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I Introduction

The Reversed Field Pinch (RFP) concept offers several attractive features
with respect to an ultimate fusion power reactor as compared to a toka-
mak [1]. The RFP is potentially capable of high # operation with a large
fraction of the ignition heating provided by ohmic current. The net result is
a compact, high power density reactor which should lead to a lower capital
cost. However, achieving this high performance has been difficult experimen-
tally. In particular the energy confinement time is typically much shorter in
an RFP than in a tokamak. As a consequence a major focus of current RFP
research is aimed at understanding and improving energy confinement.

The present work is aimed at developing a self consistent theory of en-
ergy confinement in an ohmically heated RFP. The primary goal is to deter-
mine the magnitude and radial dependence of the anomalous perpendicular
thermal diffusivity x± (r) as well as the corresponding macroscopic scaling
relations for -rE and #p. The basic idea is to extend Taylor's theory of re-
laxation [2] to include the effects of an external heat source (i.e. ohmic
heating). Recall that in Taylor's theory, resistive MHD turbulence causes
the plasma to relax to a minimum energy state in which the plasma pressure
gradient vanishes and the resulting force free configuration satisfies j = pB
with p = const. The present model allows the inclusion of a heat source,
which drives the plasma pressure gradient away from zero. The pressure
then rises until the input power is balanced by the outward heat conduction
losses. If the thermal diffusivity xi were known, it would be straightforward
to calculate the steady state rE and /.

The problem of course is that an RFP is subject to resistive MHD turbu-
lence implying that the heat diffusivity is anomalous; that is x± is not known.
This fundamental difficulty is overcome in the present paper by making the
conjecture that the pressure rises until the profiles adjust themselves so that
the plasma is marginally stable to resistive MHD modes. The marginal sta-
bility conjecture essentially provides the information necessary to determine
the steady state profiles. These profiles can then be substituted into the
energy balance equation to determine the anomalous x± that is required for
self consistency.

In order to carry out the analysis just described two challenging prob-
lems have had to be overcome. The first one is associated with the marginal
stability criterion against resistive MHD modes. For over three decades it
has been believed that an RFP would always be unstable to resistive MHD
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modes, in particular the resistive "g-mode" [3],[4]. The magnetic curvature
is always unfavorable, even in a torus and thus, an unstable resistive mode
would always be present even in the limit A' -+ -oo. This well known re-
sult was derived assuming compressible MHD physics in which the energy
equation reduces to the simple adiabatic relation. However, following the
work of Lutjens et al on tokamaks [5] it has been shown that for an RFP
the adiabatic assumption is not accurate. Instead, the thermal conductivity
term dominates the contributions of compressibility and convection. The
net result is that thermal conductivity tends to smooth the pressure profile,
thereby providing a stabilizing mechanism against the resistive "g-mode" for
sufficiently low pressure; that is there is a well defined marginal stability cri-
terion for RFP's against all resistive MHD modes. This includes the resistive
rippling mode [6], [7] as well.

The second problem is technical in nature. The equations to be solved are
highly nonlinear with strong coupling. Furthermore the marginal stability
criterion depends upon A'(r), a local quantity whose value at any given
radius depends globally upon the entire profile. Therefore, imposing marginal
stability on the profiles in this case is far more difficult technically than, for
instance, imposing the purely local ballooning mode criterion obtained from
the well known s - a diagram for a tokamak. This difficulty is overcome
by a numerical iteration scheme that takes advantage of the fact that the
marginally stable values of plasma # are relatively small.

The net result is that the end goals of the analysis have indeed been
achieved. The self consistent thermal diffusivity X has been calculated for
an RFP. In addition the resulting scaling relations for TE and Op as functions
of the plasma current I, the area integrated plasma density N, and the minor
radius a have been determined and compared with various RFP data and
other theories and simulations. Specifically it is shown that for an ohmically
heated RFP

TE , 9 _ 10-3 . 1.1 - N-0 .2 5 -6 (1)

#p ~ 7 - 10~2 .1-0.7 . N0 49 - a-0-16  (2)

where the units are I[MA], N[10 20 m- 1], a[m], and TE[s]. It is also shown,
perhaps surprisingly, how these results are compatible with a semiempirically
derived scaling relation obtained from experimental data [8], which is of the
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form

P2 0.25
TE - (3)

(N)5

0 ( 
(4 )

The formulation of the model and the ensuing results represent the major
parts of a PhD thesis and would constitute a rather lengthy single paper.
For this reason, the work is divided into two separate papers, the first one
focusing on the model and the second one on the results. This paper contains
a derivation of the self consistent marginally stable resistive MHD model. It
contains a brief review of the previous status of resistive "g-mode" theory in
addition to Taylor's theory of relaxation. Next, the new nonlinear model is
derived. Included are the main technical details concerned with solving the
model. Also included is a discussion of the plasma-wall edge region, which
is necessary to avoid certain spurious results in which the edge completely
dominates the behavior. The final result of this paper is a set of self consistent
equations describing the marginally stable RFP model along with a robust
prescription for solving them numerically.

II Marginal Stability to Resistive MHD Modes
in an RFP

A Pre-existing Theory

The analysis of resistive MHD modes in a cylindrical pinch has been studied
extensively in the past [3],[4], and has been extended to include toroidicity
effects as well [9]. In each of these works, an analytic derivation was carried
out to solve the linearly perturbed resistive MHD equations in the resonant
layer. A key assumption in these derivations concerned the energy equation:
thermal conduction was considered negligible as compared to the convective
and compressibility terms; thus the adiabatic form of the energy equation was
used. Under this assumption, the following dispersion relation for resistive
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MHD modes was derived:

P (1 rD\
r,' = 27r Q 4 - (5)

)4Q1

where r, is the radial location of the resonance, Q is the normalized growth
rate, D is Suydam's normalized pressure gradient, and A' is defined as the
jump across the resonance of the logarithmic derivative of the radial compo-
nent of the perturbed magnetic field.

It is straightforward to see that for a cylindrical pinch no stable config-
uration can be found in the presence of confined pressure (D > 0) for any
value of A', even A' -+ -oo; an instability is always present (see Fig. la, a
curve of Q vs A' for D > 0). The negative A' part of the curve is known as
the resistive "g-mode" [4]. The same analysis performed for a toroidal geom-
etry shows that the "g-mode" can be stabilized for magnetic configurations
with sufficiently favorable average curvature (e.g. tokamaks). However, the
"g-mode" remains unstable for configurations with unfavourable curvature
(e.g. RFPs). The presence of the unstable "g-mode" in an RFP has been an
impasse for decades in attempts to find marginal stability.

B New Theory

It is shown here that this impasse is removed by considering the effect of
thermal conductivity. Based on some recent work by Lutjens et al [5] for
the tokamak configuration, one can show that for a careful ordering of the
resistive layer dynamics, the thermal conductivity dominates over convection
and compressibility. Thus the use of the adiabatic equation of state in earlier
work is not accurate for an RFP. The balancing of the thermal conductivity
terms (in the parallel and perpendicular directions) dominates the perturbed
energy equation and introduces a new scale length 6x which is proportional
to the ratio of perpendicular to parallel thermal diffusivity, raised to the 1/4
power. This new scale length turns out to be much larger than the tearing
mode scale length found in the earlier studies. Thermal conduction effects
tend to flatten the pressure perturbation, thereby stabilizing the "g-mode".
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The resulting tearing-mode dispersion relation now becomes

'r(4) Qj ,2D
r,A' = 2Ar (1 2 -- (6)

where

[LB 2  ( q" \214XIn (7)B. r.1
X-~ x m2By req', }

As one has come to expect, derivations of resistive MHD modes involve rather
lengthy amounts of tedious algebra, which nevertheless are now more or less
standard. Consequently, the details of the above derivation are not presented
here but can be found in Ref [10].

A similar dispersion relation, predicting stability of the "g-mode", was
derived by Bishop et al [11] by postulating a local flattening of the equilibrium
pressure profile at the resonant surface. No value was given for the width, JX,
which was treated as a parameter. Note that the derivation of the dispersion
relation given by Eq. (6) has been obtained under the assumption of constant
plasma density (which is in good agreement with experimental observations).
A condition for marginal stability to resistive MHD modes is now easily found
from Eq. (6) (see Fig.lb).

Ir 2 D
r'= 2 

(8)

Observe that the gradients in x± and XII do not change the dispersion relation
given by Eq. (6); moreover, the rippling mode [3], originating from a gradi-
ent in plasma resistivity, also can be shown to disappear in this derivation
because of a change in parity of the eigenfunction.

C Taylor's Theory of Relaxation

Once the criterion for resistive MHD marginal stability is found, it is possible
to formulate a consistent model that determines the equilibrium profiles, and
consequently determines the confinement properties of an ohmically heated
RFP fusion experiment. The main picture that motivates the model is that
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the RFP equilibrium relaxes to a driven minimum energy state, which is
marginally stable against resistive MHD modes. The well known relaxation
theory of Taylor [2] determines the absolute minimum energy state, in the
absence of driving sources. It leads to the Bessel Function Model for the
axial (B,,) and poloidal (Bo) components of the magnetic field, together with
zero pressure gradient

B = BoJo(pr)
B0 = BoJi(pr) (9)
p' = 0

Here, p = const is related to the helicity or equivalently the reversal radius.

III Description of the Model

A The Basic Idea

Intuitively, one can visualize the idea behind the present model, leading to
a finite pressure gradient extension of Taylor's minimum energy magnetic
configuration. Imagine starting from one particular pure Taylor state which
is positively stable against resistive MHD modes. One can then add an
external heating source (ohmic heating) which raises the pressure until the
plasma becomes marginally stable at every point across the radius. This idea
has been supported by some experimental work, but is not conclusive. Still, it
is interesting to develop a fully consistent theoretical model which determines
such equilibria for an RFP configuration, and then make comparisons with
the experimental results. In this section, a detailed description of the model
is given, together with its computational implementation.

B The Basic Equations of the Model

1 Geometry

A cylindrical geometry with axial periodicity is adopted. Toroidicity is a
second order effect in a global analysis of an RFP. Thus, the main features
of an RFP equilibrium can be well described by a cylindrical model [1].
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2 B,(r)

A set of differential equations defining the model in cylindrical geometry is
now derived and discussed. The first step is to determine the driven minimum
energy state. Even though a real RFP experiment is an ohmically driven
system, Taylor's non-driven relaxation theory provides a reasonably good
description of the magnetic field configuration in the core of an RFP when
the plasma # is low (as it turns out for our model). However, the theory
does not accurately describe the profiles at the edge of the plasma since cold
plasma-wall interactions are not taken into account. It is critical to treat
the edge, at least quasi-realistically. The pure Taylor model which predicts
a finite current density at the edge, coupled with the experimental condition
of temperature vanishing at a cold wall, leads to an infinite ohmic power.
Consequently the resulting energy confinement time would be zero, which is
clearly not physical.

It should be recognized that including edge physics is a non-trivial task.
Lacking a more general edge theory, it is assumed that the axial component
of the equilibrium magnetic field Bz (r) corresponds to a Taylor minimum
energy state modified at the edge so that its behavior is in accordance with
experimental evidence. Due to its complexity, we adopt a basic philosophy of
the edge model that aims to minimize the ohmic power contribution in this
region so that it is no longer a dominant effect, as it would be in the ideal
Taylor model. For instance the formation of artificial pedestals or extended
zero pressure gradient regions in the edge profiles are avoided. This is what
might be called the "unobtrusive model for the edge".

Hereafter it is assumed that B_,(r) is a known function given by Taylor
over most of the plasma and modified at the edge to agree with cold-edge
experimental data.

3 Pressure Balance

Thus, granted that one component of the equilibrium magnetic field is known,
and characterized by several experimental operational parameters, then two
profiles remain to be determined to completely describe the equilibrium con-
figuration in a cylindrical geometry. These profiles are Bo(r) (which is nearly
a Taylor profile) and p(r). MHD force balance provides one obvious relation-
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ship between these quantities:

BZB' + -e(r Be)' + pop' = 0 (10)
r

4 Marginal Stability

The second relation is given by the marginal stability condition, Eq. (8).
Strictly speaking, this condition holds only at the resonant surfaces on which
A' is evaluated. In a periodic cylindrical geometry, the resonant surfaces are
discrete for a given aspect ratio R/a; that is for a particular device. However,
the resistive MHD eigenfunctions are global in nature, practically extending
over the entire plasma region. This eigenfunction overlap suggests that using
Eq. (8) as a continuum rather than discrete constraint may be a reasonable
approximation. In short, in the model the marginality condition is imposed
continuously at every radial location in the plasma region.

Thus, Eq. (8) is a differential equation relating several plasma quantities;
in particular, it is a relationship involving not only BO(r) and p(r), but also
the thermal diffusivities in the parallel and perpendicular direction. Because
of the enormity of its size, it is plausible to assume that x1 is given by its
classical value. It is so large that there is no need for anomalies. However, x±
is anomalous. Thus, marginal stability represents an additional constraint
equation on the equilibrium, but also introduces another unknown x±.

Finally, Eq. (8) shows a dependence on the poloidal mode number m as
well. This dependence suggests that a marginally stable pressure profile can
be built for each mode m. It is easy to see, though, that m = 1 is the
most stringent poloidal mode, thus providing the smallest marginally stable
pressure gradient.

5 Energy Balance

Further physics needs to be added in order to close the system. This physics
arises from the requirement that perpendicular transport must be consistent
with the resulting pressure gradient as determined from energy balance

-(rnXIT')' = -' (11)
r

In Eq. (11) the plasma resistivity is assumed to be classical in accordance
with experimental data. The system has now been closed in a self consistent
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manner using the classical values of X11 and q given by

5

X1I Tk [m 2 /s] (12)
n20

Tk [ I - M] (13)

where

= 5.44.108 (14)
= 3.32.10-8 (15)

The plasma temperature Tk is expressed in [keV], the density n2 0 in [10 2 0 m-3 ],
and all other quantities are given in MKS units. It should be emphasized
that the perpendicular heat transport is not going to be classical, as the self-
consistently determined Xi will turn out to be much higher (about two orders
of magnitude in the plasma core) than its classical value as found in Ref. [12].
In spite of its simplicity, one of the attractive features of this model lies in
its ability to quantitatively determine the radial profile for x-(r) consistent
with the marginally stable equilibrium.

6 Summary of Equations

Finally, the closed set of differential equations, whose unknowns are BO(r),
T(r), and x±(r) can be rewritten as

BZB' + B(rBo)'+ pop' = 0 (16)
r

1
-(rnxiT')'= -j2 (17)
r

3

Pop' _ 'B,2  B / rB' rBO \18
1 mB 3 1 + Bz Bo(

Xi 'r 2 x

where p = nT is the plasma pressure and B, is assumed to be known. The
plasma density n is assumed to be a known constant, in good agreement with
experimental observations. Finally the current density satisfies Ampere's law
VxB = p0j, while m is the poloidal mode number (set to m = 1, the most
unstable mode).
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Note that the system of Eqs. (16)-(18) is highly nonlinear. However, the
main difficulty arises from the appearance of A'(r), a local quantity which
nevertheless requires global information for its calculation. This makes the
numerical solution of Eq. (16) quite challenging. In the present work, an
iterative approach has been used to solve Eq. (16): the basic assumption is
that the plasma pressure will turn out to be small (#,, < 1), as suggested
by the experiments. This assumption dramatically simplifies the solution
procedure, as is shown next. Moreover, the convergence of the method turns
out to be quite fast. The resulting equilibrium pressure is shown, a posteriori,
to be small as assumed.

C The Solution Procedure

1 General Considerations

If the plasma has zero pressure gradient, then Bo(r) can be evaluated im-
mediately by numerically integrating the MHD force balance, since B. is an
assigned Taylor-like function in the model. Furthermore, A' can also be easily
evaluated numerically with zero pressure gradient, yielding the dependency
for A' on the (continuous) radial location of the resonant surface:

A' = A' (r) (19)

Once A'(r) is known, the other two unknowns Tk(r) and _±(r) can be found
by numerically solving the remaining Eqs. (16)-(18), which now can be writ-
ten as

3 d dTk _ (
v - rn20X1- - (20)dr dr

5 3
TT dTk :' B 1 B rB' rBo 2-- _=__-r 

0 - 1+ (21)1/4 dr g = mB B, Be
"20 Xo

where qo = 023 2.08 -10-2, and Xo = i po1o23r1 4 = 8.54. 104.

Notice that in order to solve Eq. (20) and Eq. (21), the value of temper-
ature on axis To must be given; since this value is ultimately determined by
the boundary condition at the wall Tia = 0, the solution procedure then in-
volves an initial guess for To. The algorithm described here is then iteratively
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repeated by adjusting the initial guess of To until the condition Tia = 0 is
satisfied.

The procedure for constructing the pressure profile is now described in
detail. In carrying out this procedure it is helpful to keep in mind a typical
A' profile, as shown in Fig. 2, together with the analytic expressions for A'
valid on axis and at the reversal layer

1 1(22)
r Ir - rol

This is important because Eq. (21), which is valid over most of the profiles,
does not represent the most stringent pressure limitation over the entire
profile. In particular, near the axis and the reversal layer stricter constraints
apply and the self consistent pressure profile is always determined using the
most severe criterion.

2 Criterion near the axis

By expansion around r = 0, it is easy to show that the analytic solution of
Eqs. (20) and (21) near r ~ 0 yields the following behavior for the pressure
profile

7
p'l o ~r5 (23)

This pressure gradient, however, turns out to be unstable to ideal MHD
modes; in particular, it violates Suydam's criterion on axis [13]:

B2- rB' rB'1 - ' (24)
8r' - 1 B, Bo 0~r

As Eq. (24) shows, Suydam's criterion for marginal stability to ideal MHD
modes forces the pressure to be very flat on axis, much flatter than Eq. (21)
would require. This suggests that the equilibrium profiles for pressure (or
equivalently temperature) and x± on axis will be determined by Suydam's
criterion, and not by Eq. (23).

As the solution for the profiles evolves away from the axis, A' becomes
finite and smaller. This reduces the pressure gradient generated by the re-
sistive MHD marginality condition, until eventually it becomes smaller than
the gradient generated by Suydam's condition. At the radial location where
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the resistive MHD marginality condition becomes more restrictive than Suy-
dam's, a transition occurs, such that the pressure and corresponding x± are
always determined by the most restrictive criterion everywhere in the plasma
region. Thus, near r ~ 0 the resistive MHD marginal stability criterion
Eq. (21) is replaced by Suydam's criterion.

From a numerical point of view, it is easier to locate this transition by
looking at the thermal diffusivity rather than the pressure gradient. Having
established that p' on axis is given by Suydam's criterion, p' can be imme-
diately evaluated via Eq. (24); x± is then found directly from integrating
the power balance given by Eq. (20). The transition can easily be found by
comparing this x± with the corresponding function X±,T-M that would result
from the resistive MHD marginal condition Eq. (21) for the same profile of
Suydam-marginal pressure gradient:

X 1,T-M ='T: (25)
[g(r)I

One can easily show that on axis X- - r- 2 , while XI,T-M - r', so that it is
straightforward to distinguish among the two quantities. The radial location
where the two functions eventually intersect, defines the transition point r1

(see Fig. 3); for r > ri, T' and x± will be determined by the tearing-mode
marginality condition (which will now be the most restrictive criterion).

3 Criterion near Reversal Point

A similar expansion around the axial field reversal point ro can also be carried
out. This also leads to an analytic solution for Eqs. (20) and(21). In this case,
B, = B'I, (r - ro) + O(r - ro) 2 , while B0 = Bolr, and poj 1 =-(B9B')o
are finite quantities. Moreover, as shown in Eq. (22), A' - Ir - rol-1.
Thus g ~ Ir - ro1-1/ 2 . By taking T = To + T, Ir - rol, Eqs. (20) and (21)
then give

xLT' ~ Ir - ro|1 x - |r - ro|I/'
x1 ~ T'4 |r - ro12  

iT' ~ Ir - roI 2/5  (26)

As the reversal point is approached, the temperature gradient given by
Eq. (21) becomes steeper and steeper, eventually approaching infinity; this
implies that there will be a thin region around r = ro where the tearing-mode
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marginal pressure gradient profile again exceeds Suydam's limit. Similar to
the behavior on axis, the model passes through a transition region in which
the pressure gradient around ro is determined by Suydam's marginal condi-
tion (24). As is shown later, from a numerical point of view this region is
very localized around r = ro due to the weak dependency of p' on r - ro, and
also due to the relatively large value of Suydam's pressure gradient limit with
respect to the typical tearing-mode marginal pressure gradient in the plasma
core. Thus in practical simulations, involving on the order of five hundred
radial grid points, this transition to Suydam's criterion can be ignored. It is
blurred by small but finite numerical resolution.

4 Considerations concerning the solution near the Edge

As the evaluation of the profiles evolves past the reversal point, p' again be-
comes finite and is determined by tearing-mode marginality until the edge
region is approached. As shown in Fig. 2, A'1,,.a -+ -oo, due to the pres-
ence of the ideal wall which provides a strong artificial stabilizing effect at
the plasma boundary (r ~ a). A resistive wall would not exhibit this stabi-
lization. However, an accurate treatment of the edge is quite complicated.
For present purposes, it is necessary to determine the radial location r = r2
at which the resistive MHD marginality model loses validity due to the artifi-
cially stabilizing effect of the ideal wall. This location sets the final transition
point, between the resistive MHD marginally stable region and the plasma
edge region which is then defined by r 2 < r < a.

As mentioned earlier, in the plasma edge region additional physics needs
to be introduced. For the sake of simplicity, in the present model an analytical
smoothing of the profiles is used for r 2 < r < a, by imposing appropriate
matching conditions at r = r 2 and appropriate boundary conditions at r = a.
In the next section it is shown in detail that this continuation of the profiles is
suggested by experimental observations, in conjunction with the idea of the
"unobtrusive edge". The model avoids the formation of artificial pedestals or
flattened regions in the edge profiles. In essence the details of the smoothing
become unimportant because the edge region is narrow and the artificial
singularity in the ohmic power PQ due to the conditions of finite ill and
T = 0 is removed. But before discussing these details, however, the iterative
process is now described.
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5 Iteration Process

After having found Bo(r), p(r), and X(Jr) for 0 < r < a in the first iteration,
it is straightforward to repeat the procedure for the second iteration by simply
substituting the pressure profile just obtained into the RHS of Eq. (21).
This involves recalculating A' with a non-zero pressure (see Fig. 2). Then,
the second iteration is performed by following exactly the same steps as the
first one, leading to new profiles for p(r) and xI. Convergence, basically
measured by the change in the global parameters of plasma confinement, is
quickly reached at the end of the second iteration.

D The Edge

1 The Edge Problem

As stated previously, considerable care must be devoted to the edge region
to eliminate the artificial singularity that arises in PO ~1 /T2 when j 11 is
finite and T -+ 0 because of the cold edge boundary condition. Furthermore
the edge profiles should not introduce artificial pedestals or overly flattened
profiles. Lastly, it is desirable to have a model in which small, but finite values
of T, j, and n are not required, in order to keep the results uncluttered with
small parameters difficult to determine. In essence a considerable effort is
required to make the edge unobtrusive. The profiles should be physically
plausible, independent of small parameters, and not affect the global values
of rE and 0. The edge model described here meets these requirements.
There are two main issues: (1) where does the edge begin and (2) what are
the appropriate jump conditions and edge radial functions that satisfy the
edge boundary conditions? These two issues are addressed below.

2 The B,(r) field

Consider first the specification of B, (r) which is given as an input. It must
be properly chosen so that it describes a minimum energy state as given by
Taylor's theory, and at the same time takes into account the presence of the
wall at r = a. Experiments indicate that at the wall the plasma current den-
sity, pressure and pressure gradient drop dramatically from their respective
values in the plasma core region. The presence of a wall thus mainly cools
the plasma at the edge; this feature is not contained in Taylor's theory, for
the BFM predicts finite current densities at r = a. Although j, p, p', and T
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do not completely vanish at the wall, it is convenient to ignore these small
values and impose the following universal boundary conditions at the wall:

jlaO= ; P' = 0 ; Pla=O ; Tla=O ; (27)

An appropriate choice for B,(r) that takes into account Eq. (27) is given
in terms of jo - B'. Specifically it is assumed that

B',r) = -B~o ) [tanh [f (I -
B(r) [Op (pr)- tanh(f) a (28)

where p = const is related to the helicity (or the field reversal point, or
the plasma current). This function is the product of the BFM solution (see
Eq. (9)) and an edge term, described by the hyperbolic tangent (see Fig. 4),
such that the resulting profile will coincide with Taylor's relaxed state in the
plasma core, while being modified only at the edge in order to automatically
satisfy the condition of vanishing current density at the wall (see Eq. (27)).
Two free parameters, f and v, appear in the edge term: basically, f defines
the radial location of the boundary between core and edge region, while v
determines how rapidly the profiles approach zero right at the wall. Us-
ing physical requirements, one can now provide a prescription that uniquely
determines f and v.

3 The radial location of the edge

The first step is to determine the radial location r = r 2 at which the edge
region begins. As previously mentioned, in the model the plasma edge is the
region in which the stabilizing effect due to the perfectly conducting wall be-
comes significant in the determination of the plasma profiles. This stabilising
effect is 'artificial': it appears as a large and negative (i.e. very stable) A'
(see Fig. 2) at r 5 a, which would generate a large pressure gradient (and
corresponding pedestal) near the wall, were the resistive MHD marginality
condition applied.

Based on this insight, a reasonable way to determine r 2 is obtained by
examining the typical A' profile (see Fig. 5). Here r 2 is defined as the radial
location between the reversal point r = ro and the wall r = a, at which A'O
(that is the A' calculated in the first iteration, with zero pressure) has a
maximum. In this way, the resistive MHD marginality condition is not used
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to determine the plasma profiles in the region near the wall where A' becomes
large and negative. This procedure avoids the 'artificially' stabilizing wall
effect. Once r2 is defined, a natural prescription for determining the free
parameter f can be devised: f is chosen such that the edge term introduced
in Eq. (28), evaluated at r= r2 , is equal to half its value on axis

tanh f(1 -

tanh(f) 2 (29)

Since A' depends on f (through B,), some iteration is initially required
at the beginning of each simulation in order to find f. This iteration is
straightforward. Also the global parameters rE and /, are insensitive to the
choice "1/2".

4 Determining v

What remains now is to give a prescription for v to completely define the
model. The free parameter v basically determines the rate at which the
plasma profiles approach zero right at the wall r L a. In particular note that

B'(r~a)~ 1 - -) (30)

Aside from the boundary conditions (27), an additional constraint at the
wall arises from Ohm's Law:

E + vxB =rj (31)

The electric field at r = a must be finite, implying that

T7 j ~ (1 - a)(32)

based on Spitzer's formula for plasma resistivity. Furthermore, MHD force
balance requires that near r ~ a

p' ~ ' - - )L+ (33)
a a

Thus in the edge region the plasma density can no longer be constant, but
has to vanish at the wall

n (34)
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The edge region is thus highly constrained and in fact only a small range
in v is physically acceptable: 1 < v < 3/2. For v < 1 there are pedestals in
j and T while for v > 3/2 there is an artificial flattening of T and p'. The
prescription used in the model leaves jI unchanged during iterations from the
force free case using the edge modified B, and determining BO from pressure
balance. The pressure gradient is continuous at r = r2 through p" while
the temperature is continuous through T'. The resulting profiles are quite
smooth through r = r2 and approach zero at r = a without pedestals or
overly flattened regions. The global parameters are insensitive to the choice
of v as long as v lies between 1 and 3/2. The specific edge profiles valid for
r > r2 are given by

p' = A (ar) - A2  ar (35)
a - r2 (a - r2

T = A - (36)
(a - r2 a - r2

_ jOBO + jzBz (37)
B

where

A1  A p'|r2 (1+v)+p"Ir2(a-r 2)

A2  vp'|r2 +p"|r2 (a - r2)

A3  2 + 1 Tr,2 + T'1r 2(a - r 2) (38)

A 4  2 vTI72 + T'|12(a - r2 )

In the numerical results the value v = 1 is used.

IV Summary

The details of the model and the method of solution have been described.
Although the resistive MHD marginal stability is valid over the great majority
of the profile, there are narrow layers near the axis, the reversal point, and the
wall that require special treatment. This leads to a somewhat complicated
model and it is appropriate to end the first paper with a complete summary
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of the model in one place. The summary includes the setting up of the
problem, the solution in the special layer regions, and the resistive MHD
marginal model.

A Setting up the problem

To start the problem one specifies the values of density no and wall radius a.
The minimum energy-edge modified B'(r) is given by

tanh [f (1 - r
B'(r) = -Bzopjfi(pr)- Wahf a(9[ tanh(f) (39

Here Bzo and p are specified constants which are related to the plasma current
I and the location of the reversal layer r = ro at the completion of the
calculation. In accordance with the edge model the value of v is chosen
as v = 1. The parameter f is guessed initially and then determined by
iteration as described shortly. Eq. (39) is integrated subject to B,(0) = Bo
to determine Bz (r). The poloidal field Bo (r) is determined next from pressure
balance

B2 = 1- r2 dB r (40)8 : r2Jodrr

The pressure contribution from a previous iteration can easily be added
to Eq. (40). Knowing B,(r) and Bo(r) (and p(r) from the previous iteration)
allows one to calculate A' (r). The value of the parameter f is determined
by iterating this procedure until

tanh 4

tanh(f) 2 (41

where r2 is the location of the core-edge transition corresponding to the
maximum in A', in the region between the reversal and the wall. The net
result is that one now knows B,(r), Bo(r), and A' at the end of this procedure
(for any given iteration).
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B The region near the axis

The region near the axis is dominated by Suydam's criterion. In this re-
gion the pressure (or temperature) and thermal diffusivity are determined
by solving

B2 - B' r 2
2.0. 10-2 n20T _ BZ 1+ z (42)k 8r Bz B0 42

1 j,
X= X,s = :-*O: I -T:' 2 r dr (43)

rn20Tk I T3/

The value of temperature on axis T(O) = To is guessed and then iterated to
satisfy the edge condition T(a) = 0. As these equations are integrated away
from the axis, the value of x± implied by resistive MHD marginal stability
is also evaluated as follows

xL,T-M k (44)
g(r)

where g(r) is given by Eq. (21) with m = 1 corresponding to the worst mode.
In this region x-L,T-M < X±,s.

C The core region

The Suydam solution is valid over a narrow region near the axis, 0 < r < r.
The radius r1 corresponds to the point where XI,T-M just exceeds X±,s. Once
this occurs, the resistive MHD marginal stability model is dominant and x±
and T are determined by simultaneously solving

1 d (rjdTk) 71o 11(51 x4 = (45)
r dr dr n20 T3

k2
dTk 1/4

dr (r) XJ (46)
drT7

The starting conditions require that Tk, Tk' and x± are continuous across
r = r1 . The solution to these equations remains valid up until the core-
edge transition r = r2 . Strictly speaking a modified layer near the reversal
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surface should be included, but the layer is so narrow that numerical dissi-
pation smooths out the solution with negligible impact on the macroscopic
parameters.

D The edge region

In the edge the pressure gradient and temperature are modeled as follows

P1 Aa - r " A a - r )V+1 (7
p'= A1 - A2 47

(a - r2 a - r2
2 - 2V+1

T = A3 - A4 (48)
a - r2) (a - r2

The coefficients Aj are given by Eq. (38) and guarantee that p', p", T, and T'
are continuous across r = r2. The pressure is found by integrating Eq. (47)
assuming as a starting condition continuity in p across r2 . In general the re-
sulting pressure will not satisfy p(a) = 0. The starting guess for T(O) = To is
then refined, and the procedure iterated until p(a) = 0. This then completes
the solution for a given set of input parameters. The results obtained by this
procedure are discussed in the next paper.
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(a)

o A'

(b)

Q
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r,8x

Figure 1: Schematic of the curve Q vs. A' for D > 0 as described by (a)
Eq. (5) and (b) Eq. (6)
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Values of A' vs. Resonant Surface r (Typical RFX Shot)
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Figure 2: Illustration of the Transport Model Iterative Solution Procedure
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Transition from Suydam to T-M Marginality on Axis
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Figure 3: Determination of the Transition Point r1
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Edge Modification of BFM

-- T-M Model
-- BFM
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Figure 4: Edge Modified Profile for jo as in Equation (28)
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Edge-Modifying Function for a Typical RFX Shot [f=2.95]
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Figure 5: Determination of f and the Edge Region r > r 2
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