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I Introduction
The second paper of the sequence presents a series of results obtained by nu-
merically solving the resistive MHD marginal stability transport equations
derived in Part I. Comparisons with experimental, theoretical, and computa-
tional studies are presented. Specifically, three different types of applications
are considered.

First, direct comparisons of TE and p are made between the marginal
stability model and RFP data obtained from the two existing main devices,
MST and RFX. The agreement .is reasonably good keeping in mind that the
theoretical model has zero free parameters to adjust.

Second, scaling relations showing the dependence of rE and Op on I, a, and
n are presented. These are compared with other theories and computational
models as well as experimental data, which is rather sparse at this point in
time. The marginal stability model gives the most complete set of scaling
relations to date. These relations predict the confinement behavior of any
given device as parameters are varied and again agree reasonably well with

the limited amount of data available. Future experiments are needed to
further confirm or deny the accuracy of the model.

Third, the marginal stability model is used to interpret a widely used

empirical curve obtained by Werley several years ago [1]. This curve predicts

the maximum value of -rE for any given device as a function of I, a, and
n. At first glance the scaling dependence of Werley's empirical curve seems
very different from the marginal stability scaling relations presented here.
However, when a proper interpretation of "maximum TE" is invoked, there

is again reasonable agreement.
Before proceeding with the results it is helpful to carefully define the two

critical parameters rE and Op used in the analysis. The definitions used are

the standard ones. In particular, the formula for 0,, is given by:

,.'O a pr dr (1)
122B2a B

where Boa = poI/27ra, p = nT, and T, = Ti = T/2. The steady state energy
confinement time is defined in terms of the heat flux at the wall assuming
that anomalous electron heat conduction is the primary loss mechanism

dT 3 *a
are -- = - 3 pr dr (2)

r a TE I
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The steady state energy balance equation then gives

. 3 f pr dr
TE -fa( 2 (3)

2 fo (772 pV -v) r dr()

The ohmic term can be expressed in terms of plasma equilibrium profiles
(assuming for instance Spitzer's formula for plasma resistivity). However
the evaluation of the dynamo term pV -v is quite complicated, requiring a
knowledge of the nonlinear turbulent fluctuations. Note that under the as-
sumption that these fluctuations are incompressible (V -v = 0), the dynamo
term exactly vanishes. It is easy to show that this term also vanishes if the
adiabatic form of the energy equation is used. Neither of these conditions is
valid for the present model.

Nevertheless, even without invoking incompressibility, or adiabaticity,
there is some belief based on experimental data that the dynamo term might
actually average out to zero when integrated over the plasma volume. That
is, physically the dynamo transfers energy from one region of the plasma to
another, but does not directly generate a large net energy loss. It is this belief
coupled with complexity of explicitly dealing with the turbulent fluctuations
that motivates the use of a simpler definition of energy confinement time,
one in which the dynamo term is neglected

3 f pr dr
TE a (4)

2 Q jr dr

With these definitions, the resistive MHD marginal stability model has been
solved for a wide number of cases. The results are discussed in the remainder
of the text.

II Comparison with Standard RFP Experi-
ments in MST and RFX

A comparison is made between the marginal stability model and standard
RFP discharges for MST and RFX (whose characteristic parameters are listed
in Table 1). A standard RFP discharge is defined as one in which there is no
profile control, PPCD, or similar applied techniques aiming at improving the
confinement. Note that the MST data are ensemble averages of similar dis-
charges, combined to reconstruct the core temperature profile (see Ref. [2]),
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while the RFX data corresponds more to the observed range of parameters
in standard RFP operation.

The first step is to choose the plasma parameters in the model such that
a fair comparison with the experiments can be made. Recall that the model
has only three parameters that can be used to match experimental data: two
of them correspond to the pair of plasma parameters that define Taylor's
relaxed state, (i.e. p and BO, or <1t and Kh, or E and I, and so on). The
third parameter is the core plasma density (which is constant for 0 < r < r2).
Each of these is a known physical quantity from the data. In practice the
experimental values of toroidal flux, toroidal current and core density are
used to determine Bzo, p, and no. They are given in Table 2.

By numerically solving the model, one first finds the not unexpected
general result that the poloidal number m = 1 is most stringent in terms of
the marginal stability condition (see Fig. 1). This can be easily seen from
the tearing-mode marginality condition (see Part I), which indicates that the
pressure gradient is proportional to the square root of the poloidal number
m. Fig. 1 also shows the curves for ' n from Iteration I (zero pressure
gradient) and Iteration II (containing the plasma pressure from Iteration I).
Note that no significant changes occur by introducing the pressure, aside
from a small difference around the axis. This region has a small impact on
the pressure profile generated from Iteration I, since p' on axis is already very
flat due to Suydam's marginality condition. Overall, the relative change in
plasma pressure from Iteration I to Iteration II is less that 10%, so that
Iteration II already shows good convergence.

In Figs. 2 and 3, the numerical temperature profiles for MST and RFX
are shown, together with the radial locations of the various transition points
in the model. In Figs. 4 and 5, the profiles for the self-consistent x± for MST
and RFX are shown. Observe the area of low thermal transport around
the reversal layer, corresponding to the best confinement region (steepest
pressure gradient). Also the Xi corresponding to resistive MHD marginal
stability transport, as evaluated from the model, is typically about 20 -
60m 2/s throughout most of the plasma core. This is about two orders of
magnitude larger than the classical value.

Finally, in Tables 3 and 4, the experimental confinement parameters given
in Table 1 are compared with the results from the marginal stability model as
well as other transport models. These comparisons show a reasonable agree-
ment with the marginal stability model, in contrast to the predictions of the
other transport models (i.e. classical perpendicular transport or transport

3



determined by Suydam's condition for marginal stability).

III Scaling Relations for TE and /p
The second type of result obtained with the model is the extraction of scaling
laws for rE and Op. A large (~ 100) database of simulations has been con-
structed, by solving the resistive MHD marginal stability model. Each data
point takes about two hours of computing time on a Sun Ultra5 workstation.
Most of the time is spent calculating the detailed radial profile for A' on
a fine grid (- 500 grid points). For ease of comparison with experiments
the quantities OP and rE are expressed in terms of the following independent
plasma parameters:

I = 27r [ jzr dr = 2 Bra
a M

N 27r Ianr dr

a -+ minor radius

. 27raBO,

(5)

A multiple linear regression of the numerical data base leads to the fol-
lowing scaling relations:

TE = I'. N-0 .2 5 a. 6 G(O) (6)

O = - 0.75 - N 49 - a-0 16 -K(1) (7)

The model also explicitely determines the functions G(E) and K(O) as a
function of 9 as shown in Figs. 6 and 7, respectively, for the parameters
corresponding to the MST Standard Shot given in Table 2. Note that G(E)
and K(s) are completely determined. There are no free parameters. Thus,
the magnitude as well as the scaling is predicted for rE and ,.

Note that varying 8 throughout its range, between Omin (given by the
reversal condition) and 9m. (given by the tearing-mode instability condition
A' > 0 occurring somewhere in the plasma region at , = 0), leads to only a
small change in , and rE. The scaling relations are only weakly dependent
on E and show a broad peak around typical RFP operational values, implying
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somewhat poorer confinement in the proximity of emn and .max This is
in reasonable agreement with experimental results (see Ref. [3]), where no
strong effect of confinement performance versus e is observed.

IV Comparison with Other Transport
Models

This section compares the results obtained from the resistive MHD marginal
stability transport model, with the predictions and the scalings obtained
from other transport models. Of particular interest are the quantitative
differences in the predicted values of rE and Op. Three different transport
models are discussed. The first one assumes a plasma turbulence marginal
stability model dominated by ideal interchange modes. This corresponds to
replacing the tearing-mode marginal condition with its analogue for ideal
interchange modes, the Suydam criterion. The second scenario assumes the
transport to be purely classical, as described by Braginskii in Ref. [4]. The
final type of transport is described by Bohm diffusion (see Ref. [5]). A brief
physical description of each of these models is now presented.

A Ideal Interchange-Mode Dominated Transport

For this transport scenario, it is easy to show that the energy confinement
time scales as follows

IPa 2

TE 3 . Gs(6) [sec] (8)
NU

while the beta poloidal scales as

Op = Ks(6)- (9)

Here the units are as usual I[MA], N[10 2 0m- 1], and a[m]. The coefficients
Gs and Ks, given as functions of E, typically exceed the experimental values
by a factor of about 4 for Op and 40 for TE (see Tables 3 and 4 for specific
comparisons). Note the strong scaling with I and N as compared to the
resistive MHD model.
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B Classical Transport

The classical model is obtained by assuming that the transport coefficients
are given by Braginskii's expressions [4]. In this case, rE and #, scale as
follows

TE = L3 2G c (e) [sec]
N2 (10)

p = Kc (8)

exactly coinciding with the scaling found for the ideal interchange-mode dom-
inated transport model. Also the magnitudes, given by the coefficients GC
and KC, are comparable (see Table 3 and 4). Thus, classical transport also
significantly exceeds the experimental values.

C Transport described by Bohm Diffusion

An anomalous transport model was suggested by Bohm in 1949 (see Ref. [5]).
He proposed the following scaling relation for the particle diffusion coefficient
D

DT
D = T(11)

16B '

with T in [eV] and B in [Tesla]. Even today, there is still no rigorous deriva-
tion of Eq. (11), in terms of a specific physical mechanism. Nevertheless,
Bohm diffusion is frequently used as a test scaling relation for comparison
with data in which the numerical coefficient is extracted by data fitting. For
the present purpose of describing the Bohm-diffusion transport model, the
same dependence given by Eq. (11) is assumed for the thermal diffusivity:

T
0- = C , (12)

although no physical argument is available to justify the choice of a particular
numerical coefficient C. Thus, only the scaling for TE and #p is evaluated and
compared with the other models. The scaling for confinement in the case of
Bohm diffusion is

5
12 9 N7

TE ~ I7N7a7, #, 8 2 (13)
1707
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The scaling law derived from Bohm diffusion essentially shows a very weak
dependence of rE on I and N.

D Conclusions

The conclusions from this comparison are as follows. Both the marginally
stable Suydam model and the classical Braginskii model yield the same scal-
ing relation for rE and #,,. The confinement time rE - 13 indicates a strong
favorable scaling with current, which seems incompatible with the observed
behavior on any given experiment. Also, the magnitude of rE from each of
these theories is very optimistic, exceeding the experimental values by more
than an order of magnitude.

The Bohm scaling relation is very pessimistic in that rE is almost in-

dependent of current. Also, there is no way to theoretically determine the
multiplicative constant in front of the scaling relation.

In summary, none of these theories accurately describes the experimental
data.

V Comparison with Recent Experimental and
Computational Work

Here, a comparison is made between two recent papers whose aim was to

provide a transport scaling relation for an RFP.

A 3D Model by Scheffel and Schnack

The first study (see Ref. [6]) is a computational analysis carried out by Schef-
fel and Schnack in 2000. They have implemented a 3D, resistive MHD code,
using classical transport coefficients (including thermal conduction and vis-
cosity). No radiation losses, or resistive wall effects are taken into account.
Even though classical values for x± and x1i are used, an anomalous global
transport (xI) is generated by parallel transport due to field line stochasticity
in the core region.

This code is certainly more comprehensive than the one developed in the
present model, not only because of the geometry and the presence of the

plasma viscosity, but because of its nonlinear treatment of resistive MHD
instabilities. Even so, there are limitations in Scheffel and Schnack's study.
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First, only the scaling dependence on I and N are extracted, and not a and
e, due to the long computing time required for each simulation. Second, the
actual regression was performed on I2/N, rather than on I and N separately.
The scaling law found by Scheffel and Schnack is given by

(I2 0.34 (N) 0 40 (

The ratio 12 /N originates from the fact that the parameters used in the linear
regression were a form of local plasma beta and local Lunquist number (which
is defined as the ratio of the resistive diffusion time to the Alfven transit
time): /0 and So in their notation. It is easy to show that both of these
parameters scale with I2 /N. Notice that the definition of TE in the 3D code
by Scheffel and Schnack takes into account the dynamo term.

B MST Experimental Scaling

The second study (see Ref. [2]) is an experimental analysis of confinement
discharges, carried out by the MST group in 1998. By using a large database
of discharges, they have generated a direct fit of experimentally measured
velocity and magnetic field fluctuations in the MST device. Here again,
the fit was carried out using the Lunquist number S, for the purpose of
comparing experiments with theoretical scaling predictions of fluctuations
(see Refs. [7],[8]). The following dependence has been extracted from the
data

Bir ~S-0.2 (15)

In order to determine a scaling relation for rE and Op from this experimental
fit, a theoretical assumption of dominant stochastic magnetic field diffusivity
is made. This implies the following relation between rE and Op (see Ref. [2])

I2 03
TE 0.1 N (16)

corresponding to the specific power law scaling given by Eq. (15). Equa-
tion (16), together with the basic relation arising from the definitions of TE

and Op

5 (;) 3/2

TE Pa 2 (17)
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lead once again to a scaling with I2 /N. Specifically, the MST scaling relations
resulting from this analysis are

(12 0.25 (N) .8

C The Comparison

Next, a comparison is made of the different scalings just presented, with the
resistive MHD marginal stability model. In Figs. 8 and 9 experimental con-
finement data from three MST standard discharges (see Ref. [9]) are plotted
versus I 2 /N along with the various scaling relations.

The data corresponding to the three discharges plotted in these figures
are listed in Table 5. Discharge 1 is the MST standard discharge already used
in this chapter for earlier comparisons. The other two discharges (discharge
2 and discharge 3) have been recently reported by the MST group in Ref. [9]:
they essentially have the same plasma density, while they differ in the plasma
current by a factor of two. All of these discharges have a value of E of about
1.7 - 1.8. Moreover, all the parameters were measured between sawtooth
crashes, which occur regularly throughout standard MST plasmas, and which
temporarily degrade the confinement.

It is worth emphasizing that the scaling relations predicted by the resistive
MHD marginal model determine not only the dependence of rE and 0p on I,
N, and a, but also the magnitude, given as a function of e. In contrast, both
the MST scaling relation and the 3D model only give a prescription for the
dependence on I and N. Hence, in order to be plotted in Figs. 8 and 9 the
magnitudes of the MST and 3D scaling relations have been chosen to match
the first experimental value. The resistive MHD marginal stability scaling
relation uses the self consistent magnitude factor predicted by the theory.

A comparison of these results shows that all three theoretical scalings ex-
hibit a similar but weak scaling of rE and fp with I2 /N. The experimentally
measured values of Op agree reasonably well with the theoretical scaling pre-
dictions. The experimental values of rE show a somewhat weaker dependence
with I2 /N than the theoretical predictions. The present marginal stability
model predicts the magnitude of TE and Op to within a factor of 2, a large
improvement over the previous theoretical predictions discussed in Sec. IV,
which were optimistic by more than one order of magnitude.
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VI Comparison with the "best performance"
scaling relation

In this section a comparison is made between the present theory and the
often quoted "best performance" scaling relation first observed by Werley [1].
At first glance the scaling relations between the two theories appear to be
quite different with the present theory indicating a much weaker (and hence
unfavorable) scaling with I. However, as shown below, when the definition
of "best performance" is taken into account, both scaling relations become
quite similar.

A The Connor-Taylor scaling relation

Since the best performance scaling relation is similar to the one derived by
Connor and Taylor [10] it is useful to start the discussion with a brief sum-
mary of these results. Their scaling relation is identical in form to those given
by Eqs. (8), (9) and (10) corresponding to Suydam marginal stability and
classical transport. The Connor-Taylor scaling for rE is derived on the basis
of dimensional invariance of the scaling relations under any transformation
that leaves the equations regulating plasma evolution themselves invariant.
They applied their method to the RFP as well as other configurations. To
complete their scaling for TE additional information was required concerning
the nature of the turbulence. Specifically, for the RFP, transport was as-
sumed to be determined by resistive g-mode activity, leading to the scaling
law for TE given by Eq. (8). Furthermore, the same approach predicts a scal-
ing for , (in an ohmically heated RFP) that is independent of I, N, and a
as long as radiation is not important. This is in agreement with Eq. (9).

The derivation of Connor-Taylor scaling relies on the early resistive MHD
dispersion relation (see Ref. [11]), which uses the adiabatic energy equation
and neglects heat conductivity. Thus, "g-modes" are always present, which
are then assumed to dominate plasma turbulence. In terms of plasma tur-
bulence, the Connor-Taylor scaling corresponds to the following dependence
of magnetic fluctuations with the Lunquist number

Bi ~ S~0'5 (19)

which can be compared with the experimental relation given by Eq. (15). The
S-0 5 dependence leads to a much more optimistic scaling law for confine-
ment in an RFP, because of its strong dependence on the current I. Recent
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targeted experimental campaigns, performed mostly on MST (see Ref. [2]),
and less on RFX, have demonstrated a much less favorable dependence of rE
versus I (as seen in the previous section) then the Connor-Taylor scaling.

B Werley's observation

Although the Connor-Taylor relation is not very reliable for predicting the
dependence of TE with I, N, and a on a given device, Werley observed a
remarkable agreement relating the best performance of different devices [1].
Specifically, Werley observed that using a restricted database made up of only
the "best" confinement discharges provided by each individual RFP device
the corresponding values of rE closely fit the Connor-Taylor scaling.

This result could be potentially very important to the RFP community,
since it predicts that when operating at peak performance, RFP devices
drastically improve their confinement as the size and hence plasma current
increases. Given the importance of this result by Werley et al, it is worthwhile
to see whether it can be recovered in the context of the present analysis and
the very recent results on RFP confinement.

The key issue is the definition of "best" performance. In Table 6, con-
finement data from the RFP International Database are listed, exactly as
reported in Ref. [1]. A multiple linear regression allows one to confirm that
this special database indeed follows Connor-Taylor scaling (see Fig. 10)

3 .05 a' 72

rE, _ 5.8 - 1- . Na [sec] (20)

where the units are I[MA], a[m], N[102 0m 1 ].

C Reconciling the differences

The point that is addressed here is to investigate how this result fits with the
apparently very different scaling law found in the present paper. As stated,
the key issue concerns the proper characterization of the best confinement
discharge for each individual device.

A plausible interpretation comes from an equivalent RFP "Greenwald
limit". This limit suggests that there is a maximum density (whose value
depends upon the plasma current) attainable by the plasma before its con-
finement is seriously degraded, for example due to enhanced radiation effects
or even a disruption. Defining this maximum density as Nbest, it is then
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reasonable to postulate that the best confinement discharge corresponds to
machine operation at the best density Nbe,,t for a given current. A multiple
linear fit of the density in Table 6 with current and minor radius leads to the
following general scaling (see Fig. 11)

Nbet ~ 0.713 -I."0 . a-0 .0 6 3  (21)

(for comparison, the tokamak Greenwald limit in these units (10 2 0m- 1) is
given by Nbe,,t = I). Note that the dependence of Nbet with the minor
radius a is indeed very weak; nonetheless, the dependence with the current is
not linear, as the tokamak Greenwald limit would suggest, but a bit stronger.
Substituting Eq. (21) into Eq. (20), leads to the following scaling relation for
best confinement discharges

TE ~ 9.85. 10~ 3 . JO.62 a a1.82  [sec] (22)

It is now possible to directly compare this scaling relation with the one ob-
tained in the present paper (see Fig. 12); in particular, substituting Eq. (21)
for the density into Eq. (6), yields the scaling relation for the best confine-
ment discharges, as predicted by the resistive MHD transport model

TE _ 1V 2 . 1.2-al. 62  [sec] (23)

showing reasonably good agreement with Eq. (22). Note that the numeri-
cal coefficient in Eq. (23) is given by the model as a function of the pinch
parameter e. Since the experimental values for E are not reported in the
RFP International Database for best confinement shots, the coefficient in
Eq. (23) is calculated for e ~ 1.7; the weak dependence of rE upon the
pinch parameter ensures good accuracy in the estimation of the numerical
coefficient.

A few final comments are in order concerning the data in Table 6. First,
keep in mind that only seven data points have been used to extract the scal-
ing relations in Eqs. (20) and (21). Moreover, the accuracy of these data,
expecially for the early experiments, is characterized by large error bars.
This prevents a similar analysis of #, to be carried out, because of the high
uncertainty in the measured values of plasma beta in the early experiments.
Values from the newer devices, namely MST and RFX, are the most reliable
in the database. It should also be noted that even though the shots used
in Table 6 for MST and RFX describe good confinement in standard RFP
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plasmas, it has yet to be verified that they indeed truly represent the best
confinement found in these machines. Even so, the dependence of rE on I
observed so far in both RFPs is quite weak and hence does not affect the
conclusions very much. A final comment concerns two "best discharges" that
were originally included in the RFP International Database, both belonging
to an early Japanese device, TPE-1RM. These discharges were omitted from
this analysis, because they are the only ones that clearly violate the (empir-
ical) rule that optimum scaling is obtained near the Greenwald density limit
(see Ref. [1]); that is, their best performance does not occur at the RFP
Greenwald limit.

VII Comparing an RFP with a Tokamak

The last topic of interest concerns the implications of the present scaling laws
to larger RFP's and how they would compare with a tokamak. Admittedly
such comparisons are not unique and depend upon a number of assumptions.
Even so the results can serve as a general guideline when attempting to foresee
the future. In the discussion below a comparison is made of the predicted
values of nTr for a tokamak and an RFP as determined by the appropriate
scaling laws. Once these formulae are derived it becomes straightforward to
compare the predicted fusion performance of future devices.

A nTr for a tokamak

The scaling of nTr in a tokamak is obtained by using the ITER-89P L-
mode scaling relation for rE and the power balance relation. The ITER-89P
expression for rE is well known [12] and can be written as

0.048 10 85 R1.2 ao.3 k0O5 n0 -1B 0 .2 (24)

where k is the elongation, P is the total heating power in [MW], B is the
toroidal field and the units are I[MA], a[m], n[10 2 0 m- 3], B[T]. An expression
for the power is obtained from the power balance relation

3 nT _P

nTE - 7r2 RaP(25)2 TE S2 R2 k
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or in practical units

P  = 0. 47 (26)
TE

Combining Eqs. (24) and (26) yields the desired relation

0.4 1 [I2.N1O.2
nTr = 2.0. 10-~3_- (R1 2 0m- keV sec] (27)

where q= 5a 2 kB/IR. If the best performance occurs at the Greenwald
limit, which in present notation is given by N[10 2 0 m- 1] = kI[MA], then the
peak value of nTr is given by

nT7r = 1.7. 10-2J' [1020 m-3 keV sec] (28)

for q, = 2, k = 1.6, and R/a = 3. This is the desired expression.

B nTr for an RFP

A similar analysis can be carried out for the RFP using the basic scaling
relations for rE and Op derived from the resistive MHD marginal stability
model. These expressions can be written as (in standard units)

TE 9~ I 10111a1-6
TE .N. 2 5  [sec] (29)

Op 7 10-2 N 049  (30)
I0.75a 0 .16

From these expressions it is straightforward to construct the expression for
nTT:

N0 .2412.35
nTr = 6.2 - 10-4 N0 56 [10 20 m-3 keV sec] (31)

If one now assumes that the best performance occurs at the Greenwald
limit, which reduces to N[102 0 m-1] = I[MA] (and is close to the empirical
scaling from the limited RFP data available), then the peak value for nTr
for an RFP reduces to

j2.59
nT-r = 6.2 -10-4 a.59 [10 20 m-3 keV sec] (32)

This is the desired expression for an RFP.
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C Comparison of an RFP with a tokamak

A comparison of Eq. (32) for the RFP and Eq. (28) for the tokamak shows,
perhaps surprisingly, that the best performance as measured by nTr scales

nearly identical with I and a. The main difference is in the numerical coeffi-

cient in front which is about 30 times larger for the tokamak. The conclusion,
which has been well known experimentally for many years, is that tokamak

confinement is much more favorable than that in an ohmically heated RFP.

The RFP community is well aware of this observation and in recent years

considerable efforts, which have been met with a high level of success, have

been devoted to improving RFP confinement by non-ohmic means. The ef-

fort to further improve confinement remains as a major challenge in RFP

research.

VIII Summary

The resistive MHD marginal model described here explicitly predicts the

anomalous transport coefficient for perpendicular thermal diffusivity in a

self-consistent manner by imposing the marginal stability condition on an
ohmically driven Taylor-like relaxed state. In a sense, the present calculation

proceeds inversely from traditional transport models, where the profiles are

evaluated from the transport coefficients. Here XI is evaluated from the

marginally stable temperature profile. Classical values for parallel thermal

diffusivity and plasma resistivity have been chosen in the model. Anomalous

parallel transport may be important in an RFP, but from a physical point

of view even the classical value of x i is enormously large compared to the

perpendicular value. Moreover, in the marginal stability condition, only the

ratio of parallel to perpendicular diffusivity to the one quarter power enters,
so the sensitivity of the model to these parameters is relatively low.

Typical values of 20 - 60m 2/s for the anomalous xi in the core region

are found from simulating standard RFP discharges. These values exceed

the classical value of Xi by about two orders of magnitude. It would be

interesting to have a more targeted experimental campaign trying to verify

this result, as well.
The macroscopic scaling relations found with the 1D transport model

presented here agree reasonably well with recent experimental and compu-

tational results, showing a less optimistic scaling law for confinement in an
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ohmic RFP than Werley's best performance observation. In particular, a
weaker dependence of rE upon the plasma current is found, which is an im-
portant issue for the future large RFP fusion experiments. In comparison
with previous work, the results found with the present model provide con-
siderably more detailed information on the scaling relations. These relations
are obtained by independently varying both the plasma current I and the
area-integrated density N, which was not possible in the previous scaling
relations. It is worth noting that only the MST device has confinement data
obtained with independent values of I and N. Such data is not currently
available from other devices. The marginal stability model allows a compar-
ison of multiple discharges from a single machine, showing reasonably good
agreement in terms of global parameters for MST. The present model also
gives the scaling of plasma confinement with two other important parame-
ters: the minor radius and the pinch parameter . A weak dependence on
e is found, in agreement with experimental observations. However, a quite
significant dependence of rE versus the minor radius has been found (see
Eq. (6)).

In conclusion, the scaling laws found with the resistive MHD marginal
stability transport model agree reasonably well with experimental data and
computational modeling. When extrapolated to the future, the present scal-
ing relations imply that proposed reactor concepts (NEPI and TITAN) would
have difficulty reaching their design goals (breakeven and ignition) if operated
as a purely ohmic RFP. The suggestion is to maintain the effort concerned
with exploring improved confinement by new techniques aimed at reducing
the turbulence in an RFP. A few techniques are already being used in modern
devices (edge profile control, PPCD). Others are still being developed (Oscil-
lating Current Drive). Indeed some significant improvement in confinement
has already been observed (in MST, profile control increases rE by almost
one order of magnitude). The present theory implies that one or more of
these techniques should be successfully developed if the RFP is to become
competitive with the tokamak as a fusion reactor.
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Values of A' vs. Resonant Surface r (Typical RFX Shot)
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Figure 1: Illustration of the Transport Model Iterative Solving Procedure
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Temperature Profile for the MST Standard Shot
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Figure 2: Tearing-Mode
Standard Shot

Marginally Stable Temperature Profile for MST
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Figure 3: Tearing-Mode Marginally Stable Temperature Profile for RFX
Standard Shot
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Figure 4: Tearing-Mode Marginally Stable X Profile for MST Standard Shot
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Thermal Diffusivity x1 Profile for the RFX Standard Shot
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Figure 5: Tearing-Mode Marginally Stable x± Profile for RFX Standard Shot
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Typical Trend of i vs 0 (Iteration 1)
x 10'

2.5-

2.4-

E Ems] MST Standard Shot
2.3-

2.2-

2.1-

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0m=1.3 emax -- > 3.9

Figure 6: E Dependence of rE in the Tearing-Mode Marginality Scaling Law
from Iteration I
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Typical Trend of JP vs 0 (iteration I)
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Figure 7: E Dependence for Op in the Tearing-Mode Marginality Scaling Law
from Iteration I
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Scaling Laws for PP in Standard MST Shots
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Figure 8: Comparison of Scaling Laws for 0,, for MST Standard Shots
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Scaling Laws for E in Standard MST Shots
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Figure 9: Comparison of Scaling Laws for TE for MST Standard Shots
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Multiple Linear Fit for E in the Best Confinement Shots
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Multiple Linear Fit for Density N in the Best Confinement Shots
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Figure 11: Scaling Law for Nbest extracted from RFP International Database
of Best Confinement Shots
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Multiple Linear Fit for tE (with Nbest) in the Best Confinement Shots
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Figure 12: Scaling Law for -rE at the highest possible density Nbest, from
the RFP International Database, compared with the tearing-mode transport
model
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Device a I <bt no F e ro fp TE

[m] [MA] [Wb] [1020m-3] [m] [%] [ins]

MST 0.52 0.376 0.0696 0.14 -0.22 1.77 0.418 6.29 1.38

RFX 0.48 0.5/1 0.12/0.16 0.2/0.5 0/-0.4 1.5/1.7 0.38 5 0.5/1.5

Table 1: Plasma Parameters in Typical RFPs Standard Shots for MST and
RFX
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Table 2: Plasma Parameters Held Fixed in the
Shots

Simulation of RFPs Standard
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Device I[MA] Dt[Wb] no[10 20 m-3]

MST 0.376 0.0696 0.14

RFX 0.750 0.141 0.35



MST Tearing-Mode Suydam Classical

/// Standard Shot Marginality Marginality Transport

O [%] 6.3 5.3 19.3 21.3

TbE eC 3 o3 2. 10--3 Pr r F . 1-3 37.4T S -3

Table 3: Plasma Confinement Parameters For the MST Standard Shot
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RFX Tearing-Mode Suydam Classical

// Standard Shot Marginality Marginality Transport

5 4.0 17.4 19.8

'rE[sec] 0.5/1.5 -10- 3  2.4- 10-3 43.4. 10- 57.1 .10-3

Table 4: Plasma Confinement Parameters For the RFX Standard Shot
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Table 5: Plasma Parameters for the
Fig. 9

MST Standard Shots used in Fig. 8 and

34

/// I[MA] N[10 19m- 1 ] 0,[%] TEmS]

Shot 1 0.376 1.2 6.3 1.4

Shot 2 0.210 0.68 9.0 1.4

Shot 3 0.430 0.85 4.8 1.6



/1/ I[MA] N[10' 9m- 1] a[m] rE[ms]

ZTP 0.095 0.221 0.068 0.02

ETA BETA II 0.150 0.484 0.125 0.06

OHTE 0.400 2.00 0.18 0.20

ZT-40M 0.330 0.892 0.20 0.70

HBTX-1B 0.220 0.537 0.26 0.50

MST 0.350 1.458 0.50 1.60

RFX 0.500 3.125 0.457 1.30

Table 6: RFP International Database, as reported in Ref. [1]
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