 1L+ B)|/[L+ 3B, 12+ B, 1 I(1+ B)]>0 since | >0.
Therefore, in the absence of resonant hot electron effects the stability boundary is described by
y>d=52;, (54)
which is always satisfied.
To determine the stability condition for the case of A, >> f,, we assume power law
temperature and density profiles

G /(1+53) (2-an)/(1+3)
) )

_ph(a
and ”Oh—T_;T

T =Tan(@ (55)

with 0< gy, < 2. Substituting the expressions for s and s,, along with the hot electron number
density gradient into Eq. (38), we find the stability condition to be the same as in the £, ~ 3,
case. For S, — 0 Eq. (38) is satisfied since 1+Y > 0. For the case of S, #0, Y issmallest if
b=0. Moreover, aplot of 1+Y asafunction of 3,/ inFig. 4 for different values of q;, and

78, =3 aways finds 1+Y >0 (note that since S =/, + 5, we have 0< 3,/ <1). For other
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values of 4, the plotslook very similar to Fig. 4 and thus, even for the worst case of b=0, Eq.
(38) is satisfied.

To determine the effects of a resonant hot electron population on the stability, we note
that due to Eq. (55), the hot number density is monotonically decreasing, rng,/ng, <0, and
therefore H >0. Since d<y, K is positive either due to a¢>1 or O<a<1 and thus
1+ Ha/(1- o) > 1. Therefore, for B, ~ B, or B, >> f3, the stability is determined by the sign of
A sothis hard core Z-pinch will remain stable if 7, >2/3 or g, > 4/5.

Finally, we remark that if the unperturbed hot eectron distribution function is simply
assumed to be a drifting Maxwellian, then from Eqg. (19) we find the flow
Vi, = 2(T,,ng, / MQ.ngy, ) along with the regtriction that VT, =0=7,,. As a result, for this “rigid
rotor” equilibrium case, even though s<1, a weak resonant hot electron driven instability

always occurs.

VI]. CONCLUSION

The effects of hot electrons on the interchange stability of a Z-pinch plasma are
investigated. The results yield two types of different resonant hot electron effects that modify the
usual ideal MHD interchange stability condition.

Our analysis indicates that when the magnetic field is an increasing function of radius,
there is a critical pitch angle for which the magnetic drift of hot electrons reverses direction. The
interaction of the wave and the particles with the pitch angles close to critical always causes

instability. Thus, stable operation is not possible when the magnetic field increases with radius.
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If drift reversal (s<1) does not occur and resonant hot electron effects are neglected, we
find that interchange stability remains robust and is enhanced by increasing the background
plasma pressure as well as the gradient of the hot electron density for 5, >> 3, case. However,
once f, becomes of order two or three, further increases in S, do not result in significant

increases in stability. In the absence of drift reversal, hot electron effects are weak, but not
negligible. When they are retained, an additional constraint must be satisfied to avoid a weak

resonant hot electron instability. For 5, ~ 3, and under certain conditions for £, >> £, , the hot
electron density and temperature profiles must satisfy rng, /ng, > 3rTy/ 2T,,. For the important
case of S, >> f3,, no Smple constraint can be found. However, numerical calculations suggest
that keeping 3, ~2, rng, /Ny, ~1, and the hot electron fraction high yields the largest stable
operating regime. Stability in the electrogatic limit (4, =0) is particularly awkward since it
requires rng, / Ny, > 3rTy /2T, with no peak in the hot electron pressure profile.

The effect of a hot electron population on Z pinch stability is motivated by a desire to
determine what physical mechanism must be accounted for when the stability of a dipole
confined plasma is investigated in the presence of electron cyclotron heating. Our study has
demonstrated the key roles that hot electron magnetic drift reversal and the hot electron fraction

and profiles will play in the Levitated Dipole Experiment.
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APPENDIX: EVALUATION OF HOT ELECTRON RESPONSE

EXPRESIONS.

This appendix presents details of hot electron response expressions G, H and s, .

Recall that the perturbed hot electron density and radial current are given by

Mh _ ed B
o = ol | fipdv === G+ By H (A1)
and
Jihr — e<I> B]
—”ICI’(Bl: =4 [y, fpudv =2 ﬁ FH-Z% “Shl (A2)

with fy, given by Eq. (26). Thus, the expressionsfor G, H and s, can be written as

G=1- e fare fram - )]I N (A3)
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H =22 ote 2L+ 7, (2 - )]JJ—L‘“HZ (A%)

Vzag 4 D0/ tt>

and

s, = 2“"“ jdte “t [1+77 ( )]jM (A5)

D- a)/a)Kht ’
where t?> =mv?/2T,, and D= (1+5s)42 +(1-s).
For s<1 no drift reversal is possible and we can drop the a)/a)Kht2 term in the

denominator due to @ << @, , except for very small t, where slow electrons are resonant with

the wave. Retaining this weak resonant effect the expressionsfor G, H and s,1 become

1
G=1-2lh) [dl, G, ()
-1
_ ZQZ):h ﬂl‘_ﬂz) H, e, and (A7)

3wy, (1+7;,) Jl- di (l—/l2 )2

syl = dom 1D +Sh ! res (A8)
with
Gres = (wh Znh \/71 TR (A9)
Hres =1 ﬁwz,&:gnh) (af;’h i _}1 MD(ls_/fz) , and (A10)
(h! ;e Im“T(hZ"“(th )5/2_1 %%)i (AL1)

Observe that since D does not vanish for s<1, integrals over A are easily evaluated,

confirming that the non-resonant parts of expressionsfor G, H and s,| are all of order unity.
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As we noted at the beginning of Sec. 1V, only the non-resonant part of s,I matters in the

dispersion relation for s<1 to lowest order. Thus, ignoring the weak resonant effects, the hot

electron response for s<1 isdescribed only by s,1 , where | isgiven by

(14:2)2 (4+s)- 112 In( s?-1- sﬂ s<-1
| = 2 S= -1 . (A12)
5
1 __ 6 Lts _
oo _(4+ s) o= arctan 1_3} 1<s<1

(Notice for the special case of s=-1, D reducesto D = 2).

The weak resonant effect of hot electrons for s<1 is calculated by evaluating the A4
integrals in Gy, Hyes and (sy!), o to Obtain the expressions given in Egs. (40) — (41).

For s>1 there is always a critical pitch angle [4g|<1 for which D vanishes and
therefore we must keep the « termwith Imea >0 to satisfy causality. Evaluating the A integral

in the expression s, 1 , Eq. (A8), wefind

1 1
ab-2f |
_J.l D-wlogt® 3(l+s) {(44_ S) 3". D—(,o/a)Kht2 B

(A13)

In S+4/S —1)

e O B =it

where we have dropped 1w/ a)Kht2 order terms since they are much smaller than the leading

imaginary term. Asaresult, for s>1 wefind

I (l—s{(4+s) hln(s+ s —1) zm} (A14)

Finally, we have to evaluate the expression for | a s— 1. The vicinity of s=1 isthe

only region werethe « and t dependence of the integral
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Z -1 s<1

Jol-swioq?)
/S o7 G (A15)
H Dbolont"ss1| A 1. s>1

2ls-1+w/ a)Kht2

enters. The weak t dependence makes it awkward to do the t integrals exactly. However, to get

the region about s=1 approximately correct, we evaluate the integralsin s, at s=1 getting

= g ), (a16

and then use the result to make an approximate fit that is independent of t. This procedure is

equivalent to making the replacement

—2x  _-1... s<1
2(1-s-ow! w,)
d—’lz—> A 1. s>1, (A17)
71 D-0l agt® s51 2(s-1+ow/ w,)
I/ B =
Sow o 1... s=1

where

O = [MJZ
4rm(2+3,) |
Notice that if we were to repeat the same procedure for G and H as given by Egs. (A3)

—(A4) for s>1 and s— 1, we would find that they are of the same order as s,| and therefore

would not be significant in the dispersion relation.
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FIGURE CAPTIONS

Figs. 1 (a)-(c). Stability regions for different values of B, with b=0.01 and nonT¢/po,=5%. The
solid line isy=d, dashed is 1+df/2+s,1 =0, and dotted is 1+yBy/2+s,1=0. St and Un indicate stable

and unstable regions.

Figs. 2 (a)-(d). Stability regions for different values of yB, and rn’on/non with b=0.01 and
NonT &/Pob=10%. The dotted line is the 1+yBy/2+s1=0 curve and for small yB, the solid line

approaches y=d. The dashed line 1+dBy/2+s,1=0 becomes as nor—>0

Figs. 3 (a)-(d). Stability regions for different values of yf, and rn’ on/Non With Non To/por=10%. The
solid curve is the unstable boundary for b=0.01, the dash-dotted line is the boundary for b=0, and
the doted line in (b) is an analytical approximation to b=0 curve. If only the solid line is shown,
the region s,>0 is stable for b=0 and our approximation Eq. (49) is not valid because Y~1. The

faint gray curves are the lowest order boundaries as shown in Figs. 2.

Fig. 4 Graph of 1+Y vs. By/p for different values of qp.
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