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Abstract. The conventional ordinary and extraordinary modes in the electron cyclotron range of fre-

quencies are not suitable for heating of and/or driving currents in spherical tori (ST) plasmas. However,

electron Bernstein waves offer an attractive possibility for heating and current drive in this range of

frequencies. In this paper, we summarize our theoretical and numerical results which describe the ex-

citation of electron Bernstein waves in ST plasmas when the extraordinary mode or the ordinary mode

are coupled into the plasma from an external source. In our discussion on the conversion of the ordi-

nary mode to electron Bernstein waves (via the slow extraordinary mode) we illustrate very important

physics, relevant to this conversion process, that has been ignored in previous studies. The particular

physics has to do with the conversion of the slow extraordinary mode to the fast extraordinary mode

that can then propagate out of the plasma and thus reduce the mode conversion to electron Bernstein

waves. This reduction in the mode conversion can occur even when the wave numbers are such that

the ordinary mode cutoff and the slow extraordinary mode cutoff are coincident in space. Further-

more, we also consider the emission of electron Bernstein waves from a thermal plasma. This emission

mode converts to extraordinary and ordinary modes in the vicinity of the upper hybrid resonance. We

describe the general relationship between the conversion coefficients when exciting electron Bernstein

waves using either the extraordinary mode or the ordinary mode, and the emission coefficients when

thermally emitted electron Bernstein waves convert to the extraordinary and ordinary modes.

1. Introduction
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Plasmas in high-β spherical tori, e.g., in NSTX [1] and MAST [2], present a special

experimental challenge when considering heating and current drive by waves in the

electron cyclotron range of frequencies. This is primarily due to such plasmas being

overdense, i.e., ωpe/ωce � 1 where ωpe and ωce are the electron plasma and electron

cyclotron frequencies, respectively. For fundamental or second harmonic heating in such

plasmas, the conventional extraordinary X mode and the ordinary O mode are cutoff

near the edge of the plasma and cannot access the core. For higher harmonics the plasma

is essentially transparent to the X and O modes.

Mode conversion near the plasma edge allows X or O mode polarized power, incident

from free space, to couple to electron Bernstein waves (EBW). The X mode couples to

EBWs in the vicinity of the upper hybrid resonance (UHR). The O mode coupling to

EBWs is via the slow X mode whereby power from the externally excited O mode is first

mode converted to the slow X mode which subsequently mode converts to EBWs near the

UHR. The propagation of EBWs is not density limited and the waves damp effectively

on electrons in the vicinity of the Doppler shifted electron cyclotron resonance (or its

harmonics) [3]. In this paper, we discuss theoretical details of the constraints imposed

on the mode conversion of X and O modes to the EBWs in spherical tori. We shall refer

to the two conversion process as X-B and O-B, respectively, with an understanding that

the O-B process requires an intermediate step whereby the O mode converts to the slow

X mode.

From ray tracing, we have previously shown [3] that EBWs damp very effectively

on electrons in the vicinity of the location of the Doppler-shifted electron cyclotron

resonance (or its harmonics). Consequently, EBWs can also be emitted by a thermal

plasma from near these absorption regions. Such EBWs can propagate out to the upper

hybrid resonance at the edge of the plasma where they mode convert to the X and

2



O modes. The X and O modes propagate towards the lower density region, and the

vacuum, at the edge where they become free space propagating modes and are observed

in the region outside the plasma. A number of experiments have studied this emission

of EBWs in spherical tori [4, 5, 6, 7, 8]. We have also shown that the mode conversion

coefficients for EBW emission are directly related to the mode conversion coefficients for

the excitation of EBWs by sources external to the plasma [9, 10]. This will be illustrated

through results obtained from numerical solutions of a full-wave kinteic description of

mode conversion among EBW and the X and O modes.

It is important to note that when we mention X and O modes in this paper we are

really discussing “quasi X” and “quasi O” modes. It is only for purely perpendicular

propagation across the ambient magnetic field that we have X and O modes – the X

mode being elliptically polarized and the O mode being linearly polarized. For oblique

propagation the polarizations are mixed. However, the two modes can still be clearly

distinguished for oblique propagation.

2. Excitation of Electron Bernstein Waves — Cold Plasma Model

We can obtain important analytical results by first considering a simplified model

in which the plasma is assumed to be cold and the poloidal magnetic field is ignored.

The wave fields are assumed to be independent of any poloidal variations. Then the

excitation of EBWs is studied in a slab geometry model where the x coordinate is in the

direction of the inhomogeneity, y is along the poloidal direction, and z along the toroidal

direction. Assuming that the magnetic field is along z, the propagation of waves in an

inhomogeneous cold and collisionless plasma is given by

K⊥
d2Ey

dx2 +
ω2

c2

(
K2

⊥ −K2
X − c2

ω2k
2
‖K⊥

)
Ey = k‖KXF (1)

d

dx

[
1
K‖

dF

dx

]
+
ω2

c2

(
1 − c2

ω2

k2
‖

K⊥

)
F =

ω2

c2
KX

K⊥
k‖Ey (2)
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where F = ik‖Ex −dEz/dx, dF/dx = (ω2/c2)K‖Ez, c is the speed of light, ω is the wave

frequency, k‖ is the component of the wave vector �k along the magnetic field �B = ẑB0(x),

K⊥ = 1 − ω2
pe(x)

ω2(x) − ω2
ce(x)

, KX = −ωce(x)
ω

(
ω2

pe(x)
ω2 − ω2

ce(x)

)
, K‖ = 1 − ω2

pe(x)
ω2 (3)

ωpe(x) and ωce(x) are the electron plasma and cyclotron angular frequencies, respectively.

The variation of the fields in the z directions is assumed to be of the form exp(ik‖z) and

the time dependence is assumed to be of the form exp(−iωt).
For the case when k‖ = 0, (1) and (2) are uncoupled and describe the propagation

of the X mode and the O mode, respectively, across the magnetic field. The X mode

equation (1) has a resonance at K⊥ = 0 corresponding to the UHR. Equation (1) also

has two cutoffs corresponding to the zeros of K2
⊥ − K2

X . The resonance absorption of

X mode power at the UHR corresponds to the power mode converted to the EBWs [3].

Since the O mode is completely decoupled from the X mode, if an O mode is excited at

the edge there will be no resonance absorption. The power will be reflected back out at

the O mode cutoff located at the position where K‖ = 0. In this analysis we also assume

that there is no electron cyclotron resonance between the edge of the plasma and the

cutoffs of the X and O modes. This is generally true in NSTX and MAST. Thus, the

only absorption is at the UHR.

If we assume that, for sufficiently small n‖ = ck‖/ω, only the X mode is excited at

the plasma boundary, then the equation for X mode propagation is approximately given

by

(
K⊥ − n2

‖
) d2Ey

dx2 +
ω2

c2

[(
K⊥ − n2

‖
)2 −K2

X

]
Ey = 0 . (4)

This equation is obtained from (1) and (2) by assuming that Ez ≈ 0. In this approx-

imation the X mode resonance is no longer at K⊥ = 0 but at K⊥ − n2
‖ = 0 which,

for small n‖, is a small correction. In this case (4) describes the propagation of the

4



X mode into a region of increasing density as it passes through the right-hand cutoff,

the upper hybrid resonance, and the left-hand cutoff. We refer to this as the triplet

cutoff-resonance-cutoff mode conversion process which has been discussed extensively in

[11]. Following the recipe provided in [11], we find that the fraction of the power on the

X mode that is converted to EBWs is given by

CXB (η, φ) = 4e−πη
(
1 − e−πη

)
cos2 (φ) (5)

where

φ =
π

2
+

1
2
cos−1

(
N2

R −N2
I

N2
R +N2

I

)
(6)

N ≡ NR + iNI , with

N = ln
(
iη

η1

)
+ π

[
i coth

(
π

2
η
)
+ cot

(
π

2
η1

)]
− 1
η1

− i

η

+ψ
(
1 +

η1

2

)
− ψ

(
1 +

iη

2

)
(7)

ψ is the Psi function, and

η =
(
1 − n2

‖
)3/2

[
ωceLn

cα

(√
1 + α2 − 1

)2
]
UHR

(8)

η1 =
(
1 − n2

‖
)3/2

[
ωceLn

cα

(√
1 + α2 + 1

)2
]
UHR

. (9)

In (8) and (9) the right-hand sides are evaluated at the UHR (K⊥ = 0), Ln is the density

scalelength, and α = ωpe/ωce.

In Figure 1 we plot

C
(max)
XB = 4e−πη

(
1 − e−πη

)
(10)

as a function of η. This gives the envelope of (5), i.e., the maximum possible fractional

power of the X mode that can be mode converted to EBWs. Alternatively, from (5),

C
(max)
XB = CXB (η, nπ) where n is any integer including zero. For η ≈ 0.22, C(max)

XB = 1

which implies that all of the X mode power is converted to EBW. From Fig. 1 we note
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Figure 1: C(max)
XB as a function of η

that C(max)
XB ≥ 0.5 if 0.05 <∼ η <∼ 0.6. For n‖ = 0, from (8) we find that the necessary

condition for the X-B mode conversion to be better than 50% requires

0.013 T cm <∼ |BLn|UHR
<∼ 0.16 T cm (11)

This shows that the X-B mode conversion process is efficient for sharp density gradients,

i.e., short density scalelengths. As n‖ is increased from zero, the fraction of the X mode

power that is coupled to EBWs decreases.

From (2), it is clear that for k‖ = 0 the O mode does not couple power to the EBW.

For the O mode power to couple to EBW, it is necessary to have oblique propagation of

the O mode, i.e., k‖ 	= 0. Then the O mode power can couple to the X mode which, in

turn, can undergo resonance absorption. The necessary condition for optimum coupling

of the O mode power to the X mode is [12]

n‖,c =
ck‖
ω

=
[(

1 +
ω

ωce

)−1/2
]

c

(12)

where the right-hand side is to be evaluated at the spatial location where ω = ωpe.

However, in order for the O mode power not to get reflected back out on the X mode
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requires that η > 1 [3, 9]. From (8) we find that this condition is satisfied when the

density scalelength is longer than that required for optimum mode conversion from the

X mode.

From the above discussion, we conclude that the X-B and the O-X-B mode conver-

sion processes are optimized in different regions of the two-dimensional parameter space

spanned by wave frequency and parallel wavelength, and at different locations inside the

plasma. The X-B mode conversion process is optimized for k‖ ≈ 0 and wave frequencies

which place the UHR in the short density scalelength region. The O-X-B mode conver-

sion process is optimized for k‖ given in (12) and for wave frequencies which place the

UHR in a longer density scalelength region of the plasma. The optimum X-B process

occurs closer to the edge of the plasma than the optimum O-X-B conversion.

3. Excitation of Electron Bernstein Waves — Kinetic Plasma Model

We extend the analysis of the previous section to include the EBW explicitly into

the mode conversion equations. Furthermore, we will explicitly include the poloidal

magnetic field as this forms an important component of the mode conversion equations

in a ST plasma. The development of the approximate kinetic analysis has been detailed

previously [3, 9, 13]. Here we just provide the basic equations for completeness.

The equilibrium magnetic field is assumed to be sheared with the form

�B0(x) ≡ By(x)ŷ +Bz(x)ẑ = B0(x) sinΨ(x)ŷ +B0(x) cosΨ(x)ẑ (13)

where Ψ is the angle between �B0 and the z-axis. The variation of the fields in the y

and z directions is assumed to be of the form exp(ikyy + ikzz) where ky and kz are the

appropriate components of the wave vectors. The approximate full wave description of

the propagation of the X mode, O mode, and the EBWs is given by

d�F

dξ
= i

↔
AK · �F (14)
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where ξ = ωx/c is the normalized spatial variable,

�F T = [Ex Ey Ez (iχ1E
′
x) cBz (−cBy)] (15)

is the transpose of the field vector �F , E ′
x = (dEx/dξ),

↔
AK =




0 0 0 −χ−1
1 0 0

ny 0 0 0 1 0

nz 0 0 0 0 1

Kxx χxy χxz 0 ny nz

−χxy Kyy − n2
z

χyz + nynz 0 0 0

−χxz χyz + nynz Kzz − n2
y 0 0 0




(16)

↔
K =

↔
I +

↔
χ (17)

↔
χ=

−ω2
p

(ω2 − ω2
c )




1 −iωcz/ω iωcy/ω

iωcz/ω 1 − ω2
cy/ω

2 −ωcyωcz/ω
2

−iωcy/ω −ωcyωcz/ω
2 1 − ω2

cz/ω
2


 (18)

where ωp(x) is the electron plasma angular frequency, ωcy(x) = eBy(x)/me ωcz(x) =

eBz(x)/me are the electron cyclotron angular frequencies for the poloidal and toroidal

fields, respectively, ωc =
√
ω2

cy + ω2
cz, ny = cky/ω, nz = ckz/ω,

χ1 =
(
vT

c

ωp

ωc

)2
(

ω2

ω2 − ω2
c

− ω2

ω2 − 4ω2
c

)
(19)

and vT =
√
T (x)/me is the electron thermal velocity corresponding to the temperature

T (x).

The only component of the electromagnetic wave field whose evolution is not given

by (14) is Bx, which can be obtained from Faraday’s equation [9]

cBx = nyEz − nzEy (20)
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Thus, the kinetic full-wave dynamics given by (14)–(20) describe the coupling between

the X mode, the O mode, and the EBW, i.e., the kinetic mode conversion process. The

procedure to solve these equations numerically with the appropriate boundary conditions

has been detailed in [9].

The total, electromagnetic and kinetic, time-averaged energy flow density in the

x-direction is [3, 13]

〈�s 〉x =
1
4

√
ε0
µ0

�F †· ↔
R · �F (21)

where �F † is the transpose of the complex conjugate of �F and

↔
R=




| 1 0 0

0 | 0 1 0

| 0 0 1

− − − − − − −
1 0 0 |
0 1 0 | 0

0 0 1 |




. (22)

Then, from (14) we find that
d

dξ
(�F †· ↔

R · �F ) = 0 (23)

This equation is needed to ensure that the numerical scheme solving the mode conversion

equations is conserving the total, electromagnetic and kinetic, time-averaged energy flow

density. The conservation condition is consistent with the assumption that there is no

damping in the mode conversion region; i.e., we assume that the EBW damping at

the Doppler shifted electron cyclotron harmonic occurs away from the mode conversion

region inside the plasma.

In the plasma region away from where the mode conversion occurs, the solutions to

(14) can be obtained using the WKB technique. In this case the X mode, the O mode,
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and the EBW are distinctly identifiable, and the energy flow density along these waves

can be determined using (21). The various mode conversion coefficients are obtained by

the appropriate ratios of these energy flow densities.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

B

B
y

B
z

x   (meter)

Figure 2: The magnitudes of the poloidal component By (dot-dashed), the toroidal

component Bz (dashed), and the total magnetic field B (solid line) in Tesla as a function

of the minor radius. x = 0 is the center of the plasma and x = 0.44 m is the outside

edge of the plasma.

The mode conversion equations (14)–(20) are not amenable to analytical solutions.

We have to resort to a fully numerical integration of (14)–(20) with the appropriate

boundary conditions. To illustrate the physics involved in the mode conversion coupling

between the X mode, the O mode, and the EBWs, we will study numerical solutions

obtained for NSTX-type parameters [3] corresponding to a high-β scenario. The specific

plasma parameters are as follows. The Shafranov-shifted major radius is R = 1.05 m,

the minor radius is a = 0.44 m, the peak electron density is n0 = 3 × 1019 m−3, the
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peak electron temperature is T0 = 3 keV, the density profile is ne = nE + (n0 − nE)(1−
x2/a2)1/2, and the temperature profile is Te = TE + (T0 − TE)(1 − x2/a2)2, where nE

and TE are the edge density and temperature, respectively, with nE/n0 = 0.02 and

T0/TE = 0.02. The magnetic field profile is taken to be that shown in Figure 2

4. Mode Conversion to Electron Bernstein Waves — No poloidal field

Let us consider the coupling of an externally launched X mode or O mode to EBWs.

To test our analytical analysis of the previous section we will assume that, in (13),

Ψ(x) ≡ 0 and B0 is the same as B shown in Figure 3. This primarily eliminates the

effect of the poloidal field on the mode conversion process and simplifies the analysis.

The influence of the poloidal field on mode conversion will be addressed in a subsequent

section. In what follows in this section we will set ny = 0 so that, consequently, nz = n‖

is the wave number along the magnetic field. Without the poloidal magnetic field the

y-variation is not needed since one can transform to a frame where the z-axis is along

the magnetic field and the x-axis is perpendicular to it.

4.1. Mode Conversion from an X mode

Figure 3 compares the power mode conversion coefficient to EBWs from the X mode

for a range of frequencies. In this figure C(max)
XB as obtained from (10), CXB as ob-

tained from (5)–(9), and C(k)
XB as obtained from the numerical solution of (14)–(20).

For frequencies below about 15.5 GHz, C(k)
XB is bounded by C(max)

XB and and CXB. This

indicates that the theoretical maximum CXB is also a maximum of the kinetic mode

conversion process. Also, the analytical calculation of the phase in (5) is reasonably

good. For frequencies greater than about 16 GHz there are differences between the

analytical estimates and the kinetic numerical results. The reason for this difference

is simple. For frequencies below 15.5 GHz the UHR is between the first and second
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harmonics of the electron cyclotron frequencies. For frequencies above 15.5 GHz the

UHR is between the second and third harmonics of the electron cyclotron frequency.

As the UHR frequency ωU transits through these domains the character of the kinetic

dispersion relation changes [9]. For ωU < 2ωce the slow X mode couples to the EBW at

the UHR and does not propagate past the UHR towards the low density region of the

plasma. For ωU > 2ωce the slow X mode propagates through the UHR towards the lower

density region and couples to the backward propagating EBW closer to the edge of the

plasma than the location of the UHR. This change in the character of the slow X mode

coupling to the EBW is not part of the cold plasma description. It appears only in the

kinetic formulation (see Figs. 6 and 7 in[9]). For ωU < 2ωce the mode conversion region is

described by a cutoff-resonance-cutoff triplet, [9, 11] while for ω > 2ωce the propagation

of the slow X mode through the UHR changes the description to a cutoff-cutoff doublet

[9]. The oscillations in C(k)
XB are possibly due to the change in wave phase between the

cutoffs. It is difficult to develop an analytical picture as the conversion equation, even

for perpendicular propagation, is at least fourth order. Even though the wave proper-

ties change for ωU > 2ωce , C(max)
XB still represents, approximately, the maximum power

mode conversion coefficient. In plotting C(k)
XB in Fig. 3 there is a gap around 15.5 GHz.

Around this frequency the second electron cyclotron harmonic transits through the mode

conversion region. Since electron cyclotron damping is not included in the formulation

of the kinetic mode conversion equations [9], we do not carry out any computations in

this region. An important reason for not including damping in the kinetic formulation

is that it would not be desirable to have electron cyclotron resonances near the mode

conversion region in actual experiments. The presence of such resonances would inhibit

the mode conversion process and lead to electron absorption near the edge of the plasma

where mode conversion in STs will take place.
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Figure 3: A comparison of C(max)
XB (solid line) and CXB (dashed line), from (5)–(9), as

a function of the X mode frequency for NSTX-type parameters. C(k)
XB (dot-dashed line)

is the power mode conversion coefficient obtained from the numerical solution of the

kinetic equations (14)–(20).

Let us consider the mode conversion at a particular frequency and as a function of

the toroidal wave number nz. In Fig. 4 we plot the various power conversion coefficients

for an incoming X mode frequency of 16.5 GHz. For nz = 0 there is no coupling to the

O mode as the power reflection coefficient RXO is zero. This is consistent with Eqs. (1)

and (2) where, for n‖ ≡ nz = 0 the O mode equation (2) is completely decoupled from

the X mode equation (1). For small nz there is essentially no power coupled to the O

mode.

From Fig. 3 we note that the conversion of the X mode to EBWs is most effective

for frequencies around 16 GHz. This corresponds to the conversion layer being nearer

the edge of the plasma where the density gradients are steep and the density scalelength

is close to the critial value where, from Eq. (8) η ≈ 0.22. For higher frequencies, the
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mode conversion region moves farther into the plasma where the density scalelength at

the UHR are becoming long and η � 0.22. For lower frequencies the mode conversion

region moves farther out towards the edge of the plasma where the density scalelength

at the UHR is becoming short and η < 0.22.

From Fig. 4 we observe that, for a given frequency, the mode conversion of the X

mode to EBWs is effective for a broad range of nz with the maximum occurring for

purely perpendicular propagation when there is no coupling to the O mode.

From Figs. 3 and 4 we conclude that the conversion of the X mode to EBWs is most

effective when the conversion region is nearer the edge of the plasma
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Figure 4: Power conversion coefficients as a function of nz, for an externally launched

X mode, as obtained from the numerical solution of the kinteic equations. CXB is the

fractional power mode converted to EBWs, and RXX and RXO are the fractional powers

reflected out on the X mode and O mode, respectively. The X mode frequency is 16.5

GHz.

4.2. Mode Conversion from an O mode
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The conversion of O mode to the slow X mode has been extensively studied, the-

oretically, in the literature [12, 15, 16, 17, 18, 19]. The coupling of O mode power to

slow X mode occurs near a critical parallel wave number, given by Eq. (12), when the

left-hand X cutoff is near the O mode cutoff [12]. The previous studies have primarily

looked at the transmission coefficient from the O mode to the slow X mode through the

two respective cutoffs [12, 15, 16, 18, 19]. It is then assumed that the O mode power

that tunnels to the slow X mode will couple to the EBW at the UHR. The transmission

coefficient is dependent on the density scalelength in the vicinity of the cutoffs and the

range of parallel wavenumbers that can lead to effective transmission of the O mode to

the slow X mode increases as the density scalelength decreases [16, 19]. These studies

completely ignore the possibility that the slow X mode, in the vicinity of the UHR, can

couple power to the fast X mode which, subsequently, propagates out to the edge of

the plasma and reduces the power available to the EBWs. For small scalelengths the

right-hand X mode cutoff moves closer to the UHR reducing η in Eq. (8). This increases

the tunneling of the slow X mode to the fast X mode. So the condition for coupling

effectively from the O mode to the slow X mode requires that the fast X mode cutoff be

sufficiently removed from the UHR, i.e., η > 1, or long scalelengths.

Figure 5 shows the power conversion coefficients, as a function of nz when an O

mode, with a frequency of 16.5 GHz, is launched into the plasma. From Eq. (12), the

critical value of nz,c ≡ n‖,c is approximately 0.57. In the proximity of this critical value

we note that the reflection on the O mode ROO is nearly zero and the mode converted

power COB is a maximum. However, this maximum value is less than 0.5 which implies

that less than half of the input O mode power is being coupled to the EBWs even though

we are at the optimum n‖. The rest of the power is being reflected back out on the X

mode and is indicated by ROX . This important effect has been completely ignored in
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previous studies of O-B mode conversion and is very important to properly understand

the mode conversion of the O mode to EBWs via the slow X mode.

If we increase the O mode frequency to 28 GHz, the corresponding power coversion

coefficients are plotted in Fig. 6. For this frequency the critical value of nz,c ≡ n‖,c is

approximately 0.47. We now note, from COB, that nearly all of the O mode power is

converted to the EBWs. The reflection out on the X mode ROX is small. When COB

is a maximum ROO is a minimum. From numerical calculations we find that 28 GHz is

approximately the lowest frequency where 100% mode conversion is possible in the O-B

mode conversion scenario. This corresponds to higher harmonic resonances being inside

the plasma than for the case of optimized X-B conversion.

A comparison of Figs. 5 and 6 provides a physical insight into the conversion of the

O mode to EBWs. The range of nz’s for which COB is about 50% of its maximum

value increases as the frequency decreases. A decrease in the frequency moves the mode

conversion region farther towards the edge of the plasma into the region of small density

scalelengths. This picture is consistent with previous theories on the conversion of O

mode to EBWs [12, 15, 16, 18, 19]. However, the maximum power mode conversion

coefficient decreases with decreasing frequency as power reflected on the X mode, ROX ,

increases. The reflection coefficient ROX is proportional to exp(−πη) with η given in Eq.

(8). As the scalelength becomes smaller, η becomes smaller and ROX increases. Thus,

for efficient conversion of O mode power to EBWs, it is not only necessary to have a

critical n‖,c, given by (12), but, importantly, to also have η > 1.

A comparison of the X-B and O-B conversion processes shows that the X-B conversion

is optimized for lower frequencies leading to the mode conversion region being in the

short density scalelength part of the plasma. The optimum O-B conversion requires

longer density scalelengths and ocurrs farther into the plasma. Furthermore, the X-B
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mode conversion process is efficient over a wider range of parallel wavenumbers than the

O-B conversion process.
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Figure 5: Power conversion coefficients as a function of nz, for an externally launched

O mode, as obtained from the numerical solution of the kinteic equations. COB is the

fractional power mode converted to EBWs, and ROX and ROO are the fractional powers

reflected out on the X mode and O mode, respectively. The O mode frequency is 16.5

GHz.

5. Mode Conversion to Electron Bernstein Waves — Effects of poloidal field

Let us now study the changes in the mode conversion process due to the poloidal

magnetic field. This also requires that we include the effect of the poloidal wave num-

bers ny. The parameters used for our studies are NSTX-type discussed earlier and the

magnetic field is as shown in Fig. 2. The major effect of including the poloidal field

is that the power flow mode conversion coefficients are no longer symmetric in nz (or

ny). In Fig. 7 we plot the fractional power mode converted to EBWs from an X mode,

CXB, as function of ny for three different values of nz. The asymmetry in both ny and

17



0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

n
z

fr
ac

tio
na

l p
ow

er

R
OO

 
C

OB
 

R
OX

 

Figure 6: Same as Fig. 5 except that the the O mode frequency is 28.0 GHz.

nz is evident. This asymmetry is further amplified for the O-B conversion process as

illustrated in Fig. 8. (In the case of Fig. 6, corresponding to no poloidal field, the con-

version coefficients are found to be completely symmetric around nz = 0.) For the O-B

conversion process it is important to choose the O mode launch angle appropriately with

respect to the poloidal field and the toroidal field. For X-B conversion there is a broad

range of ny and nz for effective conversion to EBWs.

6. Emission of Electron Bernstein Waves

From ray tracing analysis we have shown that EBWs are locally and strongly ab-

sorbed at the Doppler shifted electron cyclotron resonance or its harmonics [3]. The

strong and localized absorption implies that thermal emission of EBWs can occur for

frequencies corresponding to the local Doppler-shifted electron cyclotron frequency. This

emission then converts, at the UHR, to the X and O modes which are then observed

in the vacuum region. The excitation and emission of EBWs has been observed experi-

mentally on spherical tori [4, 5, 6, 7, 8].
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Figure 7: Fractional power mode converted to EBWs CXB as a function of ny, for an

externally launched X mode for three different values of nz. The wave frequency is 16.5

GHz and the poloidal field is included in the calculations.
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Figure 8: Fractional power mode converted to EBWs COB as a function of ny, for an

externally launched O mode for three different values of nz. The wave frequency is 28

GHz and the poloidal field is included in the calculations.
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The kinetic model we have developed allows us to study the mode conversion of

emitted EBWs to X and O modes. This is not possible in the cold plasma model

where the power flow conversion coefficient to the EBW is given by the power resonantly

absorbed at the UHR. In order to study the emission we need to have a proper description

of the EBWs.

Figure 9 shows the mode conversion emission coefficients for an EBW propagating

out to the edge and converting to X and O modes at the UHR. The emission coefficients

of the X and O modes are given by EX and EO, respectively, and RB is the fraction of

the emitted EBW that is reflected back into the plasma. The results in Fig. 9 are for

the case of no poloidal field and the parameters are similar to those in section 4 above.
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Figure 9: Power mode conversion emission coefficients as a function of nz for the case of

no poloidal field. The emitted EBW wave frequency is assumed to be 16.5 GHz. EX and

EO are fractions of the emitted EBW power that is converted to the X and O modes,

respectively. RB is the fraction of EBW emitted power that is reflected back into the

plasma.
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If we compare Fig. 9 with Figs. 4 and 5 it becomes evident that

EX = CXB and EO = COB (24)

In other words, the fraction of the the X mode power flow that is mode converted to

EBWs when an X mode is launched from the low density side is the same as the emitted

EBW energy flow that is mode converted to an X mode that propagates out into the low

density region. Similarly, the fraction of the O mode energy flow that is mode converted

to EBWs when an O mode is launched from the low density side is the same as the

emitted EBW energy flow that is mode converted to an O mode that propagates out

into the low density region. The emitted X and O modes propagate out into the vaccum

region where they are observed in experiments.

Also upon comparing Figs. 4 and 5 we note that

RXO = ROX (25)

This implies that for an X mode launched from the outside, the fraction of the X mode

power that is reflected back out on the O mode is the same as the fraction of the O

mode power that is reflected back out on the X mode for an O mode launched from the

outside,

The symmetry relations in (24) and (25) are, in fact, quite general and can be derived,

from first principles, using considerations of energy flow conservation and energy flow

under time reversal [9, 10]. Thus, the symmetry relations hold even for the case when

the effect of the poloidal field is included in our studies of mode conversion.

The equality between the emission coefficients and the excitation coefficients also

points to the fact that optimized mode conversion heating and current drive experiments

can be designed on the basis of the optimized emission results. The conditions for which

the X mode (or the O mode) emission is most pronounced will be the conditions for
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which the X-B (or the O-B) mode conversion is maximized.

7. Conclusions

From our studies of the mode conversion process in which power from an externally

launched X mode or O mode can be coupled to EBWs in a ST plasma, we note that

the two processes, X-B and O-B, are optimized in different regions of parameter space

spanned by the parallel wave numbers and the wave frequency. The X-B conversion is

optimized for a broad range of parallel wave numbers with a peak at, or near, perpen-

dicular (to the magnetic field) propagation. The O-B conversion process is optimized

over a narrower range of parallel wave numbers and peaks around a criticial parallel

wave number for which the O mode cutoff and the left-hand X mode cutoff coincide.

Furthermore, the O-B conversion process is a maximum at a higher wave frequency

compared to the X-B conversion process. Consequently, the O-B conversion takes place

farther into the plasma than the X-B conversion. This implies that the density gradient

scalelength within the mode conversion region is longer for the O-B process than for the

X-B process. If the O-B process is moved into the region of short density scalelengths,

part of the O mode power is reflected back out on the X mode. This effect has been

ignored in previous studies. These studies showed that the short density scalelengths in

the mode conversion region increased the range of parallel wave numbers for which the

O-B conversion process was efficient. They completely ignored the coupling of the slow

X mode to the fast X mode which neutralizes this proposed advantage.

We have shown that the mode conversion emission coefficients are related to the mode

conversion excitation coefficients. This symmetry is very useful from an experimental

point of view. Optimized mode conversion heating and current drive experiments can

be designed on the basis of the emission results. The conditions for which the X mode

(or the O mode) emission is most pronounced will be the conditions for which the X-B
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(or the O-B) mode conversion is maximized.
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