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Introduction

There are two events that are particularly ubiquitous in space plasmas. One is the

existence of short scale-length (of the order of a few ion Larmor radii) density gradients

and the other is transverse (to the geomagnetic field) energization of ionospheric ions

which, eventually, make their way into the outer reaches of the terrestrial magneto-

sphere. Rocket observations have shown the existence of density depleted structures

in the auroral ionosphere which are associated with enhanced electric fields [1, 2].

These structures are a few tens of meters in width transverse to the geomagnetic field

and are believed to be of the order of 100 km along the geomagnetic field. Associated

with these enhanced fields, transversely accelerated ions with energies in the range

of tens of eV are observed [1, 2]. These energies should be compared to the ambient

thermal energies of approximately 0.3 eV.

Resonant Electrostatic Fields in Density Gradients

If we assume a cylindrical density depression with its radial density variation being

across the geomagnetic field, then, in the cold plasma approximation, the spatial

evolution of the electrostatic potential is given by:
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where we have assumed that the azimuthal, longitudinal, and temporal variations of

the fields are of the form exp(imθ + ikzz − iωt),
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where ωpe and ωpi are the electron and ion plasma frequencies, respectively, and ωce

and ωci are the electron and ion cyclotron frequencies, respectively. The plasma and

cyclotron frequencies are assumed to have a radial dependence due to the radial varia-

tion of the plasma density and the geomagnetic field. Generally the radial scalelength

of the density depression is much smaller than the radial scalelength of the geomag-

netic field variation, so that the geomagnetic field can be considered constant over

the transverse dimension of the density depression. From (1), it is clear that the

differential equation for φ has a regular singularity at K⊥ = 0 corresponding to either

the lower hybrid resonance frequency ωLH or the upper hybrid resonance frequency

ωUH . In the vicinity of either of these resonances, φ has a logarithmic singularity.

For space plasmas of interest, we have considered a linear electron density profile:

n =





n0, for r ≤ r1

n0 + (n1 − n0)

(
r − r1

r2 − r1

)
, for r1 < r < r2

n1, for r ≥ r2

where n0 and n1 are constants. In the regions r < r1 and r > r2, the solution to

(1) can be readily expressed in terms of ordinary Bessel functions or modified Bessel

functions, depending on whether K‖/K⊥ is less than or greater than zero, respectively.

The solutions have to further satisfy that φ remains finite as r → 0 and as r → ∞.

The complete solution to (1) over the entire density gradient is obtained by requiring

that φ match onto these Bessel function solutions at r = r1 and r = r2. This then

becomes an eigenvalue problem. For fixed frequency ω the eigenvalue is kz while for

fixed kz the eigenvalue is ω.

For illustrative purposes, let us assume the following parameters which correspond

to the plasma conditions in the auroral ionosphere around an altitude of 1000 km:

n0 = 3.4× 109 m−3, n1 = 4.3× 109 m−3, singly charged oxygen O+ and hydrogen H+

ions with the density ratio of 9:1, respectively, and B0 = 0.36 Gauss. For a fixed ω

corresponding to K⊥(r0) = 0 for r1 < r0 < r2 we solve, numerically, (1) for the eigen-

value kz. It is worth noting that kz will depend on ω and the width of the gradient

region ∆r = r2− r1 and not on the specific values of r2 and r1. We find, numerically,

that for a given ω and ∆r there are two distinct kz’s which satisfy the boundary

conditions. For ∆r = 1 m and a frequency of fLH = ω/2π = 4.55 kHz (corresponding

to the lower hybrid resonance being halfway up the density gradient), the two eigen-

values are kz1 = (0.022 + 0.006i) m−1 and kz2 = (0.011 − 0.008i) m−1. If we choose

∆r = 10 m and the same frequency, then the two eigenvalues are kz1 = (0.029 + 0.3i)

m−1 and kz2 = (0.023 − 0.02i) m−1. Thus, the lower hybrid fields propagate along
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the geomagnetic field for sharp density gradients and are essentially evanescent for

more gradual density gradients. It is worth noting that even when the imaginary

part of kz is small compared to the real part, the fields are not “propagating” over

long distances before damping out spatially. The spatial extents are typically of the

order of 100 m. These distances are relatively short compared to what is inferred

from observations. Hence such fields would have to be maintained by a source of free

energy (e.g., an independent streaming instability) inside the density depleted region.

Interaction of Ions With Localized Fields

The interaction of ions with localized field structures is different from that with

a plane wave or a set of plane waves, which we have studied in the past [3, 4]. The

primary difference is that since these structures are smaller than the ion Larmor

radius, the interaction of the ions with the fields occurs over only a small fraction of

their orbit. Let us consider the situation in which the wave fields are independent of

the coordinate along the geomagnetic field. We can then consider just the motion of

the ions in a plane perpendicular to the geomagnetic field. For an ion in a uniform

magnetic field ( ~B = B0ẑ) interacting with electrostatic waves propagating in the

radial direction across ~B, the equations of motion are:
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where Ω is the angular ion cyclotron frequency, and Q and M are the charge and mass

of the ion, respectively. Consider the following form of a spatially localized electric

field that models the resonant electric fields in density gradients:

Er = E0e
−β (r − a)2 ∑

n

sin (knr + mnθ − ωnt + φn)

where a is the radius of the cavity, E0 is the electric field amplitude, β determines

the radial width of the field, and kn, mn, ωn and φn are the radial wave vector,

azimuthal mode number, frequency, and phase, respectively, of the n-th component.

The equations of motion can be integrated numerically to determine the effect of the

localized fields on the ion orbits. Our analysis shows that β À kn is required for ion

energization to occur. We set kn = 0 in the following results. For the ionospheric

parameters discussed earlier, we consider the interaction of O+ ions with a single wave

component (n = 1, ω1 = ω). We assume that a = 10 m and ω/ωcO+ = 145.74. For an
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ambient temperature of 0.33 eV, the initial Larmor radii of O+ is ρO+ ≈ 6.5 m. The

top figure in Figure 1 shows the normalized Larmor radius ρ = ρO+/a as a function

of the normalized time for three values of the normalized electric field amplitude

ε = QE0/(MΩ2a). (For E0 = 200 mV/m ε = 2.6.) It is clear that there is a

threshold in the amplitude of the electric field before ion energization takes place.

The energization of low energy ions is chaotic from the very beginning. This is unlike

the case of ion interaction with coherent plane waves where the low energy ions are,

initially, coherently energized before their motion becomes chaotic [3, 4]. The bottom

figure in Fig. 1 shows the change in Larmor radius due to varying widths of the

interaction region. Again there is a threshold in width, for a given amplitude, beyond

which ion energization does not take place.

In the case when the ratio of the wave frequencies to the ion cyclotron frequency

is a low number (corresponding to the interaction of H+ ions with lower hybrid struc-

tures), we find that when two wave frequencies are separated by an integer multiple

of the ion cyclotron frequency, the energy of the ions can increase monotonically as a

function of time. The monotonic increases in energy are akin to Lévy flights [5]. An

important observable signature of Lévy flights is that the ion distribution function

will have long tails. Such ion distribution functions are indeed observed [2].

Work supported by NSF Grant number ATM-98-06328.
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Figure 1: Normalized Larmor radius for
a O+ ion versus normalized time. Top:√

βa2 = 6.25 × 103 with ε = 1.3 (blue),
2.6 (green), and 5.2 (red). Bottom: ε = 5.2
with

√
βa2 = 1.56×103 (green), 6.25×103

(red), and 2.5× 104 (blue).
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