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Ion Collection by a Sphere in a Flowing Plasma:
3. Floating Potential and Drag Force

I. H. Hutchinson

Plasma Science and Fusion Center
Massachusetts Institute of Technology

Cambridge, MA, USA

Abstract

The interaction of an ion-collecting sphere at floating potential with a flowing collisionless
plasma is investigated using the particle in cell code SCEPTIC. The dependence of floating
potential on flow velocity for a conducting sphere is found to agree very well with the OML
approximation, which ignores the asymmetry in the plasma potential. But the charge, even on
conducting spheres and at zero flow, is not well represented by using the standard expression
for capacitance. Insulating spheres become asymmetrically charged because of ion collection
asymmetry, and their total (negative) charge is considerably increased by flow. The collection
flux asymmetry is documented for both conducting and insulating spheres and is not greatly
different between them. The drag force upon the sphere is obtained from the code calculations.
It shows reasonable agreement with appropriate analytic approximations. However, numerical
discrepancies up to 20% are found, which are attributed to uncertainties in the analytical values.

1 Introduction

In in the first two papers of this series [1, 2] the “Specialized Coordinate Electrostatic Particle and
Thermals In Cell” particle in cell code was described and calculations of the ion collection from
a flowing collisionless plasma were made with a specified potential on the spherical collector.
The present paper addresses the situation that is more appropriate to an isolated spherical object,
namely that the sum of ion and electron current to the sphere should be zero, and the probe adopts
a potential, the floating potential, that self-consistently enforces this current balance. Code calcu-
lations are also given of the total force exerted on the sphere by the flowing plasma. This force
is of crucial importance to the problem of dusty plasmas, and the present results are the first for a
collisionless plasma to take account of the full self-consistent potential. They reveal discrepancies
amounting to as large as 20% with the standard analytic expressions, in parameter regimes where
the analytic approximations might have been expected to be more accurate. They also provide
definitive values in regimes where no analytic approximation is justified.
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Since SCEPTIC has been described before in detail [1, 2], only a summary is given here. It cal-
culates the collisionless ion orbits in 3 dimensions and the self-consistent potential on a spherical
mesh having rotational symmetry about the external plasma flow direction, using a Boltzmann fac-
tor for the electron density and solving the resulting Poisson equation. The ions are injected on an
outer computational boundary in a manner that quite accurately represents a drifting Maxwellian
distribution at infinity, and are perfectly absorbed by the spherical surface at the inner computa-
tional boundary. Figure 1 illustrates an example case. Most calculations reported here are made on

Figure 1: Computational grid of SCEPTIC. Color contours indicate the ion density, normalized to
the value at infinity. Density is enhanced immediately downstream from the probe. Arrows show
the mean (fluid) velocity, normalized to

√
ZTe/mi. The external flow (left to right) for this case is

unity. The tracks of 20 (out of∼ 7M) particle orbits are shown.

a 100× 100 (r × θ) grid, with 7 million particles. The potential is axisymmetric about thez-axis.
In the case with finite flow, a distinction arises between a conducting isolated sphere, which we

here call “floating”, and a non-conducting, or “insulating” sphere. The insulating sphere acquires
a surface potential that varies with position on the surface so as to make the local current-density
zero, whereas the floating sphere is an equipotential, whose value makes the total current zero.

Prior theories of the interaction of an absorbing sphere with a plasma have almost all used some
form of spherically symmetric potential profile. It is, of course, standard practice to approximate
the plasma-shielded potential of a charge as a vacuum (1/r) form cut off at a distance equal to the
Debye-length,λD. WhenλD is much greater than the smallest relevant impact parameter (dictated,
for a point charge, by 90 degree scattering or quantum-mechanical effects) the resulting Coulomb
logarithm is insensitive to exact cut-off values. However, when dealing with a charged sphere of
finite radius,rp, the lower cut-off, which is at least≥ rp may not be much smaller thanλD. Then
a more careful calculation is necessary. The Debye-Hückel form of the potential (∝ exp(−r/λs)/r)
was used in some early numerical studies of momentum transfer [3, 4, 5, 6] but is based on several
approximations of questionable precision. It linearizes the equations, assuming potential is much
less than the electron temperature (eφ � Te), which is never valid close to a floating sphere;
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it ignores the absorption of charges, which causes the potential far from the sphere to have in
reality ∝ r−2 form[7, 2], rather than exponential; and it suffers from ambiguity about how to
account for ion contributions to shielding, in other words how is the shielding length,λs related to
λDe? Daugherty et al [8] have addressed some of these questions in a study based on the kinetic
theory formulation of Bernstein and Rabinowitz [9] for isotropic mono-energetic ions, which can
be solved as a differential equation, unlike the full Maxwellian distribution solved by Laframboise
[10] which requires an integro-differential solution. They conclude that the Debye-Hückel form
is a reasonable approximation only ifrp � λs, in which case the shielding length is smaller
thanλDe by a factor [2E0/(Te + 2E0)]1/2, whereE0 is the ion energy. Ambiguity still remains
as to how exactly to relateE0 to a Maxwellian ion temperature. Kilgore et al [11] derived ion
momentum scattering cross-sections based on the potential forms of Daugherty et al, showing little
difference between results from the kinetic theory and the Debye-Hückel potential forms. Choi and
Kushner[12] developed comparable results from a full-scale PIC simulation, including collisions
and nonthermal electron effects, but ignoring ion drift. They agreed well with Kilgore’s. Khrapak
et al [13] have compared the results of Kilgore and Hahn and developed convenient numerical fits
to give the ion drag force (see later, eq 9).

All these prior treatments effectively ignore the flow of the background ions, which will clearly
affect the ion contribution to shielding, and they assume the plasma potential to be spherically
symmetric. The present SCEPTIC calculations, by contrast, treat the ions fully self-consistently,
assuming a drifting Maxwellian distribution at infinity, and make no assumptions about potential
symmetry. They therefore provide a critical quantitative test of the errors introduced by the prior
approximations.

2 Sphere Potential and Charge

The floating potential of a surface which has no charged particle emission is that potential at which
the electron collection current density,

Γe(φ) = Γe(0) exp(eφ/Te) =
1
4

ne∞

(
8Te

πme

)
exp(eφ/Te), (1)

is equal to the ion collection current density. The ion current density is obtained in SCEPTIC by
averaging the flux from typically 40 prior steps of the code. The resulting potential is used as the
boundary condition in the potential solving step, thus producing in steady state a self-consistent
floating potential. For the insulating sphere, the local current density is used to derive the local
potential equal to (Te/e) ln |ZΓi/Γe(0)|. Statistics in this case can become poor for surfaces with
low ion current. For the floating conducting sphere, the total current over the entire surface is
zeroed by using the surface average of the ion flux in this formula.

Stationary plasma probe theory gives the value of the ion flux which we express in the form

ZΓi = f ne∞

√
ZTe/mi , (2)

where the factorf ranges from approximately 0.5 for small Debye length to the Orbital Motion
Limited (OML) value (Zeφ/Ti+1)

√
Ti/ZTe/

√
2π, for large Debye length. (The OML approximation[14],
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or see e.g. [15] for an introduction, assumes that no intermediate effective potential barrier repels
the ions, in which case, collection can be determined by energy and angular momentum conser-
vation applied at the collector). In the case of a Maxwellian ion distribution drifting with velocity
v f = U

√
2Ti/mi, and a negatively charged sphere of potentialφ = −χTi/Z, an OML value for

average flux density can be obtained if one approximates the potential as spherically symmetric,
yielding [16, 2]1

f =

√
2Ti

ZTe

U
4

{(
1+

1
2U2
+
χ

U2

)
erf(U) +

1

U
√
π

exp(−U2)

}
. (3)

But of course once the problem’s symmetry is broken by flow, a symmetric potential is an approx-
imation of a priori unknown accuracy.

The floating potential is then the solution of

φ f =
Te

e

(
1
2 ln |2πZme/mi | + ln | f |

)
. (4)

The first term in the bracket is−2.84 for hydrogen and−4.68 for singly-charged argon; leading
to typical floating potentials roughly 2− 5Te/e. This is sufficiently negative to justify the use
of the Boltzmann factor for electrons, if the distant electron distribution function is Maxwellian.
Incidentally, whenf is a function ofφ f , throughχ, then eq (4) is an excellent form for solving the
transcendental equation in a few iterations.

From the viewpoint of the SCEPTIC calculation, or indeed any calculation of the plasma be-
haviour, all that is essential is the sphere potential. However, knowledge of the total charge on the
sphere is often desired. This may be obtained by applying Gauss’s law to the sphere surface. How-
ever, the potential derivative there includes the effect of plasma shielding. Based on the standard
Debye shielding formφ ∝ exp(r/λs)/r, we haveEr = φ(1/r + 1/λs), showing that when the De-
bye length becomes short, the charge, 4πε0r2Er becomes large, and the capacitance of the sphere
becomes larger by a factor approximately 1+ r/λs than the vacuum value, 4πε0r. The capacitance
also becomes troublesome to calculate accurately, since the condition justifying the Debye shield-
ing approximation, namelyφe/Te � 1 is not satisfied for a floating sphere, so accurate values
require a self-consistent nonlinear calculation. All these theoretical difficulties are magnified when
plasma flow velocity is included and breaks the spherical symmetry. The SCEPTIC calculation
takes all the complicating factors consistently into account, and so can evaluate how important
they are quantitatively.

2.1 Conducting Sphere Floating Potential

In fig 2 are shown examples of the floating potential for an equipotential sphere in hydrogenic
plasma (mi = 1837me, Z = 1) compared with the values derived from the OML approximation, eqs
(3), (4). The agreement is remarkably good, within the code uncertainty of perhaps 2% judged by
the scatter, for all but a couple of points nearv f = 1, except that at low velocity and temperature,

1 When evaluation of the error functions is inconvenient, eq (3) may be approximated to an accuracy better than
2% asf ≈ (U2 + 4/π)1/2[1 + χ/(U2κ + 1)1/κ]/4 with κ = 1.17.
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whenλDe ∼ 1 the potential is dropping, indicating a gradual breakdown of the OML assumptions
there. [The 2% uncertainty inφ f corresponds to an uncertainty of about 4% in flux, which is larger
than in earlier SCEPTIC calculations in part because of using a larger computational domain radius
for these long Debye length cases.]

Figure 2: Floating potential calculated by SCEPTIC as a function of normalized drift velocity, for
a range ofλDe measured in units of the sphere radius, and forTi = 1 and 0.1 timesZTe. The dashed
line shows the OML theory.

The agreement shows that the effects of asymmetry in the potential are virtually negligible in
respect of the total ion flux. In itself this is a new and valuable result. Prior multidimensional
PIC results [17] treating the electrons, as well as the ions, via particle dynamics (unlike SCEPTIC)
had uncertainties too large to validate the OML model even with an artificially low mass ratio
(mi = 100me).

To illustrate the relatively small potential asymmetry, which is presumably the reason for the
success of the OML result, Fig 3 shows two-dimensional contour plots of potential and density for
a low-ion-temperature case. This case is comparatively strongly asymmetric. The density asym-
metry consists of a substantially enhanced wake region, caused by ion focussing, accompanied by
a trailing cone of mild (∼10%) rarefaction. Still the potential asymmetry is modest. And in the
upstream region, where the strongest effects on collection may be expected, it is visibly very small,
even with the logarithmic contour spacing used here.

There is, even for low temperature, no evidence whatever in the SCEPTIC results of a tendency
for the floating potential to tend to zero as the ratio of the Debye length to the probe size becomes
large. Such a counter-intuitive limit has been proposed [18] on the basis of the ABR treatment[19]
that accounts only for radial ion motion. The present work, of course, completely excludes col-
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Figure 3: Contour plots of density (upper) and potential (lower) for a floating sphere whenTi =

0.1Te, v f = 1.5
√

ZTe/mi, λDe = 2rp, mi = 1837me. The arrows show mean ion velocity. The
potential contours are logarithmically spaced.
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lisions. Consequently angular momentum, whose conservation is ignored in the ABR approach,
is not dissipated here by collisions. Nevertheless, the present work shows that even when angular
momentum conservation is imperfect because of small potential asymmetries, the effect on float-
ing potential is negligible. This suggests that the ABR approximation in the small-Debye-length
limit is hardly credible. Its ignoring collisional effects on radial motion while supposing angular
momentum to be totally dissipated collisionally would call for extreme sensitivity of the floating
potential to angular momentum conservation violation. The present results show such sensitivity
to be absent. A more recent radial motion theory [20] shows that including collisional drag in the
radial equation enhances the floating potential relative to the collisionless ABR treatment. But a
proper accounting for collisions really requires the inclusion of collisions in a multi-dimensional
calculation, such as the work of Choi and Kushner [12] which, like the present results, shows only
weak variation of the floating potential with particle size, whenλDe� sphere radius.

2.2 Charge and Capacitance

The charge on the sphere when it is floating is of course mostly a reflection of its floating potential
and capacitance. In figure 4 are shown the total sphere charge determined from SCEPTIC for a

Figure 4: Charge as a function of drift velocity for an isolated sphere in a hydrogenic plasma
(mi = 1837me, Ti = ZTe). A range of Debye lengths (λDe) is plotted, and both floating (f) and
insulating (i) spheres. Dashed lines show the linearized-capacitance analytic approximation.

range of Debye lengths. The chargeQ is expressed in normalized units asQ/(4πε0rpTe/e), where
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rp is the sphere radius. The floating equipotential sphere shows little variation in the total charge
with flow velocity. In contrast there is a substantial increase of total (negative) charge with flow
velocity for an insulating probe. This effect is caused by the strong negative potential that develops
on the down-stream side of the sphere for supersonic flow, because the flux on that side is much
smaller. This effect also causes greater statistical uncertainty in the charge at the highest flows, as
can be seen particularly in theλDe = 10 case in figure 4.

This figure also shows the charge that would be predicted by using the OML potential (which
fig 2 shows to be quite accurate) and for capacitance the expression appropriate to the linearized
plasma shielding approximationC = 4πε0rp(1 + 1/λDe) (see e.g. [16]). This formula reproduces
SCEPTIC’s floating values very well forλDe = 100 and 10, but not nearly so well forλDe = 2
and 1. If one uses a shorter value for the screening lengthλs, accounting for ion contribution to
shielding, in the capacitance formula, the discrepancy is even larger. This discrepancy illustrates
the inadequacy of the linearized approximation to the capacitance. Although flow makes this
inadequacy somewhat worse (when one usesλDe but not if one usesλs), the problem is present
even at zero velocity. SCEPTIC of course calculates the full self-consistent potential and charge,
and hence capacitance.

2.3 Flux Asymmetry

Figure 5: Flux density as a function of angle for a floating sphere for various values ofλDe nor-
malized to the the sphere radius (labels embedded in lines), fixed flow velocity,mi/me = 1837
(hydrogen).

As has been discussed in detail in [2], the angular distribution of ion flux to the sphere varies
strongly with Debye length. In Fig 5 is shown the angular distribution for a fixed velocityv f = 0.5
(in normalized units of

√
ZTe/mi) for a wide range ofλDe (normalized to the sphere radius), when
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the sphere is floating. The low ion temperature case (Ti = 0.1 in units ofZTe) shows the reversal
of asymmetry previously reported [2], but in this case specifically for a floating potential.

Figure 6: Surface potential as a function of angle for an insulating sphere for various values ofλDe

normalized to the the sphere radius, fixed flow velocity,mi/me = 1837 (hydrogen).

For an insulating sphere the flux distributions are qualitatively very similar. In Fig 6 are shown
the data in the form of the sphere potential, which contains the same information as the flux, since
for an insulating sphere they are related via eq (4).

The flux asymmetry is conveniently summarized by the ratio of the upstream (axial) flux to
downstream flux densities,R. Then for subsonic flow the single calibration factorK = ln |R|/v f

represents the asymmetry. In Fig 7 are shown the dependences on Debye length of the calibration
factor K for both floating and insulating spheres. Although the values obtained are for a spe-
cific flow velocity, v f = 0.5, they are approximately independent ofv f when it is subsonic. The
numerical values for floating and insulating spheres are rather similar, showing that the poten-
tial asymmetries on the sphere surface in the insulating case, though substantial, do not affect the
collection flux very much.

The region aroundλDe ∼ 10 has been explored in more detail in Fig 7 to show the fine scale
structure there. In Fig 8 the upstream and downstream fluxes densities are plotted separately. This
data shows that the structure there is in fact quite noticeable, almost a cusp on this log plot, and
arises from the downstream flux density variation. We can also observe the effective noise level of
these fluxes to be roughly 3% in this region. This enhanced level (relative to the short Debye length
cases) again arises because a larger domain size of 15 times the probe radius has been adopted to
avoid boundary effects on the flux.
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Figure 7: Asymmetry factor ln(R)/v f as a function of Debye length normalized to sphere radius.
Squares: floating; triangles: insulating sphere.

Figure 8: Flux density (in units ofni∞
√

ZTe/mi) on the upstream and downstream axial positions
as a function of Debye length (in units ofrp), for drift velocity v f = 0.5 (times

√
ZTe/mi). Squares:

floating; triangles: insulating sphere.
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3 Drag Force

A problem of particular importance for an isolated sphere in a flowing plasma is the question of
what drag force it experiences. A sphere of infinitesimal size would be governed by the standard
calculation of the drag on a point charge in a plasma. However, finite sphere size introduces a
number of complications. First the charge on the sphere must be determined self-consistently,
and of course is generally macroscopic: many times the elementary charge. Second, the sphere
directly absorbs some of the plasma particles, thus directly acquiring their momentum and making
it improper to continue an impact parameter integration of a Coulomb orbit expression to lower
values than the value at which absorption occurs. Third, both of these effects reduce the effective
value of the Coulomb logarithm, and thereby often undermine the validity of the approximations
made in the standard point-charge treatment. For example, it is not unusual for dust particles in
plasmas to have a radius that is a significant fraction of the Debye length.

3.1 Coulomb Collision Analytic Treatment

Most discussions of drag on grains in plasmas use some variation of the standard point-charge
treatment, which has its origin in Chandrasekhar’s [21] calculations of drag on a moving star, in-
teracting with its neighbours via an inverse-square force. This calculation considers the momentum
transfer from hyperbolic orbits of the neighbours relative to sphere, leading, for field particles of
velocityv1 to an integration over impact parametersb of thex̂-direction momentum transfer in the
form:

Fo =

∫ ∫ bmax

0
2mrvr vr .x̂ f (v1)

1

b2/b2
90+ 1

2πbdb d3v1, (5)

wheremr ≡ m1m2/(m1 + m2) is the reduced mass,vr = v1 − v2 is the relative velocity,f (v1) is
the velocity distribution function andb90 = q1q2/4πε0mrv

2
r is the impact parameter for 90 degree

scattering in the center of mass frame, which has here been written for the electrostatic force
between chargesq1 andq2. The upper limit of the otherwise divergentb-integral must be taken
as corresponding to the place where the two-body interaction can no longer be taken as inverse
square. Chandrasekhar thought that this distance was the mean interstellar distance, but it was
later demonstrated[22] that it is a shielding lengthλs approximately equal to the Debye length.
Although it is possible to treat classical near collisions exactly, most elementary derivations use a
small-scattering-angle approximation (b� b90) and then obtain the integral of 1/b to which has to
be applied a minimum impact parameter cut-off at b90. If the resulting term ln|bmax/bmin| ≡ lnΛ,
from theb-integration, is taken as approximately independent of velocity, the velocity integrals for
a Maxwellian distribution can be performed to obtain:

Fo = 8π

(
q1q2

4πε0

)2 n1

mrv2n
lnΛG(u) , (6)

wherevn =
√

T1/m1 is the thermal velocity of the field particles (1),u = v2/vn denotes the normal-
ized drift velocity of the test particle (2), the sphere in our case, relative to the mean velocity of the
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field particles (which are assumed to have a Maxwellian distribution), and

G(u) ≡
[
erf(u) − 2ue−u2

/
√
π
]
/(2u2) , (7)

which is frequently used in its small argument limitG(u) ≈ 2u/(3
√
π) for u � 1. The standard

[23, 24, 25] extension of this treatment to a finite sphere consists of taking the lower limit of the
impact parameter integration at the critical impact parameter below which the particle collides
with the spherebc. When this is done, the drag force due to non-collected particles differs from the
point-charge calculation, eq(6), only in the substitution

lnΛ ≈ ln
λs

b90
→

1
2

ln

∣∣∣∣∣∣b2
90+ λ

2
s

b2
90+ b2

c

∣∣∣∣∣∣ . (8)

In all such calculations the presumption is made thatλs/b90 is large, the Coulomb logarithm
is therefore a very weak function of its argument, and that therefore it is adequate for purposes
of integration over a distribution function to substitute into this expression a ‘typical’ velocity,
which is usually [22, 26, 27] taken asvt = (3T/m)1/2, although some authors [11, 28] effectively
usevt = (2T/m)1/2. For a Maxwellian drifting with velocityv f , a consistent extension to the first
option is to takevt = (v2f + 3T/m)1/2, which is adopted for comparisons here. The shielding length
is taken as the combination of electron and ion Debye lengths 1/λ2

s = 1/λ2
De + 1/λ2

Di using the
above flow-correctedvt for ions, although substantial ambiguity exists in this respect.

This treatment clearly is quantitatively unreliable whenλs is no longer much greater thanbc or
b90. In such situations, a substantial contribution to the drag comes from orbits in regions where the
field is partly shielded. Therefore the simple cut-off is no longer appropriate. Detailed calculations
of the drag force coefficients for an assumed Debye-Hückel shielding potential of a point charge
whenλs ∼ b90 were done long ago [3, 4, 5]. Recently, Khrapak et al [13] have shown that a
reasonable numerical fit to those collision cross-sections [6] is obtained by using for the upper
impact parameter cutoff, the orbit whose closest approach to the charge is equal to the shielding
length. This ansatz gives the same result as above except that the Coulomb logarithm takes the
form

lnΛ → ln

[
b90+ λs

b90+ bc

]
, (9)

whereb90 here must be evaluated usingvt = (v2f+2T/m)1/2. This lnΛ expression is not validated for
non-zerobc and actually gives scattering cross-sections whenbc = 0 that exceed the point-charge
numerical results of Hahn by∼ 7% over the relevant velocity range, despite the nominal identity
of their potentials. Negative values for the logarithm whenλs < bc are of course unphysical.

An important ambiguity remains in equation (6) for finite radius particles, regardless of which
ln |Λ| expression is used. The question is what to use for the grain charge,q2. Of course, the
collisional drag is determined by thepotentialsurrounding the charge, not the charge per se. If the
potential has a Debye-Ḧuckel form,φ = (qeff/4πε0) exp(−r/λs)/r, then the effective point charge
is related to the sphere potentialφp via qeff = 4πε0φp exp(rp/λs)rp which is approximately the
same as the actual charge,qp = −4πε0r2

pdφ/dr = qeff(exp(−rp/λs)/rp)(1/λs + 1/rp). However,
in the important region where the orbit integration must be performed, the expressionφprp/r is
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a better 1/r–approximation to the potential thanqeff/4πε0r. What is more, to obtain the correct
OML collection impact parameter,bc, a form that yields the correct potential at the spheremustbe
used. Therefore it appears more appropriate to use a valueq2 = φp4πε0rp in eq(6) and that choice
is adopted here. [In a preliminary presentation of some of the present results[30], (and in figure
10 for comparison) the valueq2 = qeff was adopted, and gives analytic drag force values that are
about 20% higher atλDe = 10. This is an indication of the approximate degree of uncertainty in
the analytic estimates.]

To the expression (6) for the orbital drag forceFo must be added the momentum transfer rate
due to direct ion collection, which we will denoteFc. This is sometimes taken as given by the OML
ion collection rate times the average momentum[24, 25], which is an approximation that is exact
only in the limit of negligible ion temperature. It is also incorrectly sometimes taken as equal to
the momentum flux from a shifted Maxwellian neglecting the electric field[27, 31, 32]. The most
consistent value to take is the OML momentum flux rate integrated over a shifted Maxwellian,
which can be written

Fc = n1r
2
pm1v

2
n

√
π

2

{
u(2u2 + 1+ 2χ)e−u2

+
[
4u4 + 4u2 − 1− 2(1− 2u2)χ

] √
π

2 erf(u)
}
/u2 , (10)

whereχ ≡ −q1φp/T1 is the normalized sphere potential, andrp its radius. (I am unable to find
a direct citation of this formula in the literature, but its derivation is elementary under the OML
assumptions of spherical potential symmetry and absence of effective potential barriers, albeit
involving fairly heavy algebra.)

There are several other forces on grains, arising from additional physical effects[25], that may
need to be accounted for in practical situations, but we concern ourselves here with this idealized
case where only the plasma force due to flow,Fo + Fc, is considered.

3.2 Code Evaluation of Force

The SCEPTIC code can directly evaluate the drag force on the sphere. This evaluation is not trivial
and is carried out in terms rather different from the Coulomb collision treatment.

Consider some surfaceS surrounding the sphere. The total momentum flux across that surface
is responsible for the drag force on the sphere. (We here assume that it is reasonable to take the
sphere to be in steady, non-decelerating motion through the plasma either because it has sufficient
total momentum or because it is acted on by other forces, that are not discussed.) The momentum
flux consists of three components: (1) Ion momentum flux. (2) Electric field forces. (3) Electron
pressure. The ion momentum flux is obvious, and in the code is evaluated by summing the momen-
tum of all ions crossing the surface. The electric field forces are expressed in terms of the Maxwell
stress tensor

FE =

∫
S
εo(1

2E21− EE).dS (11)

which gives the net electric force on all particles inside the surface. This also can be evaluated in
the code. The stress tensor is derived from finite differences of the potential, known on the mesh.
It is integrated over a spherical surface.

The electron pressure is also significant. Even though electrons do not possess significant
drift momentum, because their mass is small, they respond to the local electric field, and in the
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model that SCEPTIC treats, their density is determined by the potential through the Boltzmann
factor, while their temperature is uniform. Since electron pressure is comparable to ion pressure,
asymmetries in electron pressure, arising from electron density asymmetries, are not negligible.
The force is evaluated by an appropriate integral of the electron pressure over a spherical surface.

Figure 9: Example of SCEPTIC calculations forλDe = 10, on a computational domain of radius
20, times the probe radius; withTi = ZTe. The contributions to the drag force at the inner and
outer surfaces are different but add up to a consistent total.

Notice that these three contributions can be integrated over any surface surrounding the sphere.
In steady state, any such integration should give the same total momentum flux. In the SCEPTIC
code, the two natural special surfaces to consider are the probe surface and the outer boundary of
the simulation region. Fig 9 shows an example of the various contributions. Their share of the total
is different at the two surfaces.

A good test of the accuracy and convergence of the code is whether the forces derived from
these two different spheres of integration are the same. If the code is not converged, there are time
derivatives of the total plasma momentum in the region between the two surfaces, and thus their
momentum fluxes do not agree. More technically, if there are inaccuracies in the evaluation of
any of the terms of the momentum flux, then discrepancies will arise. These latter discrepancies,
prove to be quite troublesome for the insulating probe cases. In that case, the integration of the
Maxwell stress tensor, which involves some delicate cancellations, quite often shows the effects
of finite difference approximations inaccurately representing those cancellations, and the results
being obviously unphysical. No such problematic cases are presented here.
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At the inner boundary (sphere surface) the electron pressure contribution is negligible (exactly
zero in this equipotential sphere case) and the ion collection momentum flux contribution increases
monotonically with drift velocity. The electric field contribution, which corresponds to the drag
from ions that miss the probe, shows a maximum at approximately the sound speed, falling off

above it. This behaviour arises in the theoretical drag calculation from the velocity dependence of
the collision cross-section, although here it simply emerges from the code result. At the outer edge
of the computational domain, the electron pressure asymmetry contributes a substantial negative
force, while the electric field force is negligible. The total is equal to that obtained from the sphere
surface integration within about 3%, which may be taken as the uncertainty in the result.

For λDe
>
∼ 10, the electron pressure force remains non-negligible at the outer boundary (r =

rmax) even for the largest computational domains explored, when using the standard boundary
conditions on the potential (described in detail in [2]). This effect is caused by an extended wake of
enhanced ion density which is why the pressure force component is negative (accelerating). Since
this raises a question as to whether SCEPTIC is being biased by the boundary-condition, runs have
also been performed using the alternative of settingφ = 0 on the outer boundary, which forces the
electron pressure to zero, but, more important, strictly ensures that no drag arises from particles
outside the computational domain. It is found that thetotal drag force is negligibly affected (< 2%)
for rmax

>
∼ 2λDe, even though the balance of the force components in the outer region is changed.

With Ti = Te, for the more extreme casermax = λDe = 10, the total force is reduced by 10%
using theφ = 0 condition. Domain size explorations fromrmax = 40 downwards, with standard
boundary condition, show<2% variation until atrmax= 10 a forceincreaseof 3% occurs. In short,
drag-force errors arising from finite domain size are negligible forrmax

>
∼ 2λDe.

It might be thought that there is a direct equivalence of the decomposition into ion momentum
and electric field at the sphere surface with the collection and orbit force componentsFc andFo

of the theoretical description. However, figure 10 shows this is not accurate. Here we see that
Fc is somewhat smaller than the ion momentum flux and in compensationFo is rather larger than
the electric field component. [Eq 9 for lnΛ is used here.] The way this difference arises, which
is qualitatively similar for a range of parameters, is that ions are accelerated in the potential well
and arrive at the sphere with substantial momentum in addition to their initial momentum at a far
distance. Since the collection flux of the ions is asymmetric, there is an asymmetry in the ion
momentum collection that is not equal to the input ion momentum of the collected ions. In other
words, the collected ions can exchange momentum with the electric field before being collected;
and they do.

In Figs 11 and 12 are shown a systematic scan of Debye length for ion temperatures of 1 and
0.1 (timesZTe). The code results are compared with the theoretical dragFo + Fc predicted by
equations 6 and 10 with the alternative standard (eq 8) and Khrapak (eq 9) forms for lnΛ. The
value of lnΛ and henceFo is set to zero if those forms yield a negative lnΛ. The dashed line
shows the collection forceFc from eq (10). These results are for floating spheres, whose potential
(at r = 1) for the analytic model is taken equal to whatever SCEPTIC determines. [Taking the
modelcharge within r= 1 equal to the SCEPTIC-determined charge gives very similar results.]

The agreement is fairly satisfactory. The Khrapak form remains viable to a somewhat lower
Debye length than the standard form (all relative to sphere radius). But for theTi = 1 cases there
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Figure 10: SCEPTIC calculations forλDe = 10, on a computational domain of radius 20, times
the probe radius; withTi = 0.1ZTe. The contributions to the drag force at the inner surface do not
correspond exactly to the theoretical orbit and collection components (shown dashed).
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Figure 11: SCEPTIC calculations forλDe = 2 and 5, on a computational domain of radius 10 and
20 respectively, times the probe radius; withTi = 0.1 and 1.0ZTe.
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Figure 12: SCEPTIC calculations forλDe = 10 and 20, on a computational domain of radius 20,
and 40 times the probe radius; withTi = 0.1 and 1.0ZTe.
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is little difference between the two analytic values for cases whereFo is significant.
Several additional verifications of SCEPTIC’s results were undertaken. First, runs were per-

formed with the angular acceleration turned off. This amounts to forcing perfect angular-momentum
conservation, an assumption of the analytic theories. The sphere-surface force evaluation is still
correct. Second, a potential independent of angle, whose radial dependence is equal to the angle-
average of a full SCEPTIC run, was used. In this case the outer domain boundary ion force is
correct. Third, a run using the (angle-independent) Debye-Hückel potential approximation was
performed. And finally, calculations were performed for the symmetric potential cases that used
a totally independent angular integration method for obtaining the ion orbit and scattering angle.
None of these results differed from the initial SCEPTIC results by more than about 3%. These tests
therefore confirm SCEPTIC’s accuracy and show that the discrepancies with the analytic results
are not explained by potential asymmetries.

Therefore I attribute the discrepancy between SCEPTIC and the analytic formulas to the ap-
proximations in the analytic theories, but not to the assumption of spherical potential symmetry, or
potential profile shape.

4 Conclusions

The computational results presented here are the first to take account of the full, non-linear, asym-
metric, self-consistent problem of collisionless flowing plasma interacting with floating or insu-
lating spheres, at an accuracy that is sufficient for critical comparisons with approximate analytic
theory. The results show that the asymmetry in the plasma potential is rather small for most situa-
tions and does not have a strong effect on the results. Consequently, the OML approximation, when
it is justified by a large value ofλDe/rp, provides a reliable measure of the total ion flux to a floating
sphere, and hence its potential. Of course, the OML expression for a drifting ion distribution must
be used. The charge on the sphere, however, is not well represented by typical analytic approx-
imations to the capacitance, except when it is close to the vacuum value, because of the plasma
non-linearity. In other words, the approximationeφ/Te � 1 that justifies the Debye-Ḧuckel po-
tential form is invalid close to the surface. The asymmetry in ion flux to the sphere surface is
documented here for a wide range of Debye lengths. When the flow is subsonic, the asymmetry
proves not to be greatly different for floating and for insulating spheres. However, for the insulat-
ing case, the potential is greatly depressed on the downstream side at high flow-velocities, which
substantially increases the negative charge on the sphere.

The drag force, which is critical for many dusty plasma situations, has been directly calculated
from the simulations. The effects of both direct particle collection flux and deflected ion orbits
in the shielded sphere potential are fully accounted for. Reasonable agreement is obtained with
extensions of the Coulomb collision analytic approximations. However the popular approxima-
tions give values up to∼ 20% different (and even greater at lowλDe), even in cases where their
assumption of Debye-Ḧuckel potential form introduces negligible error.

All the results reported here omit effects that might be important in specific experimental or
practical situations; notably the effects of collisions, of secondary emission, of possible external
plasma non-uniformities, and, in the case of dust, of other nearby dust particles. However, the
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present work provides convincing quantitative analysis of the simplified problem of an isolated
sphere in an externally uniform collisionless, unmagnetized, flowing plasma, accounting fully for
anisotropy and non-linearity. This hitherto unavailable analysis provides a foundation from which
to explore the importance of the other effects.
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