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Controlling edge plasma rotation through poloidally

localized refueling
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2Department of Electromagnetics, Chalmers University of Technology,

Göteborg, Sweden

3Plasma Science and Fusion Center, Massachusetts Institute of Technology,

Cambridge, Massachusetts, U.S.A.

The transport of angular momentum due to neutral atoms in the tokamak edge

is calculated and shown to be sensitive to the poloidal location of the neutrals. In

the absence of external momentum sources, the edge plasma is predicted to rotate

spontaneously in the opposite direction to the plasma current, at a speed proportional

to the radial ion temperature gradient. If the plasma is collisional, this counter-current

rotation is largest if the neutrals are concentrated on the inboard side of the torus,

while the opposite holds in a collisionless plasma. The presence of heavy impurity ions

also promotes counter-current rotation. The rotation caused by an external momentum

source, such as neutral-beam injection, is found to be larger when the neutrals are on

the inboard rather than the outboard side.

1



1 Introduction

In the neoclassical theory of tokamak transport, the radial transport of toroidal angular

momentum is very weak. According to most calculations [1, 2, 3, 4], in the collisional

regime this transport is entirely classical and lacks the Pfirsch-Schlüter factor 2q2, with

q the safety factor, while in the collisionless regime it lacks the banana enhancement

factor, which is of order ε−3/2, with ε = r/R the inverse aspect ratio. Neoclassical

momentum transport is thus typically at least an order of magnitude smaller than the

corresponding energy transport. As a result, processes other than those included in

standard neoclassical theory are likely to determine the toroidal rotation and radial

electric field in an axisymmetric tokamak.

In the edge plasma, the presence of neutral atoms provides an efficient means of

momentum transport. Although these particles are relatively few, their high cross-field

mobility enables them to carry a substantial flux of momentum across the magnetic

field. As shown in Refs. [5, 6], if there is more than about one neutral atom in 104 ions,

for typical edge plasma parameters, then the cross-field flux of momentum carried by

neutrals is larger than the corresponding neoclassical flux. Since such neutral abun-

dances are typical in the tokamak edge, one may expect that neutrals may influence

toroidal rotation and the radial electric field at the plasma edge, at least if turbulent

transport of momentum is relatively weak.

Experimentally, it has long been known that neutral atoms in the edge plasma affect

access to the high-confinement H-mode in tokamaks. The first H-mode experiments

required careful wall conditioning and low wall recycling [7], and a series of subsequent

experiments on a range of tokamaks have found neutrals to be important for the H-

mode transition in various ways [8, 9, 10, 11, 12, 13, 14, 15]. In several of these studies

[8, 10, 12, 13, 14, 15], it was found that the poloidal location of recycling or injected

neutrals can have a dramatic effect on H-mode access, which is often favored by fueling

the plasma from the inboard side of the torus. For instance, in the Mega-Ampere

Spherical Tokamak (MAST) [15], Ohmic H-mode can only be achieved with inboard

refueling, which also allows easier H-mode access in auxiliary heated discharges.

This background provides the motivation for the present paper, where we exam-

ine theoretically the effect of a poloidally localized neutral source on toroidal rotation

and the radial electric field in the tokamak edge. The theoretical framework is that of
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standard neoclassical theory [16, 17] supplemented by a short-mean-free path kinetic

treatment of neutral transport of angular momentum [5]. Among other things, the

theory predicts that in steady state the edge plasma should rotate spontaneously in

the toroidal direction at a speed determined by the ion temperature gradient and the

poloidal distribution of the neutrals. Some of the results concerning collisional plasmas

have recently been published in briefer form elsewhere [18]. The intention of the present

paper is to give a fuller picture by extending the analysis to allow for lower collisional-

ity, the presence of impurity ions, and external momentum sources. These extensions

should allow the theory to be compared with experiments over a wider range of plasma

conditions. Such a comparison with data from MAST shows encouraging agreement

and will be published elsewhere [19].

The remainder of this paper is organized as follows. After some general background

material presented in Sec. 2, the case of a collisional (Pfirsch-Schlüter regime) plasma

is considered in Sec. 3, which partly duplicates Ref. [18] but extends the theory to

hold for an impure plasma. Less collisional (banana regime) plasmas are treated in

the following section, again allowing for the presence of impurities, and the effect of

external momentum sources such as neutral beams is considered in Sec. 5. The last

section contains a discussion of these results from a physical point of view and their

possible experimental implications.

2 General background

We consider the toroidal rotation of an axisymmetric plasma consisting of four species:

electrons (e), bulk hydrogenic ions (i), their neutral counterparts (n), and heavy impu-

rity ions (z) of charge z � 1. The impurity number density is assumed to be of order

nz ∼ nez
−2, where ne is the electron density, so that Zeff − 1 = nzz

2/ne = O(1). The

impurities are assumed to be in the collisional Pfirsch-Schlüter regime, while the bulk

ions can be either collisional or collisionless. The magnetic field is given by

B = I(ψ)∇ϕ + ∇ϕ×∇ψ,

where ψ denotes the poloidal flux and the toroidal angle ϕ runs in the direction of the

plasma current, so that ψ increases towards the edge. Insofar as transport is much

faster within flux surfaces than across them, as is usually assumed, the electron and
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ion densities and temperatures are flux functions (if the rotation is subsonic), and the

plasma flow velocity must be of the form

Vi = ω(ψ)Rϕ̂ + uiθ(ψ)B. (1)

This form is the most general expression for a divergence-free velocity field tangential

to flux surfaces. The flux functions ω(ψ) and uiθ(ψ) are given by [16, 17, 20]

ω(ψ) = −dΦ
dψ

− 1

nie

dpi
dψ

, (2)

uiθ(ψ) = − kI

e〈B2〉
dTi
dψ

, (3)

where Φ(ψ) is the electrostatic potential, pi = niTi the bulk ion pressure, 〈· · ·〉 denotes

the flux-surface average, and the coefficient k depends on plasma collisionality. Note

that the poloidal rotation is entirely represented by the term in Eq. (1) containing uiθ

and is independent of the radial electric field, while the toroidal rotation has contri-

butions from both terms. The fundamental reason why a radial electric field does not

affect poloidal rotation is that this field vanishes in a frame rotating toroidally at the

angular frequency −dΦ/dψ. As long as this rotation is small enough not to give rise to

large centrifugal or Coriolis forces, the equations governing the plasma are the same in

the rotating frame and the laboratory frame. Since the poloidal rotation must be the

same in the two frames, it cannot depend on the radial electric field.

The constant k is calculated in conventional neoclassical theory and is of order unity;

explicit expressions are given below. As shown in Refs. [6, 21], k is not much affected

by the presence of neutrals unless their density nn is so large that nn/ni>∼ρi/qR, where

ρi the ion gyroradius. Such high neutral densities are uncommon in most tokamaks,

except very close to the separatrix. For simplicity, we shall assume that the neutral

density is smaller, so that the ion distribution function is not much affected by the

neutrals and can be taken from ordinary neoclassical theory. Otherwise modifications

calculated in Refs. [6, 21] must be retained.

The radial electric field appearing in Eq. (2) is determined by the transport equation

for toroidal angular momentum, which is [20]
〈

miR
∂(niViϕ + nnVnϕ)

∂t

〉

= 〈j · ∇ψ〉 − 〈Rϕ̂ · ∇ · (πi + πn)〉 + 〈RFϕ〉 , (4)

when summed over all species. Here πi and πn are the ion and neutral viscosity

tensors, j is the current, and Fϕ denotes any external force acting on the plasma, e.g.,
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from neutral beams. In this expression, the viscosity term can be simplified somewhat

by noting that, for any symmetric tensor π we have

Rϕ̂ · (∇ · π) = ∇ · (Rϕ̂ · π) (5)

since ∇(Rϕ̂) = R̂ϕ̂ − ϕ̂R̂. In steady state there can be no radial current, and Eq. (4)

becomes [16]
1

V ′

d

dψ

(

V ′ 〈Rϕ̂ · (πi + πn) · ∇ψ〉
)

= 〈RFϕ〉 ,

where V (ψ) is the volume inside the flux surface labeled by ψ. Finally, if the neutral

viscosity is larger than ion viscosity and if we restrict our attention to the edge where

little beam momentum is absorbed, then we obtain

〈Rϕ̂ · πn · ∇ψ〉 =
1

V ′

∫

〈RFϕ〉 dV, (6)

where the volume integral is taken over the entire plasma and dV = V ′dψ. This is the

equation we shall use to calculate the radial electric field in the next three sections.

The neglect of πi in Eq. (6) is justified if the neutral viscosity is larger than both

the neoclassical and anomalous ion viscosities. As already mentioned, the neoclassical

ion viscosity is fairly small and can be neglected for realistic neutral densities at the

edge, where typically [6]
nn
ni

>∼
ε3λiρ

2
i

(νzτ)1/2qR2L⊥
, (7)

where ρi is the ion gyroradius, λi the Coulomb mean-free path, L⊥ the characteristic

radial scale length of density and temperature variation, νz the ionization rate, and

τ−1 = ni〈σv〉x ' 2.93niσx(Ti/mi)
1/2 the charge-exchange frequency [22]. The neglect

of anomalous viscosity may seem more questionable since the heat flux is certainly

often turbulent. However, it should be remembered that the particle transport associ-

ated with neutrals in the edge is necessarily as large as that of all other mechanisms

combined since every recycling ion that leaves the plasma because of collisional dif-

fusion or turbulence makes its way back as a neutral atom. Therefore, it is perhaps

not implausible that something similar could hold for momentum transport. More-

over, experimental evidence mentioned in the Introduction suggests that neutrals do

affect plasma rotation considerably. However, if the anomalous transport of angular

momentum is larger than its neutral counterpart, then the radial electric field will be

determined by turbulence rather than the processes considered in this paper.
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The calculation of πn requires solving the neutral kinetic equation [23]. To do so

analytically, we employ two approximations: the neutral mean-free path with respect

to charge exchange is taken to be independent of velocity and shorter than L⊥. The

short-mean-free-path approximation is not very accurate in many situations, especially

in H-mode, but should give qualitatively correct results. Moreover, in Ref. [18] the

neutral viscosity calculated in this way was compared with that from a full solution of

the neutral kinetic equation obtained for a special class of self-similar plasma profiles

and was then found to be surprisingly accurate, even when the mean-free path was

comparable to the plasma scale length. In the short-mean-free-path approximation,

the neutrals undergo a random-walk with small steps through the edge plasma, and

the neutral viscosity tensor becomes [5]

πn = −τ∇ ·
(

minn
ni

∫

vvvfid
3v

)

+O(nn/ni) + isotropic terms. (8)

Taking the ion distribution function fi in various collisionality regimes from neoclassical

theory , this result allows us to calculate the neutral viscosity and hence the radial

electric field from Eqs. (1), (2) and (6).

3 Pfirsch-Schlüter regime

The plasma just inside the separatrix is often in the collisional Pfirsch-Schlüter regime,

where it is appropriate to expand the ion distribution function in Sonine polynomials

as

fi = fi0 +
miv

Ti
·
[

Vi +

(

x2 − 5

2

)

2qi
5pi

+ L
(3/2)
2 (x2)

8qi‖v‖B

75piB
+ . . .

]

fi0. (9)

Here fi0 = (mi/2πTi)
3/2 exp(−x2) is the Maxwellian, x2 = miv

2/2Ti, L
(3/2)
2 (x2) =

(x4 − 7x2 + 35/4)/2, and qi is the ion heat flux given below. The last term in Eq. (9)

does not contribute to the viscosity (8), of which the desired component (6) becomes

[5, 18]

〈Rϕ̂ · πn · ∇ψ〉 = −τ
〈

∇ψ · ∇
[

RTinn

(

Viϕ +
2qiϕ
5pi

)]〉

. (10)

Since this expression represents the radial transport of angular momentum, it is not

surprising that the first term on the right-hand side contains the product of the neutral

angular momentum minnRViϕ and the neutral diffusion coefficient D ∼ τTi/mi. The

second term, which is related to the toroidal heat flux, is given a physical interpretation
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in Sec. 6. In the derivation of this result it is assumed that plasma parameters such

as density and temperature vary more rapidly in the radial direction than does the

magnetic field.

Our problem is thus reduced to calculating the toroidal ion particle and heat fluxes.

To do so for an impure plasma is most conveniently (although somewhat approximately)

done using the Hirshman-Sigmar moment formalism [17], and is particularly simple in

the present case of a plasma with small impurity concentration, nz � ni. The ion heat

flux is then of the same form as in a pure hydrogen plasma [24],

qi = −5pi
2e

dTi
dψ

Rϕ̂ + qiθB, (11)

qiθ =
5Ipi

2e〈B2〉
dTi
dψ

.

The reason for this is that if the impurities are few, nz � ni, they do not carry much

heat flux , so the total ion heat flux therefore remains the same as in a pure plasma.

The poloidal rotation is obtained from the constraint 〈B · ∇ · (π i + πz)〉 = 0 [17],

but again the impurities are too few to make a significant contribution to the parallel

viscosity if nz � ni, so we have [17, 20]

〈B · (∇ · πi)〉 =
〈

(∇‖B)2
〉

(

µi1uiθ + µi2
2qiθ
5pi

)

= 0.

However, since nzz
2/ni = O(1), the impurities do affect the neoclassical parallel vis-

cosity coefficients µi1 and µi2, which contain information about the collision operator

describing both ion-ion and ion-impurity collisions. This implies that uiθ is of the

form (3), with k = µi2/µi1. In the limit of no impurities, Zeff = 1, their ratio is

µi2/µi1 ' 1.7, while a more accurate calculation of poloidal rotation by Hazeltine [25]

gave k = 1.8 + 0.05〈B2〉〈(∇‖ lnB)2〉/(∇‖B)2. In the opposite limit of high impu-

rity content, Zeff � 1, ion-ion collisions may be ignored and it is a simple matter to

calculate µi2/µi1 = 5/2 [26]. For intermediate impurity concentration, interpolation

formulas are available in the literature for the neoclassical viscosity coefficients but

none of these appear to reproduce both these limits correctly. A simple formula that

does this (neglecting the small term proportional to 0.05) is, e.g.,

k =
5

2
− 0.7

Zeff
,

and we shall use this expression in our numerical results below.
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For an Ohmic plasma with localized gas puffing where most neutrals are in one

place poloidally, say at θ = θ∗, Eqs. (6) and (10) imply

d

dψ

[

RTinn

(

Viϕ +
2qiϕ
5pi

)]

θ=θ∗

= 0

since there is no external momentum input, Fϕ = 0. Assuming that the rotation stays

finite in the core where nn → 0 gives Vϕ = −2qiϕ/5pi at θ = θ∗, and it follows from

Eqs. (1), (3) and (11) that

ω(ψ) =
1

e

dTi
dψ

(

1 +
(k − 1)I2

〈B2〉R2
∗

)

, (12)

where R∗ = R(ψ, θ∗) is the major radius at the puffing location. The toroidal rotation

at an arbitrary position, of major radius R, on the flux surface in question is then given

by

Viϕ =
I2

e〈B2〉R
dTi
dψ

FV (R,R∗), (13)

with

FV (R,R∗) = k

(

R2

R2
∗

− 1

)

+
〈B2〉R2

I2
− R2

R2
∗

. (14)

Thus, the absence of external momentum sources does not imply that the plasma should

not rotate. Because there is a drive term in Eq. (10) involving the toroidal heat flux

qiϕ, the plasma starts rotating at a speed proportional to the radial ion temperature

gradient. Since dTi/dψ is normally negative the rotation is in the direction opposite to

that of the plasma current, and it is subsonic if the temperature gradient scale length

exceeds the poloidal ion gyroradius. The rotation is caused by the presence of neutrals,

but is independent of the neutral density as long as the neutral cross-field viscosity

dominates over its neoclassical and turbulent counterparts. A physical picture of how

the rotation arises is discussed in Sec. 6.

The rotation velocity (13) depends strongly on the puffing location R∗. In a tokamak

with circular (or elliptical) cross section and small inverse aspect ratio, ε� 1, so that

R = R0(1 + ε cos θ) and B = B0(1 − ε cos θ), Eq. (13) becomes

Viϕ ' 2ε

eBθ

dTi
dr

[k cos θ − (k − 1) cos θ∗] .

The rotation speed in the outer midplane, say, is thus larger with inboard puffing

(θ∗ = π) than with outboard puffing (θ∗ = 0) by a factor 2k − 1, which is in the range

between 2.6 and 4. Note that this relative difference between inboard and outboard
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puffing is independent of ε while the absolute value of the rotation becomes small in the

limit ε → 0. These conclusions remain qualitatively valid if Eq. (13) is evaluated for

magnetic equilibria corresponding to actual tokamaks. Figure 1 shows the normalized

rotation speed FV (R,R∗) with R corresponding to the outer midplane as a function

of the poloidal location of the neutrals, θ∗, for typical edge equilibria in the spherical

tokamak MAST and the more conventional tokamak Alcator C-Mod. As can be seen

from this figure, the rotation is larger at small aspect ratio, and there is a significant

difference between inboard and outboard puffing in both machines. The presence of

impurities enhances this difference.

All of this reflects that fact that the radial electric field depends on the poloidal

location of the neutrals. The electric field is obtained from Eqs. (2) and (12), which

give

−dΦ
dψ

=
Ti
nie

dni
dψ

FE(R∗),

with

FE(R∗) = 1 + ηi

(

2 +
(k − 1)I2

〈B2〉R2
∗

)

,

where ηi = d lnTi/d lnni is the ratio between the temperature and density gradient.

Note that the edge electric field is predicted to be inward, as is usually observed in

experiments. Figures 2 and 3 show FE in the same magnetic configurations as Fig. 1,

for various values of ηi and Zeff . The radial electric field is largest when: (i) the neutrals

are located on the inboard side; (ii) when ηi is large; (iii) when the aspect ratio is low;

and (iv) when the impurity content is high. The results shown in Figs. 1-3 are fairly

insensitive to the particular choice of magnetic equilibrium and vary very little between

different discharges.

4 Banana regime

Even if the plasma closest to the separatrix is collisional in many tokamaks, it often

becomes collisionless some short distance into the plasma where the temperature is

higher. The plasma may also be collisionless all the way up to the edge. Either case

calls for an evaluation of the neutral viscosity in the banana regime of low collisionality.

In this regime, the ion distribution function can only be calculated exactly in the limits

of very large or very small aspect ratio, or in the limit Zeff → ∞. In intermediate
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regions, approximate expressions must be used. The most accurate such analytical

expression in the literature is [20, 27]

fi = (1 − ρ · ∇) fi0 + F + g, (15)

where the term containing the gyroradius vector ρ = B × v/ΩiB is the diamagnetic

correction to the Maxwellian fi0, and the other two terms are

F = −
Iv‖

Ωi

∂fi0
∂ψ

= −
Iv‖

Ωi

[

d ln pi
dψ

+
e

Ti

dΦ

dψ
+

(

x2 − 5

2

)

dTi
dψ

]

fi0

and

g =
miH(λc − λ)UB0

fcTi

[

uiθ +

(

x2 − 5

2

)

2qiθ
5pi

]

fi0.

Here

fc = 1 − ft =
3B2

0

4

∫ B−1
max

0

λdλ

〈
√

1 − λB〉
is the “effective fraction” of circulating particles [17], Ωi = eB/mi, B

2
0 = 〈B2〉, λ =

v2
⊥/v

2B, λc = B−1
max, with Bmax(ψ) the maximum value of B on the magnetic surface

ψ,

U =
σvB0

2

∫ λc

λ

dλ′
〈√

1 − λ′B
〉 ,

and σ = v‖/|v‖|. The coefficients uiθ and qiθ are again to be calculated using the

Hirshman-Sigmar moment formalism. This calculation can be done relatively easily in

the case of a pure plasma, as in Refs. [20, 27]. If the plasma contains impurities, the

calculation is more difficult but has recently been carried out with the result [28]







uiθ

2qiθ
5pi






=







a0

a1







I

eB2
0

dTi
dψ

.

a0 =
1.17 + 3.64α + 1.99α2

1 + 0.46y + (2.58 + 1.65y)α + 1.33(1 + y)α2
,

a1 =
1 + 1.88α

1.17 + 2.82α
a0,

where y = ft/fc and α = Zeff − 1. As in the case of the present paper, this calculation

assumes the presence of a single, highly charged, collisional impurity in an otherwise

pure hydrogen plasma.

Knowledge of the distribution function (15) now allows us to calculate the appropri-

ate component (6) of the neutral viscosity (8). The diamagnetic part of the distribution
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function (15), which is

f
(dia)
i = −ρ · ∇fi0 =

miv

Ti
·
[

V∧ +

(

x2 − 5

2

)

2q∧

5pi

]

fi0,

where the diamagnetic particle and heat fluxes are

V∧ =
Ti
eB2

(

d ln pi
dψ

+
e

Ti

dΦi

dψ

)

(

IB−RB2
ϕ̂

)

,

2q∧

5pi
=

1

eB2

dTi
dψ

(

IB−RB2
ϕ̂

)

,

is of the same form as the Pfirsch-Schlüter distribution (9), and the corresponding

neutral viscosity is therefore similar to Eq. (10),

〈Rϕ̂ · πn · ∇ψ〉(dia) = −τ
〈

∇ψ · ∇
[

RTinn

(

V∧ϕ +
2q∧ϕ
5pi

)]〉

' τ
d

dψ

〈

nnT
2
i |∇ψ|4
eB2

(

d ln pi
dψ

+
e

Ti

dΦi

dψ
+
d ln Ti
dψ

)

〉

. (16)

The neoclassical terms in the distribution function give rise to a contribution to the

neutral viscosity equal to

〈Rϕ̂ · πn · ∇ψ〉(neo) ' −τ d

dψ

〈

nn
ni

∫

mi(Rϕ̂ · v)(v · ∇ψ)2(F + g)d3v

〉

= −τ d

dψ

〈

minn|∇ψ|2I
2niB

∫

v‖v
2
⊥(F + g)d3v

〉

(17)

where we have again used Eq. (5) and assumed that the density and temperature vary

more rapidly than the magnetic field. The first term in the integral is

∫

Fv‖v
2
⊥d

3v = −2IniT
2
i

m2
iΩi

(

d ln pi
dψ

+
e

Ti

dΦ

dψ
+
d lnTi
dψ

)

,

and the second one is

2πB2
∫ ∞

0
v5dv

∫ λc

0
gλdλ =

2niTiB
2f2

miB0fc

(

uiθ +
2qiθ
5pi

)

,

with

f2 =
15B3

0

16

∫ λc

0

λ2dλ

〈
√

1 − λB〉
,

so that

∫

(F+g)v‖v
2
⊥d

3v = −2IniT
2
i

miΩi

[

d ln pi
dψ

+
e

Ti

dΦ

dψ
+
d lnTi
dψ

− (a0 + a1)
f2

fc

(

B

B0

)3 d lnTi
dψ

]

.
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Adding the diamagnetic (16) and the neoclassical (17) contributions to the neutral

viscosity thus gives

〈Rϕ̂ · πn · ∇ψ〉 ' τ
d

dψ

〈

nnT
2
i I

2R2B2
p

eB2

×
[

B2R2

I2

(

d ln pi
dψ

+
e

Ti

dΦi

dψ
+
d lnTi
dψ

)

− (a0 + a1)
f2

fc

(

B

B0

)3 d lnTi
dψ

]〉

, (18)

where Bp = |∇ψ|/R is the poloidal field strength.

Hence it follows that for a plasma without external momentum sources and with

most neutrals concentrated at R = R∗, Eq. (6) implies

d ln pi
dψ

+
e

Ti

dΦ

dψ
=

[

f2

fc
(a0 + a1)

B∗I
2

B3
0R

2
∗

− 1

]

d lnTi
dψ

,

with B∗ = B(R∗) the magnetic field strength at the puffing location. On the other

hand, the toroidal flow velocity is

Viϕ = −RTi
e

(

d ln pi
dψ

+
e

Ti

dΦ

dψ

)

+
a0I

2

eB2
0R

dTi
dψ

.

The rotation velocity can thus be written in the same form as (13),

Viϕ =
I2

eB2
0R

dTi
dψ

FV (R,R∗),

with FV equal to

FV (R,R∗) =

(

B0R

I

)2

+ a0 − (a0 + a1)
f2

fc

R2B∗

R2
∗B0

(19)

in the banana regime.

As in the Pfirsch-Schlüter regime, this result implies that the rotation velocity

depends on the puffing location. Figure 4 shows how the normalized rotation FV in the

outboard midplane varies with puffing location in MAST and Alcator C-Mod. With

outboard puffing the rotation is again in the counter-current direction, but the rotation

speed now becomes smaller if the neutral source is moved towards the inboard side.

Although unlikely to be the case in practice, it even reverses if all the neutrals are

located very close to the inboard midplane and the impurity content is low. Figures

5 and 6 illustrate the corresponding behavior of the electric field, which always points

inwards and is largest with outboard puffing and is given by

−dΦ
dψ

=
Ti
nie

dni
dψ

FE(R∗),

FE(R∗) = 1 + ηi

(

2 − (a0 + a1)
f2

fc

B∗I
2

B3
0R

2
∗

)

.
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5 Effect of an external momentum source

As we have seen, the presence of neutral atoms makes the edge plasma rotate toroidally,

even if there is no active external momentum input such as neutral-beam injection. If

such a momentum source is present, it will modify the rotation and this modification

will depend on the poloidal location of the neutrals since their viscosity has such a

dependence. It is important to note that, according to Eq. (6), the rotation of the

edge plasma is affected by a momentum source even if this source happens to vanish

locally in the edge. Of course, neutral beams are usually mostly aborted in the core of

the plasma. In this case the integral on the right-hand side of Eq. (6) is constant and

represents the total angular momentum deposited in the plasma, all of which must flow

across the flux surfaces at the edge in steady state.

In the Pfirsch-Schlüter regime, where the viscosity is given by Eq. (10), the rotation

velocity is determined by

τ

〈

∇ψ · ∇
[

RTinn

(

Viϕ +
2qiϕ
5pi

)]〉

= − 1

V ′

∫

〈RFϕ〉 dV ≡ − S

V ′
,

where S denotes the total angular momentum deposited in the plasma per unit time.

We again take most neutrals to be in one place poloidally, θ = θ∗, and we write the

toroidal rotation in this place as

Viϕ∗ = −2qiϕ∗
5pi

+ U∗.

Then we obtain

R3
∗B

2
p∗

d(nnTiU∗)

dψ
= − S

τV ′
,

which can be integrated to yield

U∗(ψ) =
S

nn(ψ)Ti(ψ)R3
∗B

2
p∗

∫ ψ0

ψ

dψ′

τ(ψ′)V ′(ψ′)
+ U0,

where ψ0 is the ψ at the last closed flux surface, and U0 is an integration constant.

Comparing this result with Eqs. (1)-(3) gives

ω(ψ) =
1

e

dTi
dψ

(

1 +
(k − 1)I2

B2
0R

2
∗

)

+
U∗

R∗
,

and the toroidal rotation velocity thus finally becomes

Viϕ =
I2

eB2
0R

FV (R,R∗) +
SR

nn(ψ)Ti(ψ)R4
∗B

2
p∗

∫ ψ0

ψ

dψ′

τ(ψ′)V ′(ψ′)
+ U0, (20)
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where the first term is similar to that found without momentum sources, Eq. (13). As

expected, the additional term related to S (which tends to dominate for typical injection

powers) causes the plasma to rotate in the direction of the source. It is interesting to

note that this term, too, depends sensitively on the poloidal location of the neutrals,

primarily due to the factor R4
∗ in the denominator. An entirely analogous expression

is obtained in the banana regime, by combining Eqs. (6) and (18), again giving the

rotation speed as in Eq. (20), but now with FV defined by Eq. (19) rather than by

Eq. (14).

A couple of comments are in order. First, we only expect these expressions to hold in

the edge where there are enough neutrals present to satisfy Eq. (7). In the core, where

nn → 0, some other mechanism must be responsible for angular momentum transport.

Second, the integration constant U0 is in principle determined by the boundary con-

dition at the last closed flux surface, but this may be difficult in practice. In MAST,

for example, the theory is only expected to be valid a few cm into the plasma since

the neutral density is too high at the separatrix. As already remarked, a high enough

neutral concentration affects the ion distribution function, which we have taken to be

entirely neoclassical. It may also be the case that other processes not accounted for in

ordinary neoclassical theory could be important very close to the edge, such as orbit

losses and other effects associated with finite ion orbits. It may therefore be difficult to

determine ψ0 and obtain an absolute prediction for the rotation velocity, but Eq. (20)

nevertheless suggests that this rotation should be substantially different with inboard

and outboard refueling.

The inverse dependence on R4
∗B

2
p∗ in Eq. (20) can be understood by considering flux

surfaces rotating as rigid bodies, with a rotation speed Vϕ = ω(ψ)R. A factor R2
∗B

2
p∗

arises because the spacing between adjacent flux surfaces is inversely proportional to

|∇ψ| = RBp and the neutral diffusion coefficient is proportional to the square of the

mean-free path. The remaining factor R2
∗ reflects the circumstance that the angular

momentum carried by each neutral is equal to miωR
2
∗.
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6 Discussion

As we have seen in the previous three sections, if neutral atoms are responsible for a

major part of the angular momentum transport in the tokamak edge, then the toroidal

rotation and radial electric field should be sensitive to the poloidal location of these

neutrals. This sensitivity is not surprising in the case when momentum is injected

into the plasma by neutral beams or RF waves. The ability of neutral atoms to carry

angular momentum out of the plasma clearly increases with the major radius, so the

rotation should be highest if the neutrals are concentrated on the inboard side of the

torus.

Perhaps more surprising is the conclusion that even if there is no apparent input

of external momentum into the plasma, the neutrals nevertheless cause it to rotate

toroidally. This rotation is proportional to the ion temperature gradient and is in the

opposite direction to the plasma current in the Pfirsch-Schlüter regime. The reason for

this rotation is that the neutral viscosity (10) is not just related to the rotation speed

Viϕ but also to the toroidal heat flux qiϕ, which thus acts as a drive for rotation. On

its own, the term containing Viϕ would damp any rotation, just like ordinary viscosity

in a simple fluid. However, the term containing qiϕ, which is proportional to dTi/dψ,

drives toroidal rotation. Physically, this may be understood by considering the flux of

momentum between two neighboring flux surfaces, A and B, say. Ordinary viscosity

operates if there is a parallel (or toroidal) particle flux on A but not on B. In addition

to flowing along the field, the particles on A also perform a random walk in the radial

direction. Some of the parallel momentum on A therefore spills over to B, which implies

that there is radial transport of parallel momentum. To understand the term in the

viscosity that is proportional to the toroidal heat flux qiϕ, suppose that there are two

kinds of particles on A: fast ones and slow ones. The fast ones are assumed to move

in one direction (the“positive” direction) and the slower ones in the opposite direction,

but let us suppose that there are more slow particles than fast ones so that there is

no net parallel particle flux on A. There is then, however, a heat flux in the positive

direction on A. Now, if the fast particles perform a radial random walk that is faster

than that of the slow ones, there will be a net flux of positive momentum from A to B.

Flux surface B will start rotating although A does not. A parallel particle flux arises

on B as a consequence of the heat flux on A, and since this heat flux is related to
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the radial temperature gradient by neoclassical theory, such a gradient drives plasma

rotation. A similar heat-flux-driven contribution to the viscosity arises in a fully ionized

plasma flowing at a speed comparable to the diamagnetic velocity [29, 30] and can be

interpreted in similar terms.

As mentioned in the Introduction, the poloidal location of edge neutrals has been

observed to affect H-mode access in many tokamaks. It is tempting to speculate that the

results derived here may be related to these observations. The turbulence thought to

be responsible for the poor confinement in L-mode usually “balloons” on the outboard

side of the torus, and it is widely believed that it can be reduced, or even suppressed, by

sheared rotation or a sheared radial electric field. As we have seen, if the edge plasma

is collisional (which is the case in MAST), the toroidal rotation and radial electric field

should be highest when the neutrals are localized on the inboard side, and the shear

should then also be highest. The fact that inboard refueling has the opposite effect

in the banana regime, making the plasma rotate less in the counter-current direction,

should further increase the shear if the plasma is in this regime further into the core.

On the other hand, if the plasma were in the banana regime all the way out to the last

closed flux surface, and if the rotation there were caused by this mechanism, then one

would expect larger shear when the neutrals are localized on the outboard rather than

the inboard side. In both collisionality regimes the presence of heavy impurity ions

promotes counter-current rotation, so that the inboard-outboard difference is enhanced

in the Pfirsch-Schlüter regime and reduced in the banana regime. These results suggest

that flexible refueling may enable some degree of external control of the tokamak edge,

which is desirable since this region plays such an important role for overall plasma

performance.

We close with a remark about the experimental verification of these predictions.

Instead of detecting bulk plasma rotation directly, it is usually easier to measure the

rotation of velocity of impurity ions, from the Doppler shift of their line radiation.

When interpreting such measurements, it must be remembered that the rotation speed

of impurities is different from that of the bulk ions, which makes a direct comparison

with theory difficult. However, the difference in rotation speed between inboard and

outboard puffing should be the same for all ion species, being related to the correspond-

ing difference in the radial electric field. Another way of testing the theory would be

16



to measure both the toroidal and the poloidal rotation of some impurity species, and

compare the inferred the electric field with the theoretical prediction.
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Figure 1: Normalized toroidal outboard rotation as a function of poloidal neutral location

in the Pfirsch-Schlüter regime. θ∗ = 0 corresponds to the outboard midplane, θ∗ = π

to the inboard midplane. The upper three curves are for a typical magnetic equilibrium

in MAST and the lower ones are for Alcator C-Mod. The solid curves correspond to

Zeff = 1, the dashed ones to Zeff = 2, and the dotted ones to Zeff � 1.
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Figure 2: Normalized radial electric field as a function of poloidal neutral location in

MAST in the Pfirsch-Schlüter regime, for Zeff = 1 (solid), Zeff = 2 (dashed) and

Zeff � 1 (dotted). The the lower curves correspond to ηi = 1, and upper curves to

ηi = 2.
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Figure 3: Same as Fig. 2 but for Alcator C-Mod.
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Figure 4: Same as Fig. 1 but for the banana regime.
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Figure 5: Same as Fig. 2 but for the banana regime.
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Figure 6: Same as Fig. 3 but for the banana regime.
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